WO2017074222A1 - Chevron nozzle of a gas turbine engine - Google Patents

Chevron nozzle of a gas turbine engine Download PDF

Info

Publication number
WO2017074222A1
WO2017074222A1 PCT/RU2016/000713 RU2016000713W WO2017074222A1 WO 2017074222 A1 WO2017074222 A1 WO 2017074222A1 RU 2016000713 W RU2016000713 W RU 2016000713W WO 2017074222 A1 WO2017074222 A1 WO 2017074222A1
Authority
WO
WIPO (PCT)
Prior art keywords
chevrons
nozzle
chevron
edges
angle
Prior art date
Application number
PCT/RU2016/000713
Other languages
French (fr)
Russian (ru)
Inventor
Алексей Александрович АЛЕКСЕНЦЕВ
Дмитрий Борисович БЕКУРИН
Дмитрий Владиславович КОПЫСОВ
Николай Валерьевич КОБЕЛЕВ
Александр Александрович СИНЕР
Алексей Константинович МИРОНОВ
Сергей Юрьевич КРАШЕННИКОВ
Original Assignee
Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") filed Critical Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК")
Publication of WO2017074222A1 publication Critical patent/WO2017074222A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/28Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto using fluid jets to influence the jet flow
    • F02K1/34Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto using fluid jets to influence the jet flow for attenuating noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/46Nozzles having means for adding air to the jet or for augmenting the mixing region between the jet and the ambient air, e.g. for silencing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/38Introducing air inside the jet
    • F02K1/386Introducing air inside the jet mixing devices in the jet pipe, e.g. for mixing primary and secondary flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/46Nozzles having means for adding air to the jet or for augmenting the mixing region between the jet and the ambient air, e.g. for silencing
    • F02K1/48Corrugated nozzles

Definitions

  • the invention relates to the field of engine manufacturing, in particular to jet nozzles with noise suppression devices, and is intended for use in aircraft engines.
  • a chevron nozzle containing an exhaust pipe, at the output end of which there are triangular chevrons (Patent US 6532729, B63H 11/00, 03/18/2003).
  • the known device has a disadvantage due to the fact that the absence of restrictions on the angle of introduction of the chevron into the gas stream can lead to increased high-frequency noise and reduced noise cancellation. Rectilinear and pointed (nullified) edges of the chevrons do not allow additional vortex formation to increase the acoustic effect and reduce noise.
  • the technical result of the claimed invention is to reduce noise and reduce aerodynamic losses during operation.
  • the claimed technical result is achieved in that the chevron nozzle of a gas turbine engine, including an exhaust pipe, at the output end of which there are triangular chevrons, according to the invention, the chevrons have profiled edges and inclined, respectively, at an angle of 6-8 ° to the streamline at the nozzle exit of the outer loop and at an angle of 4-6 ° to the current line at the nozzle exit of the inner loop.
  • edges of the chevrons can be made of a convex shape.
  • the edges of the chevrons can be made concave.
  • Chevron edges can be made in a straight form.
  • the presented design of a chevron nozzle with an optimized angle of inclination of the chevrons allows reducing noise by 0.5-1, 2 EPNdB (actually perceived noise in decibels), avoiding the appearance of spurious high-frequency noise, and profiling the edges of the chevron and the use of edges made in a certain way reduces the loss of full pressure 0.03-0.05%.
  • This technical result was confirmed by testing the models of the claimed device in FSUE TsIAM them. P.I. Baranova ”, as well as during testing of prototypes in the gas turbine engine at the test benches of Aviadvigatel OJSC.
  • angles of 6–8 ° for the inclination of chevrons to the stream line at the nozzle exit of the outer contour and for angles of 4–6 ° for the inclination of chevrons to the stream line at the outlet of the nozzle of the inner contour are due to the fact that the most effective suppression is achieved at the indicated angles noise with minimal loss of total pressure.
  • each of the chevrons with profiled edges having edges in a certain way, provides additional vortex formation and, as a result, additional noise reduction.
  • an additional vortex formation occurs due to flow stall at the edge edges.
  • Chevron Profiled Edges they can improve the efficiency of sound attenuation of the jet due to the difference in velocities (V r V 2 for the nozzle of the external circuit and V2-3 for the nozzle of the internal circuit), due to which a vortex is formed, which increases the degree of mixing of flows, thereby reducing noise and loss of total pressure in the nozzle.
  • the chevron edge profile shape may be convex, concave, or straight.
  • FIG. 1 shows a general view of a chevron nozzle
  • FIG. 2 shows a general view of the chevron
  • FIG. 3 shows a longitudinal section of a nozzle
  • FIG. 4 shows a cross section through a chevron with a straight edge
  • FIG. 5 is a cross-sectional view of a chevron with a convex edge
  • FIG. Figure 6 shows a cross section through a chevron with a concave edge.
  • the chevron nozzle 1 (Fig. 1) consists of an exhaust pipe 2, at the output end 3 of which there are many chevrons 4. Moreover, each chevron 4 (Fig. 2) has a triangular shape (triangular configuration) and shaped edges 5 with edges 6 made accordingly. Between the chevrons 4 made rounding 7, and each of the chevrons 4 has a rounding 8 at its end.
  • the current line 9 at the nozzle exit of the external 10 circuit is defined as the middle line between the tangent 13 to the inner contour of the nozzle of the outer 10 circuit and the tangent 14 to the outer contour of the nozzle of the inner circuit 12.
  • the current line 1 1 is defined as the middle line between the tangent 15 to the internal contours of the nozzle of the internal circuit 12 and the tangent 16 to the external contours of the central body 17.
  • the inclination of chevron 4 for the nozzle of the outer 10 contour is defined as the angle between the tangent 18 to the inner surface of the chevron 4 and the current line 9 at the output of the nozzle of the outer 10 contour
  • the angle 2 of the inclination of the chevron 4 for the nozzle of the inner 12 contour is defined as the angle between the tangent 19 to the inner surface the chevron 4 and the current line 11 at the output of the nozzle of the inner 12 circuit.
  • Lines 20 in FIG. 4-6 schematically indicate the lines of vortex formation when flowing around the edge 5 of the chevron 4.
  • the chevron nozzle of a gas turbine engine operates as follows.

