WO2015166813A1 - Axial flow impeller and turbine - Google Patents

Axial flow impeller and turbine Download PDF

Info

Publication number
WO2015166813A1
WO2015166813A1 PCT/JP2015/061788 JP2015061788W WO2015166813A1 WO 2015166813 A1 WO2015166813 A1 WO 2015166813A1 JP 2015061788 W JP2015061788 W JP 2015061788W WO 2015166813 A1 WO2015166813 A1 WO 2015166813A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor blade
axial
protrusion
rotation
flow impeller
Prior art date
Application number
PCT/JP2015/061788
Other languages
French (fr)
Japanese (ja)
Inventor
寛 川嶋
Original Assignee
寛 川嶋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 寛 川嶋 filed Critical 寛 川嶋
Publication of WO2015166813A1 publication Critical patent/WO2015166813A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/18Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means
    • F01D1/20Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to an axial flow impeller and a turbine having the axial flow impeller.
  • Patent Document 1 In order to improve the output efficiency of an impeller of a turbine such as wind power generation, optimization of a blade shape, bending of a blade tip, addition of a vane or a vortex generator, and the like have been performed (for example, Patent Document 1). See), and no significant improvement in output efficiency has been realized. Therefore, with the aim of drastically improving output efficiency, a cylindrical diffuser (commonly known as a wind lens) formed so that the opening area increases from the wind inlet to the outlet is installed so as to surround the outer periphery of the impeller. A technique for increasing the output of the impeller 2 to 3 times has been developed (see, for example, Patent Document 2). Further, a radial turbine using a flow of air or water in the radial direction from the center of rotation is known as one that can achieve high-efficiency rotation (see, for example, Patent Document 3).
  • a cylindrical diffuser commonly known as a wind lens
  • the radial turbine as described in Patent Document 3 has a high efficiency rotation because of an increase in impulse and reaction force against the turbine, but it is still necessary to increase the size in order to further increase the output efficiency.
  • the radial flow turbine since the radial flow turbine has a three-dimensional structure, it is limited in size by the installation space. For this reason, there has been a problem that there is a limit in improving the output efficiency.
  • This invention is made paying attention to such a subject, and it aims at providing the axial flow impeller and turbine which can improve output efficiency, without enlarging.
  • the inventor of the present invention pays attention to the fact that in the conventional axial flow type impeller, the radial flow component of the fluid flowing in the radial direction from the rotation center along the impeller rotor blades does not contribute to the rotation of the impeller. As a result of trial and error for a technique for effectively utilizing this radial flow component for the rotation of the impeller, the present invention has been achieved.
  • the axial-flow impeller according to the present invention is disposed around the predetermined central axis at an angular interval, and is provided to be able to rotate around the central axis in response to a fluid flow along the central axis direction.
  • Each projecting portion is characterized in that a cross section along the rotating surface of each rotor blade has an airfoil shape that swells outside the rotation.
  • the flow pushes each rotor blade to rotate each rotor blade.
  • the fluid hitting each rotor blade becomes a flow having a rotational direction component and a radial flow direction component of each rotor blade along the upstream surface of each rotor blade. It flows in a direction inclined from the central axis toward the outside from the side edge to the rear edge. A part of the inclined flow hits each protrusion from the central axis side, flows along each protrusion, and escapes to the rear edge in the rotation direction of each rotor blade.
  • the axial flow impeller according to the present invention can increase the rotation efficiency by using the radial flow component along each rotary blade by providing each protrusion, and without increasing the size, the output Efficiency can be improved. Note that the axial flow impeller according to the present invention may be increased in size to further improve the output efficiency.
  • each projecting portion is provided in an arc shape along the rotation direction of each rotor blade, and thus is not easily subjected to resistance due to the rotation of each rotor blade.
  • Each protrusion is preferably formed from the front side edge to the rear side edge in the rotation direction of each rotary blade over the entire width of each rotary blade.
  • Each protrusion may be formed by attaching an arc-shaped protruding piece to the surface of each rotor blade, or may be formed by raising the surface of each rotor blade in an arc shape.
  • An arcuate groove may be formed. The arcuate raised shape and the cross section of the groove may be, for example, a triangular shape.
  • Each protrusion may be formed by arranging a plurality of protrusions in an arc shape.
  • each protrusion may be provided on the downstream surface of each rotor blade.
  • the radial flow component along the downstream surface of each rotor blade can also be used, and the rotational efficiency of each rotor blade can be further increased.
  • each of the rotor blades may be any propeller or screw as long as it is an axial flow type, and may be a conventional axial flow type impeller.
  • each protrusion is inclined forward with respect to the rotation direction of each rotor blade.
  • each protrusion has an airfoil shape in which the cross section along the rotation surface of each rotor blade swells outside the rotation, and therefore flows on the surface of each rotor blade. The fluid generates lift at each protrusion toward the outside of the rotation.
  • a rotational direction component of each rotor blade can be obtained from the lift force, so that the rotation efficiency of each rotor blade can be further increased.
  • by tilting each protrusion forward resistance due to rotation of each rotor blade can be made more difficult to receive, and rotation efficiency can be increased.
