WO2013054404A1 - 風車翼及びこれを備えた風力発電装置ならびに風車翼の設計方法 - Google Patents

風車翼及びこれを備えた風力発電装置ならびに風車翼の設計方法 Download PDF

Info

Publication number
WO2013054404A1
WO2013054404A1 PCT/JP2011/073409 JP2011073409W WO2013054404A1 WO 2013054404 A1 WO2013054404 A1 WO 2013054404A1 JP 2011073409 W JP2011073409 W JP 2011073409W WO 2013054404 A1 WO2013054404 A1 WO 2013054404A1
Authority
WO
WIPO (PCT)
Prior art keywords
airfoil
blade
wind turbine
trailing edge
flat
Prior art date
Application number
PCT/JP2011/073409
Other languages
English (en)
French (fr)
Inventor
浩司 深見
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48049076&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013054404(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2011/073409 priority Critical patent/WO2013054404A1/ja
Priority to KR1020127034093A priority patent/KR20130064087A/ko
Priority to JP2012503569A priority patent/JP5297558B1/ja
Priority to CN201180022030.7A priority patent/CN103270296B/zh
Priority to EP11817193.3A priority patent/EP2604856B1/en
Priority to US13/364,811 priority patent/US8419373B1/en
Publication of WO2013054404A1 publication Critical patent/WO2013054404A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making

Definitions

  • the present invention relates to a wind turbine blade, a wind turbine generator including the wind turbine blade, and a wind turbine blade design method.
  • wind power generators using wind power have been spreading from the viewpoint of conservation of the global environment.
  • the wind turbine generator converts wind kinetic energy into rotational energy of blades (more precisely, the entire rotor including the blades), and further converts this rotational energy into electric power by a generator.
  • Wind turbine output The power generation output (wind turbine output) by the wind power generator is expressed by the following equation, and the blade efficiency increases and the blade diameter increases.
  • Wind turbine output 1/2 x air density x (wind speed) 3 x blade efficiency x conversion efficiency x ⁇ x (blade diameter / 2) 2
  • the blade efficiency is the efficiency at the time of converting wind kinetic energy into rotational energy of the blade (more precisely, the entire rotor including the blade).
  • the conversion efficiency is the efficiency when the rotational energy of the rotor is transmitted to the generator and electric power is generated by the generator.
  • the blade efficiency that can be realized is about 0.5 at the maximum due to the influence of swirl in the wake of the wind turbine and the presence of air resistance.
  • the blade efficiency of wind turbine blades in practical use is about 0.49 as a typical value, so there is at most 0.01 room for improving blade efficiency by improving blade design (relative to the overall current blade efficiency). 2%).
  • improvements in blade design may lead to increased noise and reduced efficiency at non-design points, which may be undesirable. Therefore, it is difficult to significantly increase the power generation output of the wind turbine generator by improving the blade efficiency.
  • the blade diameter has a square effect on the power generation output, it is effective to increase the blade diameter to improve the power generation output.
  • the increase in blade diameter increases the load that the wind turbine blade receives from the wind (aerodynamic load) and the load accompanying the increase in the weight of the wind turbine blade (heavy load). Therefore, the size of the nacelle that supports the rotor increases. This will increase costs. Therefore, the airfoil (cross-sectional shape of the wind turbine blade) is devised to shorten the code length of the wind turbine blade to reduce the load (aerodynamic load) received by the wind turbine blade from the wind, and the load accompanying the weight increase of the wind turbine blade ( It is conceivable to suppress an increase in weight load).
  • Patent Document 1 describes a wind turbine blade having a plurality of flatback airfoils defined by coordinates.
  • Patent Document 2 describes a divergent-shaped flatback airfoil in which the blade thickness in the vicinity of the trailing edge increases as it approaches the trailing edge.
  • Patent Document 3 discloses a technique for manufacturing a wind turbine blade having a flat back airfoil using a flat back airfoil insert.
  • Patent Document 4 discloses a flat-back blade type wind turbine blade in which a splitter plate for reducing noise is attached to the trailing edge.