Abstract

The invention relates to the field of engine building, and more particularly to jet nozzles with noise reduction devices, and is intended for use in aircraft engines. A chevron nozzle of a gas turbine engine comprises an exhaust pipe (2), on the output end (3) of which there are chevrons (4) which are triangular in shape. The chevrons (4) have profiled contours (5) with edges (6). The chevrons (4) are inclined at an angle of 6-8 to the line of flow at the outlet of a secondary flow nozzle and at an angle of 4-6 to the line of flow at the outlet of a primary flow nozzle, respectively. The contours (5) of the chevrons (4) can be convex, concave or straight in shape. The claimed invention makes it possible to reduce noise and reduce aerodynamic losses during operation.

Description

ШЕВРОННОЕ СОПЛО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ  Chevron nozzle for gas turbine engine
Область техники Technical field
Изобретение относится к области двигателестроения, в частности к реактивным соплам с устройствами подавления шума, и предназначено для использования в авиационных двигателях.  The invention relates to the field of engine manufacturing, in particular to jet nozzles with noise suppression devices, and is intended for use in aircraft engines.
Предшествующий уровень техники  State of the art
В области авиационного двигателестроения существует проблема, связанная с необходимостью создания сопел с низким уровнем шума, генерируемого струёй.  In the field of aircraft engine manufacturing, there is a problem associated with the need to create nozzles with low noise generated by the jet.
Наиболее близким к заявляемой конструкции является шевронное сопло, содержащее выхлопную трубу, на выходном торце которой расположены шевроны треугольной формы (Патент US 6532729, В63Н 11/00, 18.03.2003). Известное устройство имеет недостаток, обусловленный тем, что отсутствие ограничений на угол внедрения шеврона в газовый поток может приводить к усилению высокочастотного шума и уменьшению гашения шума. Прямолинейные и заостренные (сведенные на нет) кромки шевронов не позволяют получить дополнительного вихреобразования для увеличения акустического эффекта, снижения шума.  Closest to the claimed design is a chevron nozzle containing an exhaust pipe, at the output end of which there are triangular chevrons (Patent US 6532729, B63H 11/00, 03/18/2003). The known device has a disadvantage due to the fact that the absence of restrictions on the angle of introduction of the chevron into the gas stream can lead to increased high-frequency noise and reduced noise cancellation. Rectilinear and pointed (nullified) edges of the chevrons do not allow additional vortex formation to increase the acoustic effect and reduce noise.
Указанные выше недостатки устраняются в заявляемом изобретении.  The above disadvantages are eliminated in the claimed invention.
Технический результат заявленного изобретения заключается в снижении шума и уменьшении аэродинамических потерь при работе.  The technical result of the claimed invention is to reduce noise and reduce aerodynamic losses during operation.
Раскрытие изобретения  Disclosure of invention
Заявленный технический результат достигается тем, что шевронное сопло газотурбинного двигателя, включающее выхлопную трубу, на выходном торце которой расположены шевроны треугольной формы, согласно изобретению, шевроны имеют профилированные кромки и наклонены, соответственно, под углом 6-8° к линии тока на выходе сопла наружного контура и под углом 4-6° к линии тока на выходе сопла внутреннего контура. The claimed technical result is achieved in that the chevron nozzle of a gas turbine engine, including an exhaust pipe, at the output end of which there are triangular chevrons, according to the invention, the chevrons have profiled edges and inclined, respectively, at an angle of 6-8 ° to the streamline at the nozzle exit of the outer loop and at an angle of 4-6 ° to the current line at the nozzle exit of the inner loop.
При этом кромки шевронов могут быть выполнены выпуклой форМЫ.  In this case, the edges of the chevrons can be made of a convex shape.
Кромки шевронов могут быть выполнены вогнутой формы.  The edges of the chevrons can be made concave.
Кромки шевронов могут быть выполнены прямой формы.  Chevron edges can be made in a straight form.