  • the turbine according to the present invention includes the axial-flow impeller according to the present invention. Since the turbine according to the present invention includes the axial flow impeller according to the present invention, the output efficiency can be improved without increasing the size.
  • the turbine according to the present invention may be any turbine as long as it can convert the kinetic energy of the fluid into rotational energy, such as a steam turbine, a gas turbine, a water turbine for power generation, a wind power generator, and the like.
  • FIG. 1 A) Front view which shows the axial-flow impeller of embodiment of this invention, (b) The cutting part end view which passes along the center axis
  • FIG. 6 is a cut-part end view, (c) a front view showing a head and one rotary blade of a second modification of the rotary blade, and (b) a cut-part end view passing through the central axis and the center of the rotary blade.
  • the front view which shows the head and one rotary blade of the 3rd modification of the (a) rotary blade of the axial-flow impeller of embodiment of this invention, (b) It passes along the center axis
  • the axial flow impeller 10 includes a head 11, a plurality of rotating blades 12, and a plurality of protrusions 13.
  • the head 11 has a conical shape and is provided so as to be rotatable about its central axis.
  • Each rotary blade 12 has an elongated plate shape, and is arranged around the head 11 at equiangular intervals.
  • Each rotary blade 12 extends from the head 11 in the radial direction, and is attached so that one surface faces the front side of the head 11.
  • Each rotor blade 12 is provided so as to be rotatable around the central axis of the head 11 and inclined with respect to the central axis direction of the head 11 when receiving a fluid flow along the central axis direction of the head 11. .
  • Each protrusion 13 is plate-shaped, and is provided on each rotary blade 12 by the same number with a predetermined interval. Each protrusion 13 is provided on the upstream surface of each rotor blade 12 so as to protrude toward the upstream side. Each protrusion 13 is provided vertically upright with respect to the surface of each rotor blade 12. Each protrusion 13 is provided in a circular arc shape along the rotational direction of each rotary blade 12 over the entire width of each rotary blade 12 from one side edge to the other side edge of each rotary blade 12. In the specific example shown in FIG. 1, the rotor blades 12 are composed of six sheets, and five protrusions 13 are provided on each rotor blade 12.
  • each rotor blade 12 rotates in the direction of arrow A, and fluid flows in the direction of arrow B on the surface of each rotor blade 12.
  • the axial flow impeller 10 can increase the rotation efficiency by using the radial flow components along the rotary blades 12 by providing the protrusions 13, and can increase the output efficiency without increasing the size. Can be improved. Further, even when the axial flow impeller 10 is tilted backward by the downwind method or when coning occurs in which each rotor blade 12 is inclined downstream due to the pressure of the fluid, the radial flow component is increased by each.
  • the protrusion 13 can be used effectively, and the rotation efficiency can be increased.
  • the axial flow impeller 10 can effectively utilize the radial flow component that increases due to the disk effect by the protrusions 13 even when the rotary blades 12 rotate at a high speed, thereby improving the rotation efficiency. it can.
  • the conventional impeller has little contribution to rotation at the end of each rotary blade on the central axis side, but the axial impeller 10 also protrudes from the end of each rotary blade 12 on the central axis side.
  • the contribution to the rotation by the part can be increased and the rotation efficiency can be increased.
  • the axial flow impeller 10 is less susceptible to resistance due to the rotation of each rotary blade 12 because each protrusion 13 is provided in an arc shape along the rotation direction of each rotary blade 12.
  • the axial-flow impeller 10 can be used as an impeller of a turbine such as a steam turbine, a gas turbine, a power generation water turbine, or a wind power generator. Thereby, output efficiency can be improved, without enlarging a turbine.
  • each protrusion 13 may be provided on the downstream surface of each rotor blade 12.
  • the radial flow component along the downstream surface of each rotor blade 12 can also be used, and the rotational efficiency of each rotor blade 12 can be further increased.
  • the axial flow impeller 10 is provided with alternately a raised portion 21 in which the surface of each rotary blade 12 has an arc shape and an arc-shaped groove 22. A shape may be formed, and each raised portion 21 may form each protruding portion 13. The cross sections of the raised portion 21 and the groove 22 are triangular.
  • each protrusion 13 may be formed by arranging a plurality of protrusions 23 in an arc shape.
  • each protrusion 13 has an airfoil shape in which the cross section along the rotation surface of each rotary blade 12 swells outside the rotation, and the rotation direction of each rotary blade 12 is May be tilted forward.
  • the fluid flows along the surface of each rotary blade 12 along each airfoil-shaped protrusion 13, so that lift is generated outward of rotation at each protrusion 13. F is generated.
  • the rotational direction component of each rotor blade 12 is obtained from the lift F, and the rotational efficiency of each rotor blade 12 can be further increased.
  • each rotor blade 12 is tilted forward, it is possible to further reduce resistance to the fluid (arrow B) flowing obliquely on the surface of each rotor blade 12 and to increase the rotation efficiency.
  • Table 1 The experimental results are shown in Table 1.
  • each value of the impeller without the projecting portion 13 is set to 1.00, and the result of the axial flow impeller 10 is shown.
  • the output is weight ⁇ number of rotations.
  • the axial flow impeller 10 having the projecting portion 13 has an output efficiency improved by 130% or more compared to the conventional impeller without the projecting portion 13.