  • Patent Document 5 discloses that a flat element is provided by adding a blade element to an initial airfoil having a sharp trailing edge so that the trailing edge has a thickness. Furthermore, Non-Patent Document 1 describes a result of evaluating the aerodynamic characteristics of a flat-back airfoil using a plurality of calculation methods.
  • FIG. 15 is a view showing a wind turbine blade provided with a flat-back airfoil. Since the trailing edge 8 has a thickness, the wind turbine blade 100 has a property that a wake is generated in a region 102 on the downstream side of the trailing edge 8 and the region 102 becomes negative pressure. The negative pressure in the region 102 on the wake side of the trailing edge 8 sucks the air flow flowing along the back side surface 14 and delays separation of the boundary layer on the back side surface 14. That is, the separation of the boundary layer is suppressed by attracting the air flow to the back side surface 14 by the negative pressure generated in the region 102 on the downstream side of the trailing edge 8, and the separation point of the boundary layer on the back side surface 14 is near the trailing edge 8.
  • the separation point of the boundary layer is fixed in the vicinity of the trailing edge 8). Therefore, it is possible to generate lift up to a higher angle of attack compared to a conventional airfoil having a sharp trailing edge. Therefore, sufficient lift can be obtained even if the length of the cord 16 (cord length) is shortened, so that the cord length can be reduced and the load (aerodynamic load) received by the wind turbine blade from the wind can be reduced. Further, since the flat back airfoil has a thick trailing edge, it has a higher section modulus than a conventional airfoil having a sharp trailing edge, so that the weight can be reduced while ensuring strength.
  • Patent Document 6 discloses that an additional region is provided on the abdominal side surface around the trailing edge to increase lift at the transition between the airfoil portion and the blade root portion.
  • a wind turbine blade is disclosed.
  • the wind turbine blade 100 rotates in the direction of the arrow R.
  • the wind turbine blade 100 is disposed such that the cord 16 forms an angle ⁇ with respect to the blade rotation direction R.
  • This angle ⁇ is an angle between the extension line L1 of the cord 16 and the straight line L2 parallel to the blade rotation direction R, and means the mounting angle (pitch angle) of the wind turbine blade 100.
  • the relative wind velocity vector W is a relative velocity vector of wind with respect to the windmill blade 100 rotating in the blade rotation direction R, and is a wind velocity vector A blown from a direction perpendicular to the rotation direction of the windmill blade 100.
  • the angle ⁇ between the relative wind speed vector W and the extension line L1 of the cord 16 is the angle of attack of the wind turbine blade 100.
  • the rotational speed of the wind turbine blade 100 is maintained at the rated rotational speed, and thus the peripheral speed vector r ⁇ is constant.
  • the angle of attack ⁇ of the wind turbine blade 100 increases accordingly.
  • the amount of increase in the angle of attack ⁇ increases as the blade length direction position on the blade root side with a smaller peripheral velocity vector r ⁇ . That is, the smaller the circumferential velocity vector r ⁇ is, the more the blade length direction position on the blade root side is, the larger the amount of increase in the angle of attack ⁇ associated with the increase in wind speed, and the angle of attack ⁇ tends to increase.
  • the inventor gives the trailing edge a thickness in a region relatively close to the blade root portion where the blade thickness ratio X indicating the ratio of the maximum thickness to the cord length is 40% or more and 50% or less. Obtained a large technical gain (that is, a high lift-drag ratio can be realized). Therefore, it is considered important to improve the aerodynamic characteristics and rigidity by setting the trailing edge thickness of the flat-back airfoil in this region within an appropriate range.
  • Patent Documents 1 to 6 and Non-Patent Document 1 the range of the thickness of the trailing edge of the flat-back blade type in the region where the blade thickness ratio X is 40% to 50% is described in detail. Disclosure is not made.
  • the present invention has been made in view of the above-described circumstances, and provides a wind turbine blade having a flat-back airfoil shape and excellent in aerodynamic characteristics and rigidity, a wind turbine generator including the wind turbine blade, and a wind turbine blade design method. With the goal.
  • Wind turbine blade according to the present invention a wing tip, a blade root portion which is connected to the hub of the wind turbine, positioned between the wing tip and the blade root portion, at least, the maximum thickness for the code length L C t MAX
  • the wind turbine blade is a flat-back blade type having a thickness at the trailing edge at least in the blade length direction region where the blade thickness ratio X is 40 to 50%.