Представленная конструкция шевронного сопла с оптимизированным углом наклона шевронов позволяет уменьшить шум на 0,5-1 ,2 EPNdB (фактически воспринимаемый шум в децибелах), избежав появления паразитного высокочастотного шума, а профилирование кромок шеврона и использование определенным образом выполненных краев кромок позволяет снизить потери полного давления на 0,03-0,05%. Данный технический результат был подтвержден при испытании моделей заявленного устройства в ФГУП «ЦИАМ им. П.И. Баранова», а также при испытаниях опытных образцов в составе газотурбинного двигателя на испытательных стендах ОАО "Авиадвигатель".  The presented design of a chevron nozzle with an optimized angle of inclination of the chevrons allows reducing noise by 0.5-1, 2 EPNdB (actually perceived noise in decibels), avoiding the appearance of spurious high-frequency noise, and profiling the edges of the chevron and the use of edges made in a certain way reduces the loss of full pressure 0.03-0.05%. This technical result was confirmed by testing the models of the claimed device in FSUE TsIAM them. P.I. Baranova ”, as well as during testing of prototypes in the gas turbine engine at the test benches of Aviadvigatel OJSC.
Выбор углов 6-8° наклона шевронов к линии тока на выходе сопла наружного контура и углов 4-6° наклона шевронов к линии тока на выходе сопла внутреннего контура (углов внедрения шевронов в поток) обусловлен тем, что при указанных углах достигается наиболее эффективное подавление шума при минимальной потере полного давления.  The choice of angles of 6–8 ° for the inclination of chevrons to the stream line at the nozzle exit of the outer contour and for angles of 4–6 ° for the inclination of chevrons to the stream line at the outlet of the nozzle of the inner contour (angles of introduction of chevrons into the flow) is due to the fact that the most effective suppression is achieved at the indicated angles noise with minimal loss of total pressure.
Выполнение каждого из шевронов с профилированными кромками, имеющими определенным образом выполненные края, обеспечивает получение дополнительного вихреобразования и, как следствие, дополнительного снижения шума. При перетекании газа через кромку шеврона происходит дополнительное вихреобразование за счет срыва потока на краях кромки. Края профилированных кромок шеврона позволяют повысить эффективность шумоглушения струи за счёт разницы скоростей (VrV2 для сопла наружного контура и V2- 3 для сопла внутреннего контура), вследствие которой образуется вихрь, увеличивающий степень смешения потоков, тем самым уменьшая шум и потери полного давления в сопле. The implementation of each of the chevrons with profiled edges, having edges in a certain way, provides additional vortex formation and, as a result, additional noise reduction. When gas flows through the chevron edge, an additional vortex formation occurs due to flow stall at the edge edges. Chevron Profiled Edges they can improve the efficiency of sound attenuation of the jet due to the difference in velocities (V r V 2 for the nozzle of the external circuit and V2-3 for the nozzle of the internal circuit), due to which a vortex is formed, which increases the degree of mixing of flows, thereby reducing noise and loss of total pressure in the nozzle.
Форма профиля кромки шеврона может быть выпуклой, вогнутой или прямой.  The chevron edge profile shape may be convex, concave, or straight.
Краткое описание чертежей  Brief Description of the Drawings
Сущность заявленного изобретения поясняется следующими чертежами:  The essence of the claimed invention is illustrated by the following drawings:
на фиг. 1 изображен общий вид шевронного сопла;  in FIG. 1 shows a general view of a chevron nozzle;
на фиг. 2 показан общий вид шеврона;  in FIG. 2 shows a general view of the chevron;
на фиг. 3 представлено продольное сечение сопла;  in FIG. 3 shows a longitudinal section of a nozzle;
на фиг. 4 показан поперечный разрез шеврона с прямой кромкой; на фиг. 5 представлен поперечный разрез шеврона с выпуклой кромкой;  in FIG. 4 shows a cross section through a chevron with a straight edge; in FIG. 5 is a cross-sectional view of a chevron with a convex edge;
на фиг. 6 приведен поперечный разрез шеврона с вогнутой кромкой.  in FIG. Figure 6 shows a cross section through a chevron with a concave edge.
Осуществление изобретения  The implementation of the invention
Шевронное сопло 1 (фиг.1) состоит из выхлопной трубы 2, на выходном торце 3 которой расположено множество шевронов 4. При этом каждый шеврон 4 (фиг. 2) имеет треугольную форму (треугольную конфигурацию) и профилированные кромки 5 с краями 6, выполненными соответствующим образом. Между шевронами 4 выполнены скругления 7, а каждый из шевронов 4 имеет скругление 8 на его конце.  The chevron nozzle 1 (Fig. 1) consists of an exhaust pipe 2, at the output end 3 of which there are many chevrons 4. Moreover, each chevron 4 (Fig. 2) has a triangular shape (triangular configuration) and shaped edges 5 with edges 6 made accordingly. Between the chevrons 4 made rounding 7, and each of the chevrons 4 has a rounding 8 at its end.