Abstract

[Problem] To provide an axial flow impeller and a turbine by which it is possible to improve output efficiency without increasing the size thereof. [Solution] In the present invention, a plurality of rotary blades are disposed at equal angular intervals around a head, and are provided so as to be able to rotate about the central axis of the head upon receiving the flow of a fluid along the central axis direction of the head. A plurality of protrusions are provided at a prescribed interval on each rotary blade, the same number of protrusions being provided on all rotary blades. Each protrusion protrudes towards the upstream direction on the upstream-side surface of each rotary blade, and is provided in a curve shape along the rotating direction of each rotary blade.

Description

軸流羽根車およびタービンAxial impeller and turbine
 本発明は、軸流羽根車および、その軸流羽根車を有するタービンに関する。 The present invention relates to an axial flow impeller and a turbine having the axial flow impeller.
 従来、風力発電などのタービンの羽根車の出力効率を改善するために、翼型の最適化や翼端部の屈曲、ベーンやボルテックスジェネレータの付与などが行われているが(例えば、特許文献1参照)、大幅な出力効率の改善は実現していない。そこで、大幅な出力効率の改善を目指して、風の入口から出口に向かって開口面積が拡がるよう形成された筒状のディフューザ(通称:風レンズ)を、羽根車の外周を囲うよう取り付けることにより、羽根車の出力を2~3倍に高める技術が開発されている(例えば、特許文献2参照)。また、高効率回転が得られるものとして、回転中心から半径方向への空気や水の流れを利用した半径流タービンが知られている(例えば、特許文献3参照)。 Conventionally, in order to improve the output efficiency of an impeller of a turbine such as wind power generation, optimization of a blade shape, bending of a blade tip, addition of a vane or a vortex generator, and the like have been performed (for example, Patent Document 1). See), and no significant improvement in output efficiency has been realized. Therefore, with the aim of drastically improving output efficiency, a cylindrical diffuser (commonly known as a wind lens) formed so that the opening area increases from the wind inlet to the outlet is installed so as to surround the outer periphery of the impeller. A technique for increasing the output of the impeller 2 to 3 times has been developed (see, for example, Patent Document 2). Further, a radial turbine using a flow of air or water in the radial direction from the center of rotation is known as one that can achieve high-efficiency rotation (see, for example, Patent Document 3).
特開2002-349418号公報JP 2002-349418 A 国際公開第2010/109800号International Publication No. 2010/109800 特開2006-37791号公報JP 2006-37791 A
 特許文献2に記載の風レンズを利用した風車では、風レンズ自体は固定されて回転に直接寄与せず、その出口の外径は羽根車の直径の1.4倍となっている。この風レンズを利用した風車では、出力効率をさらに高めるためには大型化する必要があるが、風レンズの大きさにより羽根車の大型化に制限を受けてしまう。このため、出力効率の改善には限度があるという課題があった。 In the wind turbine using the wind lens described in Patent Document 2, the wind lens itself is fixed and does not directly contribute to the rotation, and the outer diameter of the outlet is 1.4 times the diameter of the impeller. In the wind turbine using this wind lens, it is necessary to increase the size in order to further increase the output efficiency, but the size of the impeller is limited by the size of the wind lens. For this reason, there has been a problem that there is a limit in improving the output efficiency.
 また、特許文献3に記載のような半径流タービンは、タービンに対する衝動力や反動力が増加するため高効率回転となるが、出力効率をさらに高めるためには、やはり大型化する必要がある。しかし、半径流タービンは立体構造を有しているため、設置スペースによって、大型化に制限を受けてしまう。このため、出力効率の改善には限度があるという課題があった。 In addition, the radial turbine as described in Patent Document 3 has a high efficiency rotation because of an increase in impulse and reaction force against the turbine, but it is still necessary to increase the size in order to further increase the output efficiency. However, since the radial flow turbine has a three-dimensional structure, it is limited in size by the installation space. For this reason, there has been a problem that there is a limit in improving the output efficiency.
 本発明は、このような課題に着目してなされたもので、大型化することなく、出力効率を改善することができる軸流羽根車およびタービンを提供することを目的とする。 This invention is made paying attention to such a subject, and it aims at providing the axial flow impeller and turbine which can improve output efficiency, without enlarging.
 本発明者は、従来型の軸流式の羽根車では、羽根車の回転翼に沿って回転中心から半径方向に流れる流体の半径流成分が、羽根車の回転に寄与していないことに着目し、この半径流成分を羽根車の回転に有効に活用するための技術について試行錯誤を行った結果、本発明に至った。 The inventor of the present invention pays attention to the fact that in the conventional axial flow type impeller, the radial flow component of the fluid flowing in the radial direction from the rotation center along the impeller rotor blades does not contribute to the rotation of the impeller. As a result of trial and error for a technique for effectively utilizing this radial flow component for the rotation of the impeller, the present invention has been achieved.