  • the trailing edge thickness ratio Y is set to 5% or more in the region where the blade thickness ratio X is 40 to 50%. Therefore, due to the negative pressure generated due to the wake on the trailing edge of the trailing edge. The peeling of the boundary layer on the back surface can be effectively delayed.
  • the flat-back airfoil has the trailing edge thickness ratio Y of X ⁇ 20 ⁇ Y ⁇ in the region where the blade thickness ratio X is 40% or more and 50% or less.
  • the flat back airfoil has the blade thickness ratio X in the region where the blade thickness ratio X is 40% or more and 50% or less.
  • the flatback airfoil is Blade thickness ratio
  • the trailing edge thickness ratio Y may be 0.5X-5 ⁇ Y ⁇ X-20.
  • the blade tip representative cord length is a cord length at a blade radius position r where the ratio to the rotation radius R is 0.8.
  • a substantially constant peripheral speed performance is optimal (maximum)
  • the motor is operated at a ratio (referred to as an optimal peripheral speed ratio or a designed peripheral speed ratio) (see FIG. 16B).
  • the circumferential speed ratio is expressed as blade tip circumferential speed [rpm] / upstream wind speed [m / s] using an infinite upstream wind speed (upstream wind speed) that is not affected by the presence of the wind turbine blade.
  • the peripheral speed vector r ⁇ is maintained substantially constant magnitude .
  • the increase amount of the angle of attack ⁇ with respect to the increase in the upstream wind speed (the slope of the graph of FIG. 16 (d)) is Affected by the code length. If the wind turbine blade has a code length of zero, the speed vector A of the wind increases by the increase in the wind speed on the infinite upstream side, and the wind turbine blade has a corresponding amount of increase in the speed vector A. The angle of attack ⁇ increases. However, since the code length of the actual wind turbine blade is not zero, the magnitude of the velocity vector A of the wind actually flowing toward the wind turbine blade is influenced by the presence of the wind turbine blade.
  • the parameter S indicating the ratio of the maximum code length L CMAX to the rotation radius R of the wind turbine blade is a dimensionless number indicating the degree of the code length of the wind turbine blade.
  • the angle change sensitivity is small. That is, the parameter S is an index of the angle-of-attack change sensitivity with respect to the wind speed (the amount of increase in the angle of attack ⁇ with respect to the increase in wind speed on the infinite upstream side).
  • the maximum value ⁇ MAX of the angle of attack that can be taken within the driving range of the windmill is increased. Therefore, there is a high possibility that the angle of attack exceeds the stall angle (especially at the blade length direction position on the blade root side), and it is important to design the wind turbine blade so as not to stall to a high angle of attack.
  • the maximum value ⁇ MAX of the angle of attack that can be taken within the operating range of the wind turbine is mainly governed by wind V 2 to reach the rated speed. That is, as the wind speed V 2 reaching the rated rotational speed is smaller, the wind speed difference V 3 ⁇ V 2 is increased, and the amount of increase in the angle of attack from the optimum angle of attack ⁇ opt is increased accordingly, and the angle of attack is increased.
  • the maximum value ⁇ MAX increases. Then, the wind speed V 2 is given by the tip speed / design tip speed ratio.
  • the design peripheral speed ratio has a strong correlation with the code length distribution of the wind turbine blade, and as a fact of aerodynamics, the design peripheral speed ratio and the code length / rotation radius R are approximately inversely related.
  • the magnitude of the maximum value ⁇ MAX of the angle of attack within the operating range of the wind turbine blade is shown.
  • the wind speed difference V 3 -V 2 is small, and the amount of increase in the angle of attack from the optimal angle of attack ⁇ opt is small accordingly, so the angle of attack
  • the maximum value ⁇ MAX of is relatively small.
  • the wind speed difference V 3 ⁇ V 2 is large, and the amount of increase in the angle of attack from the optimal angle of attack ⁇ opt is large by that amount.
  • MAX is also relatively large.