Шевроны 4 установлены под углом г = 6-8° к линии 9 тока на выходе сопла наружного 10 контура и под углом а2 ~ 4-6° к линии 11 тока на выходе сопла внутреннего 12 контура (см. фиг.З). Линия 9 тока на выходе сопла наружного 10 контура определяется как средняя линия между касательной 13 к внутренним обводам сопла наружного 10 контура и касательной 14 к внешним обводам сопла внутреннего 12 контура. Для сопла внутреннего 12 контура линия 1 1 тока определяется как средняя линия между касательной 15 к внутренним обводам сопла внутреннего контура 12 и касательной 16 к внешним обводам центрального тела 17. Угол α,! наклона шеврона 4 для сопла наружного 10 контура определяется как угол между касательной 18 к внутренней поверхности шеврона 4 и линией 9 тока на выходе сопла наружного 10 контура, а угол 2 наклона шеврона 4 для сопла внутреннего 12 контура определяется как угол между касательной 19 к внутренней поверхности шеврона 4 и линией 11 тока на выходе сопла внутреннего 12 контура. Chevrons 4 are installed at an angle r = 6-8 ° to the current line 9 at the output of the nozzle of the external 10 circuit and at an angle a 2 ~ 4-6 ° to the current line 11 at the output of the internal circuit nozzle 12 (see Fig. 3). The current line 9 at the nozzle exit of the external 10 circuit is defined as the middle line between the tangent 13 to the inner contour of the nozzle of the outer 10 circuit and the tangent 14 to the outer contour of the nozzle of the inner circuit 12. For the nozzle of the internal circuit 12, the current line 1 1 is defined as the middle line between the tangent 15 to the internal contours of the nozzle of the internal circuit 12 and the tangent 16 to the external contours of the central body 17. Angle α ,! the inclination of chevron 4 for the nozzle of the outer 10 contour is defined as the angle between the tangent 18 to the inner surface of the chevron 4 and the current line 9 at the output of the nozzle of the outer 10 contour, and the angle 2 of the inclination of the chevron 4 for the nozzle of the inner 12 contour is defined as the angle between the tangent 19 to the inner surface the chevron 4 and the current line 11 at the output of the nozzle of the inner 12 circuit.
Линиями 20 на фиг. 4-6 схематично обозначены линии вихреобразования при обтекании кромки 5 шеврона 4.  Lines 20 in FIG. 4-6 schematically indicate the lines of vortex formation when flowing around the edge 5 of the chevron 4.
Шевронное сопло газотурбинного двигателя работает следующим образом.  The chevron nozzle of a gas turbine engine operates as follows.
При обтекании шевронов 4 сопла наружного 10 контура создаются условия для появления взаимного скоса двух потоков: основного потока газа, истекающего из сопла наружного 10 контура со скоростью V2, и потока газа, идущего по наружной обечайке сопла наружного 10 контура со скоростью Vi. В результате этого возникает разность скоростей (VrV2) двух потоков, усиливается вихреобразование (см. поз. 20 на фиг. 4-6) за счет наличия соответствующих краев 6 на кромках 5 шеврона 4 и выполнения кромки 5 профилированной (например, вогнутой), при этом уменьшается шум. При обтекании шевронов 4 сопла внутреннего 12 контура создаются условия для появления взаимного скоса двух потоков: основного потока газа, истекающего из сопла внутреннего 12 контура со скоростью V3, и потока газа, истекающего из сопла наружного 10 контура со скоростью V2. В результате этого возникает разность скоростей (V2-V3) двух потоков, усиливается вихреобразование за счет наличия соответствующих краев 6 на кромках 5 шеврона 4 и выполнения кромки 5 профилированной, при этом уменьшается шум. When chevrons 4 flow around the nozzle of the outer 10 circuit, the conditions are created for the mutual beveling of two flows: the main gas flow flowing from the nozzle of the outer 10 circuit at a speed of V 2 and the gas flow going through the outer shell of the nozzle of the outer 10 circuit at a speed of Vi. As a result of this, a difference in the velocities (V r V 2 ) of the two flows occurs, vortex formation is enhanced (see pos. 20 in Fig. 4-6) due to the presence of the corresponding edges 6 at the edges 5 of the chevron 4 and the implementation of the edge 5 profiled (for example, concave ), while reducing noise. When chevrons 4 flow around the nozzle of the inner 12 circuit, the conditions are created for the mutual beveling of two flows: the main gas stream flowing out of the nozzle of the inner 12 circuit at a speed of V 3 and the gas flow flowing out of the nozzle of the outer 10 circuit at a speed of V 2 . The result is a speed difference (V 2 -V 3 ) of two flows, vortex formation is enhanced due to the presence of corresponding edges 6 on the edges 5 of the chevron 4 and the implementation of the edge 5 profiled, while reducing noise.
ю Yu
15 fifteen
25 25