 すなわち、本発明に係る軸流羽根車は、所定の中心軸周りに互いに角度間隔をあけて配置され、前記中心軸方向に沿った流体の流れを受けて前記中心軸周りに回転可能に設けられた複数の回転翼と、各回転翼の上流側の表面に、上流側に向かって突出し、各回転翼の回転方向に沿って円弧状に設けられた1または複数の突出部とを有し、各突出部は、各回転翼の回転面に沿った断面が、回転の外側に膨らんだ翼型形状を成していることを特徴とする。 That is, the axial-flow impeller according to the present invention is disposed around the predetermined central axis at an angular interval, and is provided to be able to rotate around the central axis in response to a fluid flow along the central axis direction. A plurality of rotor blades, and one or a plurality of projecting portions projecting toward the upstream side on the upstream surface of each rotor blade and provided in an arc shape along the rotation direction of each rotor blade, Each projecting portion is characterized in that a cross section along the rotating surface of each rotor blade has an airfoil shape that swells outside the rotation.
 本発明に係る軸流羽根車では、各回転翼に中心軸方向に沿って流れる流体が当たると、その流れが各回転翼を押して各回転翼を回転させる。このとき、各回転翼に当たった流体は、各回転翼の上流側の表面に沿って、各回転翼の回転方向成分と半径流方向成分とを有する流れとなり、各回転翼の回転方向の前方側端縁から後方側端縁にかけて、中心軸から外側に向かって傾斜した向きに流れる。その傾斜した流れのうちの一部は、中心軸側から各突出部に当たり、各突出部に沿って流れて各回転翼の回転方向の後方側端縁に抜けていく。このとき、その流れにより各突出部が斜めに押されるため、各回転翼の回転方向成分の力が得られ、各回転翼の回転効率を高めることができる。このように、本発明に係る軸流羽根車は、各突出部を設けることにより、各回転翼に沿った半径流成分を利用して回転効率を高めることができ、大型化することなく、出力効率を改善することができる。なお、本発明に係る軸流羽根車は、大型化してさらに出力効率を改善してもよい。 In the axial-flow impeller according to the present invention, when a fluid flowing along the central axis direction hits each rotor blade, the flow pushes each rotor blade to rotate each rotor blade. At this time, the fluid hitting each rotor blade becomes a flow having a rotational direction component and a radial flow direction component of each rotor blade along the upstream surface of each rotor blade. It flows in a direction inclined from the central axis toward the outside from the side edge to the rear edge. A part of the inclined flow hits each protrusion from the central axis side, flows along each protrusion, and escapes to the rear edge in the rotation direction of each rotor blade. At this time, since each protrusion is pushed obliquely by the flow, the force of the rotational direction component of each rotor blade is obtained, and the rotation efficiency of each rotor blade can be increased. Thus, the axial flow impeller according to the present invention can increase the rotation efficiency by using the radial flow component along each rotary blade by providing each protrusion, and without increasing the size, the output Efficiency can be improved. Note that the axial flow impeller according to the present invention may be increased in size to further improve the output efficiency.
 本発明に係る軸流羽根車で、各突出部は、各回転翼の回転方向に沿って円弧状に設けられているため、各回転翼の回転による抵抗を受けにくい。各突出部は、各回転翼の幅いっぱいに、各回転翼の回転方向の前方側端縁から後方側端縁にかけて形成されていることが好ましい。また、各突出部は、各回転翼の表面に円弧状の突出片を取り付けて形成されてもよく、各回転翼の表面を円弧状に盛り上げて形成されてもよく、各回転翼の表面に円弧状の溝を形成して形成されてもよい。円弧状の盛り上げ形状や溝の横断面は、例えば三角形状であってもよい。また、各突出部は、複数の突起を円弧状に並べて形成されていてもよい。 In the axial-flow impeller according to the present invention, each projecting portion is provided in an arc shape along the rotation direction of each rotor blade, and thus is not easily subjected to resistance due to the rotation of each rotor blade. Each protrusion is preferably formed from the front side edge to the rear side edge in the rotation direction of each rotary blade over the entire width of each rotary blade. Each protrusion may be formed by attaching an arc-shaped protruding piece to the surface of each rotor blade, or may be formed by raising the surface of each rotor blade in an arc shape. An arcuate groove may be formed. The arcuate raised shape and the cross section of the groove may be, for example, a triangular shape. Each protrusion may be formed by arranging a plurality of protrusions in an arc shape.
 各突出部は、各回転翼に所定の間隔で複数設けられていることが好ましい。また、各突出部は、各回転翼の下流側の表面にも設けられていてもよい。この場合、各回転翼の下流側の表面に沿った半径流成分も利用することができ、各回転翼の回転効率をさらに高めることができる。本発明に係る軸流羽根車で、各回転翼は、軸流式のものであれば、プロペラやスクリュー等いかなるものであってもよく、従来の軸流式の羽根車であってもよい。 It is preferable that a plurality of protrusions are provided at predetermined intervals on each rotor blade. Each protrusion may be provided on the downstream surface of each rotor blade. In this case, the radial flow component along the downstream surface of each rotor blade can also be used, and the rotational efficiency of each rotor blade can be further increased. In the axial flow impeller according to the present invention, each of the rotor blades may be any propeller or screw as long as it is an axial flow type, and may be a conventional axial flow type impeller.