  • the amount of increase in the angle of attack ⁇ of the wind turbine blade is large. That is, when the parameters S and T satisfy the relationship of T ⁇ ⁇ 5S + 5, the angle of attack ⁇ of the wind turbine blades increases to a relatively high value in the wind turbine operating range from reaching the rated rotational speed to the rated output. It will be. Therefore, in this case, in the region where the blade thickness ratio X is 40% or more and 50% or less, the trailing edge thickness ratio Y is set to X ⁇ 20 ⁇ Y ⁇ 1.5X ⁇ 30, and the back side surface is increased to a high angle of attack ⁇ . It is effective to suppress the peeling of the boundary layer.
  • the amount by which the angle of attack ⁇ of the wind turbine blade increases is small. That is, when the parameters S and T satisfy the relationship of T ⁇ ⁇ 5S + 6, the angle of attack ⁇ of the wind turbine blade does not increase so much in the wind turbine operating range from reaching the rated rotational speed to the rated output. Therefore, in this case, in the region where the blade thickness ratio X is 40% or more and 50% or less, the trailing edge thickness ratio Y is set to 5 ⁇ Y ⁇ 0.5X-5, and the trailing edge thickness is kept to the minimum necessary. Thus, lift can be increased while suppressing an increase in drag.
  • the trailing edge thickness ratio Y is set to 0.5X-5 ⁇ Y ⁇ X in the region where the blade thickness ratio X is 40% to 50%.
  • the flat-back airfoil is configured such that the blade thickness ratio X and the trailing edge thickness ratio Y are X-35 in a blade length direction region where the blade thickness ratio X is 35% to 40%. It may be defined to satisfy ⁇ Y ⁇ 4X ⁇ 130.
  • the trailing edge thickness ratio Y By setting the trailing edge thickness ratio Y to X-35 or more in this way, the peeling of the boundary layer on the back side surface is effectively delayed by the negative pressure generated due to the wake on the trailing edge of the trailing edge, Lift can be generated up to a high angle of attack.
  • the trailing edge thickness ratio Y to X-35 or more the wind turbine blades can be reduced in weight while maintaining the strength by improving the section modulus of the wind turbine blades.
  • the trailing edge thickness ratio Y is set to 4X-130 or less, it is possible to enjoy the effect of improving the lift-drag ratio in at least one of the attack angle ranges.
  • the flat-back airfoil is defined as a cross-sectional shape in which the sharp trailing edge of the reference airfoil is thickened by widening the space between the ventral side and the back side of the reference airfoil with a sharp trailing edge.
  • the airfoil portion is provided with a ventral side extending surface comprising a concave curved surface or a flat surface continuously extending rearward from the rear edge of the flatback airfoil from the abdominal side of the flatback airfoil.
  • the ventral side extending surface may be inclined with respect to the cord so as to be separated from the cord of the flat-back airfoil type toward the wake side.
  • the airfoil portion When providing the abdomen-side extending surface, the airfoil portion is provided with a back-side extending surface extending rearward from the rear side of the flat-back airfoil from the back side surface of the flat-back airfoil.
  • the abdominal-side extending surface and the back-side extending surface are respectively connected to the abdominal-side outer surface and the back of the extending portion provided so as to extend rearward from the rear edge of the flat-back airfoil type.
  • the angle formed by the rear end surface of the extended portion and the back side extended surface is smaller than the angle formed by the back side surface of the flat back airfoil and the end surface of the rear edge. May be.
  • mold and the said back side extension surface can be closely approached at an acute angle. Therefore, the negative pressure in the wake of the extending portion can suck the air flow flowing along the back side more strongly and further delay the separation of the boundary layer on the back side.
  • an extension is formed separately from the flat-back airfoil, and this extension is added to the flat-back airfoil, the rigidity of the trailing edge of the flat-back airfoil and the seat of the wind turbine blade It is possible to improve the bending strength and the adhesive strength between the abdominal skin and the back skin constituting the wind turbine blade.
  • the abdomen-side extending surface is the outer surface of the abdomen side of the extending portion provided to extend rearward from the rear edge of the flat back wing type,
  • the outer surface on the back side of the extended portion intersects the end surface of the rear edge of the flatback airfoil at a position on the ventral side of the intersection of the back side surface of the flatback airfoil and the rear edge.