Claims

Формула изобретения Claim
1. Шевронное сопло газотурбинного двигателя, включающее выхлопную трубу, на выходном торце которой расположены шевроны треугольной формы, отличающееся тем, что шевроны имеют 1. Chevron nozzle of a gas turbine engine, including an exhaust pipe, at the output end of which there are triangular chevrons, characterized in that the chevrons have
5 профилированные кромки и наклонены, соответственно, под углом 6-8° к линии тока на выходе сопла наружного контура и под углом 4-6° к линии тока на выходе сопла внутреннего контура. 5 are profiled edges and are inclined, respectively, at an angle of 6-8 ° to the streamline at the nozzle exit of the outer loop and at an angle of 4-6 ° to the streamline at the nozzle exit of the inner loop.
2. Шевронное сопло по п.1, отличающееся тем, что кромки шевронов выполнены выпуклой формы.  2. The chevron nozzle according to claim 1, characterized in that the edges of the chevrons are made convex.
ю 3. Шевронное сопло по п.1, отличающееся тем, что кромки шевронов выполнены вогнутой формы. s 3. Chevron nozzle according to claim 1, characterized in that the edges of the chevrons are made concave.
4. Шевронное сопло по п.1, отличающееся тем, что кромки шевронов выполнены прямой формы.  4. The chevron nozzle according to claim 1, characterized in that the edges of the chevrons are made in a straight shape.
15 fifteen
20 twenty
25 25
PCT/RU2016/000713 2015-10-26 2016-10-19 Chevron nozzle of a gas turbine engine WO2017074222A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2015145856 2015-10-26
RU2015145856A RU2615309C1 (en) 2015-10-26 2015-10-26 Chevron nozzle of gas turbine engine