 本発明に係る軸流羽根車で、各突出部は、各回転翼の回転方向に対して前傾していることが好ましい。本発明に係る軸流羽根車で、各突出部は、各回転翼の回転面に沿った断面が、回転の外側に膨らんだ翼型形状を成しているため、各回転翼の表面を流れる流体により、各突出部で回転の外側に向かって揚力が発生する。このとき、各突出部を前傾させておくことにより、その揚力から各回転翼の回転方向成分が得られるため、各回転翼の回転効率をさらに高めることができる。また、各突出部を前傾させることにより、各回転翼の回転による抵抗をさらに受けにくくすることができ、回転効率を高めることができる。 In the axial-flow impeller according to the present invention, it is preferable that each protrusion is inclined forward with respect to the rotation direction of each rotor blade. In the axial-flow impeller according to the present invention, each protrusion has an airfoil shape in which the cross section along the rotation surface of each rotor blade swells outside the rotation, and therefore flows on the surface of each rotor blade. The fluid generates lift at each protrusion toward the outside of the rotation. At this time, by rotating each protrusion forward, a rotational direction component of each rotor blade can be obtained from the lift force, so that the rotation efficiency of each rotor blade can be further increased. Further, by tilting each protrusion forward, resistance due to rotation of each rotor blade can be made more difficult to receive, and rotation efficiency can be increased.
 本発明に係るタービンは、本発明に係る軸流羽根車を有することを特徴とする。
 本発明に係るタービンは、本発明に係る軸流羽根車を有しているため、大型化することなく、出力効率を改善することができる。本発明に係るタービンは、流体の運動エネルギーを回転エネルギーに変換可能であれば、いかなるものであってもよく、例えば、蒸気タービンやガスタービン、発電用水車、風力原動機などである。
The turbine according to the present invention includes the axial-flow impeller according to the present invention.
Since the turbine according to the present invention includes the axial flow impeller according to the present invention, the output efficiency can be improved without increasing the size. The turbine according to the present invention may be any turbine as long as it can convert the kinetic energy of the fluid into rotational energy, such as a steam turbine, a gas turbine, a water turbine for power generation, a wind power generator, and the like.
 本発明によれば、大型化することなく、出力効率を改善することができる軸流羽根車およびタービンを提供することができる。 According to the present invention, it is possible to provide an axial-flow impeller and a turbine capable of improving output efficiency without increasing the size.
本発明の実施の形態の軸流羽根車を示す(a)正面図、(b)中心軸および回転翼の中心を通る切断部端面図である。BRIEF DESCRIPTION OF THE DRAWINGS (a) Front view which shows the axial-flow impeller of embodiment of this invention, (b) The cutting part end view which passes along the center axis | shaft and the center of a rotary blade. 図1に示す軸流羽根車の、突出部に作用する力を示す、突出部を拡大した正面図である。It is the front view which expanded the protrusion part which shows the force which acts on a protrusion part of the axial-flow impeller shown in FIG. 本発明の実施の形態の軸流羽根車の(a)回転翼の第1の変形例の、ヘッドおよび1枚の回転翼を示す正面図、(b)その中心軸および回転翼の中心を通る切断部端面図、(c)回転翼の第2の変形例の、ヘッドおよび1枚の回転翼を示す正面図、(b)その中心軸および回転翼の中心を通る切断部端面図である。The front view which shows the head and one rotary blade of the 1st modification of the (a) rotary blade of the axial-flow impeller of embodiment of this invention, (b) It passes along the center axis | shaft and the center of a rotary blade. FIG. 6 is a cut-part end view, (c) a front view showing a head and one rotary blade of a second modification of the rotary blade, and (b) a cut-part end view passing through the central axis and the center of the rotary blade. 本発明の実施の形態の軸流羽根車の(a)回転翼の第3の変形例の、ヘッドおよび1枚の回転翼を示す正面図、(b)その中心軸および回転翼の中心を通る切断部端面図である。The front view which shows the head and one rotary blade of the 3rd modification of the (a) rotary blade of the axial-flow impeller of embodiment of this invention, (b) It passes along the center axis | shaft and the center of a rotary blade. It is a cutting part end view.
 以下、図面に基づき、本発明の実施の形態について説明する。
 図1乃至図4は、本発明の実施の形態の軸流羽根車を示している。
 図1に示すように、軸流羽根車10は、ヘッド11と複数の回転翼12と複数の突出部13とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 4 show an axial-flow impeller according to an embodiment of the present invention.
As shown in FIG. 1, the axial flow impeller 10 includes a head 11, a plurality of rotating blades 12, and a plurality of protrusions 13.
 ヘッド11は、円錐形を成しており、その中心軸を中心として回転可能に設けられている。
 各回転翼12は、細長い板状であり、ヘッド11の周囲に、等角度間隔で配置されている。各回転翼12は、ヘッド11から半径方向に伸び、一方の表面がヘッド11の前方側に向くよう取り付けられている。各回転翼12は、ヘッド11の中心軸方向に沿った流体の流れを受けたとき、ヘッド11の中心軸周りに回転可能に、ヘッド11の中心軸方向に対して傾斜して設けられている。
The head 11 has a conical shape and is provided so as to be rotatable about its central axis.
Each rotary blade 12 has an elongated plate shape, and is arranged around the head 11 at equiangular intervals. Each rotary blade 12 extends from the head 11 in the radial direction, and is attached so that one surface faces the front side of the head 11. Each rotor blade 12 is provided so as to be rotatable around the central axis of the head 11 and inclined with respect to the central axis direction of the head 11 when receiving a fluid flow along the central axis direction of the head 11. .