  • the intersection of the back side surface and the rear edge of the flat back airfoil may not be covered with the extending portion.
  • the ventral side is affected without affecting the effect of suppressing the separation of the boundary layer of the flatback airfoil.
  • the effect of increasing lift by the extended surface can be obtained.
  • the flat-back airfoil is defined as a cross-sectional shape in which the sharp trailing edge of the reference airfoil is thickened by widening the space between the ventral side and the back side of the reference airfoil with a sharp trailing edge.
  • the airfoil portion is provided with a covering portion that covers the trailing edge of the flat back airfoil and the rear edge side portions of the abdominal side surface and the back side surface of the flat back airfoil shape.
  • the outer surface on the ventral side is a concave curved surface or a flat surface continuously extending from the ventral side surface of the flatback airfoil, and further away from the cord of the flatback airfoil as it goes to the wake side.
  • the outer surface on the ventral side of the covering portion that covers the trailing edge side of the flatback airfoil is a concave curved surface or plane extending rearward from the abdominal side of the flatback airfoil, so that the flatback airfoil
  • the flow of air (wind) on the ventral side can be turned downward (in the direction away from the ventral side surface), and the lift acting on the wind turbine blade can be increased.
  • the rigidity of a trailing edge and the buckling strength of a windmill blade can be improved by covering the trailing edge side of a flat back blade type
  • the airfoil portion is twisted in the blade length direction, and the end surface of the flat back airfoil is flat or curved so that the end surface of the trailing edge is not twisted.
  • the angle ⁇ formed with respect to the orthogonal plane of the airfoil cord may be varied with respect to the blade length direction.
  • the end surface (rear edge surface) of the trailing edge of the flat back blade type becomes a flat or curved surface that is not twisted (not twisted), so that the wind turbine blade can be easily manufactured.
  • the angle ⁇ may be increased as it approaches the blade root.
  • the wind turbine blade has a tendency that the angle of attack increases as the wind speed increases and the angle of attack tends to increase as the position in the blade length direction closer to the blade root portion is closer to the blade root portion. Therefore, by increasing the angle ⁇ closer to the blade root, the angle between the back side surface and the rear edge surface of the flat-back airfoil is brought closer to an acute angle, and the closer to the blade root, the higher the lift angle. (High lift characteristics that do not stall until a higher angle of attack can be realized).
  • the flat back airfoil includes a ventral outer skin that forms a ventral side surface of the flat back airfoil and a back skin that forms a back side surface of the flat back airfoil closed at the trailing edge.
  • the ventral outer skin and the dorsal outer skin are provided between the ventral outer skin and the dorsal outer skin at positions close to the rear edge, and extend in the wing length direction. It may be joined via. By joining the abdominal skin and the dorsal skin through the trailing edge girder, sufficient strength can be ensured even if the ventral skin and the dorsal skin are not closed at the trailing edge.
  • the trailing edge in the region relatively close to the blade root portion side where the blade thickness ratio X is 40% or more and 50% or less, the trailing edge is thickened to form a flat-back airfoil shape. Can be improved effectively.
  • the trailing edge thickness ratio Y is set to 5% or more in the region where the blade thickness ratio X is 40 to 50%, the boundary on the back side surface is caused by the negative pressure generated due to the wake on the trailing side of the trailing edge. Layer peeling can be effectively delayed. That is, it is possible to effectively suppress separation of the boundary layer from the back side surface by drawing the air flow toward the back side surface by the negative pressure generated on the back side of the trailing edge. Therefore, lift can be generated up to a high angle of attack.
  • FIG. 6 is a diagram showing a map for selecting any one of first to third areas among the setting areas shown in FIG.
  • FIG. 1 It is a figure which shows the windmill blade provided with the flat back airfoil. It is a figure which shows the driving conditions of a general windmill, (a) is a graph which shows the relationship between an upstream wind speed and the rotation speed of a windmill, (b) is a graph which shows the relationship between an upstream wind speed and a circumferential speed ratio. Yes, (c) is a graph showing the relationship between upstream wind speed and wind turbine output, and (d) is a graph showing the relationship between upstream wind speed and angle of attack.
  • FIG. 1 is a diagram illustrating a configuration example of a wind turbine generator.