Publications (1)

Publication Number Publication Date
WO2017074222A1 true WO2017074222A1 (en) 2017-05-04

Family

ID=58507090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2016/000713 WO2017074222A1 (en) 2015-10-26 2016-10-19 Chevron nozzle of a gas turbine engine

Country Status (2)

Country Link
RU (1) RU2615309C1 (en)
WO (1) WO2017074222A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088665A (en) * 1989-10-31 1992-02-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Serrated trailing edges for improving lift and drag characteristics of lifting surfaces
US6487848B2 (en) * 1998-11-06 2002-12-03 United Technologies Corporation Gas turbine engine jet noise suppressor
US7065957B2 (en) * 2000-05-05 2006-06-27 The Boeing Company Segmented mixing device for jet engines and aircraft

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9925193D0 (en) * 1999-10-26 1999-12-22 Rolls Royce Plc Gas turbine engine exhaust nozzle
GB2372779A (en) * 2001-03-03 2002-09-04 Rolls Royce Plc Gas turbine engine nozzle with noise reducing tabs
FR2930972B1 (en) * 2008-05-07 2012-11-30 Airbus France DOUBLE FLOW TURBOMACHINE FOR AIRCRAFT WITH REDUCED NOISE TRANSMISSION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088665A (en) * 1989-10-31 1992-02-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Serrated trailing edges for improving lift and drag characteristics of lifting surfaces
US6487848B2 (en) * 1998-11-06 2002-12-03 United Technologies Corporation Gas turbine engine jet noise suppressor
US7065957B2 (en) * 2000-05-05 2006-06-27 The Boeing Company Segmented mixing device for jet engines and aircraft

Also Published As

Publication number Publication date
RU2615309C1 (en) 2017-04-04

Similar Documents

Publication Publication Date Title
US7543452B2 (en) Serrated nozzle trailing edge for exhaust noise suppression
CN105317749B (en) Fan component and its fan frame
US20190162104A1 (en) Valvular-conduit exhaust manifold
JP4159519B2 (en) Turbine engine injection noise reduction device
CN106021831A (en) Design method of self-adaptive communication reverse reflux tank air inflow channel
CN104791025B (en) A kind of control structure for reducing low-pressure turbine blade separation losses and method
CN107636290A (en) Include the turbogenerator of the lobe shape blender with wind-powered waterwheel
CN101319681A (en) Vortex flow blower
KR20160021730A (en) Silencer
JP6126095B2 (en) Nozzle structure and manufacturing method of nozzle structure
WO2017074222A1 (en) Chevron nozzle of a gas turbine engine
RU2670664C9 (en) Asymmetrical air-scoop for three flow engine of faster-than-sound aircraft
CN112502853B (en) Nozzle, jet engine and jet aircraft equipped with same
CN109838293A (en) A kind of mixer
JP2005023929A (en) Fluid chevron and configurable thermal shield for reducing jet noise
US20160215727A1 (en) Afterbody for a mixed-flow turbojet engine comprising a lobed mixer and chevrons with a non-axisymmetric inner surface
JP6605041B2 (en) Bend pipe and fluid machine including the same
CN207122704U (en) A kind of energy-saving silencing pipeline suitable for the vertical air intake in 90 ° of top
JP6342965B2 (en) Thrust nozzle
CN203783703U (en) Silencer
RU2265130C1 (en) Mixer of bypass turbojet engine
RU2767862C2 (en) Modified sound secondary nozzle
JP6180005B2 (en) Nozzle structure and manufacturing method of nozzle structure
CN216666751U (en) Noise reduction pipeline structure
RU2367798C2 (en) Turbojet engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16860367

Country of ref document: EP

Kind code of ref document: A1