 各突出部13は、板状であり、各回転翼12に同じ数ずつ、それぞれ所定の間隔をあけて設けられている。各突出部13は、それぞれ各回転翼12の上流側の表面に、上流側に向かって突出して設けられている。各突出部13は、各回転翼12の表面に対して、垂直に直立して設けられている。各突出部13は、各回転翼12の一方の側縁から他方の側縁にかけて各回転翼12の幅いっぱいに、各回転翼12の回転方向に沿って円弧状に設けられている。なお、図1に示す具体的な一例では、回転翼12は6枚から成っており、突出部13は、各回転翼12にそれぞれ5つずつ設けられている。 Each protrusion 13 is plate-shaped, and is provided on each rotary blade 12 by the same number with a predetermined interval. Each protrusion 13 is provided on the upstream surface of each rotor blade 12 so as to protrude toward the upstream side. Each protrusion 13 is provided vertically upright with respect to the surface of each rotor blade 12. Each protrusion 13 is provided in a circular arc shape along the rotational direction of each rotary blade 12 over the entire width of each rotary blade 12 from one side edge to the other side edge of each rotary blade 12. In the specific example shown in FIG. 1, the rotor blades 12 are composed of six sheets, and five protrusions 13 are provided on each rotor blade 12.
 次に、作用について説明する。
 軸流羽根車10では、各回転翼12に中心軸方向に沿って流れる流体が当たると、その流れが各回転翼12を押して各回転翼12を回転させる。このとき、各回転翼12に当たった流体は、各回転翼12の上流側の表面に沿って、各回転翼12の回転方向成分と半径流方向成分とを有する流れとなり、各回転翼12の回転方向の前方側端縁から後方側端縁にかけて、中心軸から外側に向かって傾斜した向きに流れる。図1および図2に示す具体例では、各回転翼12が矢印Aの方向に回転し、各回転翼12の表面では、矢印Bの方向に流体が流れる。
Next, the operation will be described.
In the axial flow impeller 10, when a fluid flowing along the central axis direction hits each rotary blade 12, the flow pushes each rotary blade 12 to rotate each rotary blade 12. At this time, the fluid hitting each rotary blade 12 becomes a flow having a rotational direction component and a radial flow direction component of each rotary blade 12 along the upstream surface of each rotary blade 12. From the front side edge in the rotational direction to the rear side edge, it flows in a direction inclined outward from the central axis. In the specific examples shown in FIGS. 1 and 2, each rotor blade 12 rotates in the direction of arrow A, and fluid flows in the direction of arrow B on the surface of each rotor blade 12.
 その傾斜した流れのうちの一部は、中心軸側から各突出部13に当たり、各突出部13に沿って流れて各回転翼12の回転方向の後方側端縁に抜けていく。このとき、その流れにより各突出部13が斜めに押されるため、各回転翼12の回転方向成分の力が得られ、各回転翼12の回転効率を高めることができる。これを図2に示す具体例で示すと、矢印Bの方向の流れが各突出部13に当たると、その流れによる衝動力Cと反動力Dが発生し、それらの合力Eから回転翼12の回転方向成分が得られ、各回転翼12の回転効率を高めることができる。 A part of the inclined flow hits each protrusion 13 from the central axis side, flows along each protrusion 13, and escapes to the rear edge in the rotation direction of each rotor blade 12. At this time, since each protrusion 13 is pushed obliquely by the flow, the force of the rotational direction component of each rotary blade 12 is obtained, and the rotational efficiency of each rotary blade 12 can be enhanced. In the specific example shown in FIG. 2, when the flow in the direction of the arrow B hits each protrusion 13, an impulse C and a reaction D are generated by the flow, and the rotation of the rotor 12 is generated from the resultant force E. A direction component is obtained, and the rotation efficiency of each rotor blade 12 can be increased.
 このように、軸流羽根車10は、各突出部13を設けることにより、各回転翼12に沿った半径流成分を利用して回転効率を高めることができ、大型化することなく、出力効率を改善することができる。また、軸流羽根車10は、ダウンウインド方式で後傾したり、流体の圧力で各回転翼12が下流側に傾斜するコーニングが発生したりしたときでも、それらにより増加する半径流成分を各突出部13により有効活用することができ、回転効率を高めることができる。また、軸流羽根車10は、各回転翼12が高速で回転したときでも、その円板効果により増加する半径流成分を各突出部13により有効活用することができ、回転効率を高めることができる。 As described above, the axial flow impeller 10 can increase the rotation efficiency by using the radial flow components along the rotary blades 12 by providing the protrusions 13, and can increase the output efficiency without increasing the size. Can be improved. Further, even when the axial flow impeller 10 is tilted backward by the downwind method or when coning occurs in which each rotor blade 12 is inclined downstream due to the pressure of the fluid, the radial flow component is increased by each. The protrusion 13 can be used effectively, and the rotation efficiency can be increased. In addition, the axial flow impeller 10 can effectively utilize the radial flow component that increases due to the disk effect by the protrusions 13 even when the rotary blades 12 rotate at a high speed, thereby improving the rotation efficiency. it can.
 また、従来の羽根車は、各回転翼の中心軸側の端部で、回転への寄与が少なかったが、軸流羽根車10は、各回転翼12の中心軸側の端部にも突出部13を設けることにより、その部分による回転への寄与を増やし、回転効率を高めることができる。また、軸流羽根車10は、各突出部13が各回転翼12の回転方向に沿って円弧状に設けられているため、各回転翼12の回転による抵抗を受けにくい。軸流羽根車10は、蒸気タービンやガスタービン、発電用水車、風力原動機などのタービンの羽根車として使用することができる。これにより、タービンを大型化することなく、出力効率を改善することができる。 Further, the conventional impeller has little contribution to rotation at the end of each rotary blade on the central axis side, but the axial impeller 10 also protrudes from the end of each rotary blade 12 on the central axis side. By providing the part 13, the contribution to the rotation by the part can be increased and the rotation efficiency can be increased. Further, the axial flow impeller 10 is less susceptible to resistance due to the rotation of each rotary blade 12 because each protrusion 13 is provided in an arc shape along the rotation direction of each rotary blade 12. The axial-flow impeller 10 can be used as an impeller of a turbine such as a steam turbine, a gas turbine, a power generation water turbine, or a wind power generator. Thereby, output efficiency can be improved, without enlarging a turbine.
 なお、軸流羽根車10で、各突出部13は、各回転翼12の下流側の表面にも設けられていてもよい。この場合、各回転翼12の下流側の表面に沿った半径流成分も利用することができ、各回転翼12の回転効率をさらに高めることができる。また、図3(a)および(b)に示すように、軸流羽根車10は、各回転翼12の表面が円弧状の盛上部21と、円弧状の溝22とが交互に設けられた形状を成し、各盛上部21が各突出部13を成していてもよい。盛上部21や溝22の横断面は、三角形状である。また、図3(c)および(d)に示すように、各突出部13は、複数の突起23を円弧状に並べて形成されていてもよい。 In the axial-flow impeller 10, each protrusion 13 may be provided on the downstream surface of each rotor blade 12. In this case, the radial flow component along the downstream surface of each rotor blade 12 can also be used, and the rotational efficiency of each rotor blade 12 can be further increased. Further, as shown in FIGS. 3A and 3B, the axial flow impeller 10 is provided with alternately a raised portion 21 in which the surface of each rotary blade 12 has an arc shape and an arc-shaped groove 22. A shape may be formed, and each raised portion 21 may form each protruding portion 13. The cross sections of the raised portion 21 and the groove 22 are triangular. Further, as shown in FIGS. 3C and 3D, each protrusion 13 may be formed by arranging a plurality of protrusions 23 in an arc shape.
 また、図4に示すように、各突出部13は、各回転翼12の回転面に沿った断面が、回転の外側に膨らんだ翼型形状を成し、各回転翼12の回転方向に対して前傾していてもよい。この場合、図4(a)に示すように、翼型形状の各突出部13に沿って、各回転翼12の表面を流体が流れることにより、各突出部13で回転の外側に向かって揚力Fが発生する。このとき、各回転翼12が前傾しているため、その揚力Fから各回転翼12の回転方向成分が得られ、各回転翼12の回転効率をさらに高めることができる。また、各回転翼12が前傾しているため、各回転翼12の表面を斜めに流れる流体(矢印B)による抵抗をさらに受けにくくすることができ、回転効率を高めることができる。 Further, as shown in FIG. 4, each protrusion 13 has an airfoil shape in which the cross section along the rotation surface of each rotary blade 12 swells outside the rotation, and the rotation direction of each rotary blade 12 is May be tilted forward. In this case, as shown in FIG. 4A, the fluid flows along the surface of each rotary blade 12 along each airfoil-shaped protrusion 13, so that lift is generated outward of rotation at each protrusion 13. F is generated. At this time, since each rotor blade 12 is tilted forward, the rotational direction component of each rotor blade 12 is obtained from the lift F, and the rotational efficiency of each rotor blade 12 can be further increased. Further, since each rotor blade 12 is tilted forward, it is possible to further reduce resistance to the fluid (arrow B) flowing obliquely on the surface of each rotor blade 12 and to increase the rotation efficiency.
[回転実験]
 図4に示す軸流羽根車10を用いて、回転効率を調べる実験を行った。実験に使用した軸流羽根車10は、各回転翼12の直径が280mm、ピッチ角度が10度、各突出部13の高さが5mmである。また、軸流羽根車10の正面から風速5m/sの風を当て、非接触赤外線式回転計により各回転翼12の回転数を測定した。また、比較のために、突出部13がない以外は同じ条件の羽根車についても、実験を行った。
[Rotation experiment]
Using the axial flow impeller 10 shown in FIG. In the axial-flow impeller 10 used in the experiment, the diameter of each rotor blade 12 is 280 mm, the pitch angle is 10 degrees, and the height of each protrusion 13 is 5 mm. Moreover, the wind of the wind speed of 5 m / s was applied from the front of the axial flow impeller 10, and the rotation speed of each rotary blade 12 was measured with the non-contact infrared type tachometer. For comparison, an experiment was also conducted on an impeller having the same conditions except that the protrusion 13 was not provided.
 実験結果を、表1に示す。表1では、突出部13がない羽根車の各値を1.00として、軸流羽根車10の結果を示している。また、出力は、重量×回転数である。
Figure JPOXMLDOC01-appb-T000001
The experimental results are shown in Table 1. In Table 1, each value of the impeller without the projecting portion 13 is set to 1.00, and the result of the axial flow impeller 10 is shown. The output is weight × number of rotations.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、突出部13を有する軸流羽根車10は、突出部13がない従来型の羽根車と比べて、出力効率が130%以上改善されていることが確認された。 As shown in Table 1, it was confirmed that the axial flow impeller 10 having the projecting portion 13 has an output efficiency improved by 130% or more compared to the conventional impeller without the projecting portion 13.
 10 軸流羽根車
 11 ヘッド
 12 回転翼
 13 突出部
 
 21 盛上部
 22 溝
 23 突起
 
10 Axial flow impeller 11 Head 12 Rotor blade 13 Protrusion
21 upper part 22 groove 23 protrusion

Claims (4)

  1.  所定の中心軸周りに互いに角度間隔をあけて配置され、前記中心軸方向に沿った流体の流れを受けて前記中心軸周りに回転可能に設けられた複数の回転翼と、
     各回転翼の上流側の表面に、上流側に向かって突出し、各回転翼の回転方向に沿って円弧状に設けられた1または複数の突出部とを有し、
     各突出部は、各回転翼の回転面に沿った断面が、回転の外側に膨らんだ翼型形状を成していることを
     特徴とする軸流羽根車。
    A plurality of rotor blades disposed at angular intervals around a predetermined central axis and provided to be able to rotate around the central axis in response to a fluid flow along the central axis direction;
    The upstream surface of each rotor blade has one or more protrusions protruding toward the upstream side and provided in an arc shape along the rotation direction of each rotor blade,
    An axial-flow impeller characterized in that each projecting portion has an airfoil shape in which a cross section along a rotating surface of each rotor blade swells outside the rotation.
  2.  各突出部は、複数の突起を円弧状に並べて形成されていることを特徴とする請求項1記載の軸流羽根車。 2. The axial-flow impeller according to claim 1, wherein each protrusion is formed by arranging a plurality of protrusions in an arc shape.
  3.  各突出部は、各回転翼の回転方向に対して前傾していることを特徴とする請求項1または2記載の軸流羽根車 3. The axial-flow impeller according to claim 1 or 2, wherein each protrusion is inclined forward with respect to the rotation direction of each rotor blade.
  4.  請求項1乃至3のいずれか1項に記載の軸流羽根車を有することを特徴とするタービン。
     
    A turbine comprising the axial flow impeller according to any one of claims 1 to 3.
PCT/JP2015/061788 2014-04-28 2015-04-17 Axial flow impeller and turbine WO2015166813A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014093223A JP5670591B1 (en) 2014-04-28 2014-04-28 Axial impeller and turbine
JP2014-093223 2014-04-28

Publications (1)

Publication Number Publication Date
WO2015166813A1 true WO2015166813A1 (en) 2015-11-05

Family

ID=52573840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061788 WO2015166813A1 (en) 2014-04-28 2015-04-17 Axial flow impeller and turbine

Country Status (2)

Country Link
JP (1) JP5670591B1 (en)
WO (1) WO2015166813A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3535489B1 (en) * 2016-11-04 2022-07-27 Vestas Wind Systems A/S Wind turbine blade with boundary layer fence

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067059A (en) * 2015-10-03 2017-04-06 遊生 井手 Wing of wind mill

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137298A (en) * 1992-10-23 1994-05-17 Aisin Chem Co Ltd Blade structure for fan
JPH09100774A (en) * 1995-10-06 1997-04-15 Ishikawajima Harima Heavy Ind Co Ltd Blade for wind power generating device
JPH11201021A (en) * 1998-01-06 1999-07-27 Mitsubishi Heavy Ind Ltd Wind mill vane
DE102005049794A1 (en) * 2005-10-18 2007-04-19 Eew Maschinenbau Gmbh Propeller for use in e.g. aircraft, has guiding structures arranged at propeller blades and protruding from surface of blades, where structures are connected with one another and extend in intermediate space between blades
JP4097020B2 (en) * 2002-07-04 2008-06-04 幸雄 中田 Rotor blade
WO2013120946A1 (en) * 2012-02-17 2013-08-22 Lm Wp Patent Holding A/S Wind turbine blade having a shaped stall fence or flow diverter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137298A (en) * 1992-10-23 1994-05-17 Aisin Chem Co Ltd Blade structure for fan
JPH09100774A (en) * 1995-10-06 1997-04-15 Ishikawajima Harima Heavy Ind Co Ltd Blade for wind power generating device
JPH11201021A (en) * 1998-01-06 1999-07-27 Mitsubishi Heavy Ind Ltd Wind mill vane
JP4097020B2 (en) * 2002-07-04 2008-06-04 幸雄 中田 Rotor blade
DE102005049794A1 (en) * 2005-10-18 2007-04-19 Eew Maschinenbau Gmbh Propeller for use in e.g. aircraft, has guiding structures arranged at propeller blades and protruding from surface of blades, where structures are connected with one another and extend in intermediate space between blades
WO2013120946A1 (en) * 2012-02-17 2013-08-22 Lm Wp Patent Holding A/S Wind turbine blade having a shaped stall fence or flow diverter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3535489B1 (en) * 2016-11-04 2022-07-27 Vestas Wind Systems A/S Wind turbine blade with boundary layer fence

Also Published As

Publication number Publication date
JP2015209831A (en) 2015-11-24
JP5670591B1 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
US10288036B2 (en) Rotor
JP5785181B2 (en) Turbine
FI122540B (en) Radiaalisiipipyörä
JP2007529662A5 (en)
WO2005090779A1 (en) Turbine and rotor therefor
JP2010537097A5 (en)
JP2020537729A (en) Flow energy systems, especially jacketed wind turbines
EP3129278B1 (en) High pitch stall resisting propeller
EP3421780B1 (en) Rotor blade
JP2007332871A (en) Impeller for windmill
US20150110627A1 (en) Blade bucket structure for savonius turbine
WO2015166813A1 (en) Axial flow impeller and turbine
RU2006117267A (en) RADIAL-AXIAL HYDRO TURBINE SCREW BLADE
JP2018507973A5 (en)
JP2006307843A5 (en)
JP2015166562A (en) Vertical axis drag type wind turbine capable of preventing its overspeed under strong wind and wind power generator
JP2020033885A (en) Axial flow impeller and turbine
JP4814186B2 (en) Drag type windmill
US20120087791A1 (en) Wind turbine device
JP6354051B2 (en) Wave power turbine
JP6997580B2 (en) Vertical blade and vertical axis rotor
JP6034205B2 (en) Windmill
JP6047348B2 (en) Rotating device for fluid
JP6357668B2 (en) Wave power turbine
JP2015203395A (en) Wave power turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15785548

Country of ref document: EP

Kind code of ref document: A1