  • FIG. 2 is a perspective view showing the wind turbine blade according to the first embodiment.
  • the wind turbine generator 110 supports one or more (three in this example) wind turbine blades 1, a hub 112 to which the wind turbine blades 1 are attached, and a rotor including the wind turbine blades 1 and the hub 112.
  • the rotation of the rotor is input to a generator (not shown), and electric power is generated in the generator.
  • the wind turbine blade 1 is attached to the hub 112 by fixing the blade root portion 4 of the wind turbine blade 1 to the hub 112 using an arbitrary fastening member.
  • the wind turbine blade 1 is positioned between the blade tip 2, the blade root 4 connected to the hub 112 (see FIG. 1) of the windmill, and the blade tip 2 and the blade root 4.
  • the airfoil portion 6 has a leading edge (leading edge) 7 and a trailing edge (trailing edge) 8.
  • the trailing edge 8 of the airfoil portion 6 is formed so that at least a part thereof has a thickness. In other words, the airfoil portion 6 has at least a part of the flat back airfoil 10 having a thick trailing edge 8.
  • FIGS. 3A and 3B are diagrams showing an example of the flat back airfoil 10.
  • the outer shape of the flat back airfoil 10 is formed by an abdominal side surface (pressure side) 12 and a back side surface (suction side: suction side) 14.
  • Edge 8 of the flat back airfoil 10 has a KoenAtsu t TE.
  • the midpoint in the blade thickness direction of the trailing edge surface 9) trailing edge 8 and the front edge 7 code connecting the (chord line) 16 has a code length L C.
  • the thickness at is the rear end thickness tTE .
  • the thickness of the flat back airfoil 10 gradually increases from zero toward the rear edge 8. After reaching the maximum thickness t MAX , the thickness gradually decreases and finally becomes the trailing edge thickness t TE .
  • the flat back airfoil 10 is defined as a cross-sectional shape in which the distance between the abdominal side surface 22 and the back side surface 24 of the reference airfoil 20 having a sharp trailing edge is widened and the sharp rear end of the reference airfoil 20 is thickened. It is preferable. That is, it is preferable to define the flatback airfoil 10 by an open-up method that opens the sharp trailing edge of the reference airfoil 20 instead of the cutback method of cutting the sharp trailing edge of the reference airfoil 20. For example, as shown in FIG. 3A, the positions of the abdominal side surface 22 and the back side surface 24 of the reference airfoil 20 are shifted outward by the same amount with the camber line 26 as the center line.
  • the camber line 26 is a line connecting the midpoints of the ventral side surface 22 and the back side surface 24 of the reference airfoil 20, and is one of the important factors affecting the aerodynamic properties of the airfoil. In this way, with the camber line 26 as the center line, the positions of the ventral side surface 22 and the back side surface 24 of the reference airfoil 20 are shifted outward by the same amount, while maintaining the camber line 26 that affects the aerodynamic properties, A flat back airfoil 10 having a thick trailing edge is obtained.
  • an aircraft airfoil for example, NACA airfoil
  • a windmill-specific airfoil for example, DU airfoil or MEL airfoil
  • the end surface (rear edge surface) 9 of the trailing edge 8 of the flat back airfoil 10 is a flat surface or curved surface without twist.
  • the angle ⁇ formed between the end face 9 of the trailing edge 8 and the orthogonal plane of the cord 16 may be varied with respect to the blade length direction.
  • FIGS. 4A to 4C are an AA sectional view, a BB sectional view, and a CC sectional view, respectively, in FIG.
  • the angle ⁇ formed by the rear end surface 9 of the flat-back airfoil 10 with respect to the orthogonal surface 17 of the cord 16 increases as it approaches the blade root 4 side ( ⁇ 1 > ⁇ 2 > ⁇ 3 ).
  • the end surface 9 of the trailing edge 8 of the flatback airfoil 10 is formed as a flat or curved surface without twist. can do. Therefore, the wind turbine blade 1 can be easily manufactured.
  • the end surface (rear edge surface) 9 of the trailing edge 8 is a curved surface curved in the blade length direction. Further, by increasing the angle ⁇ as approaching the blade root 4 side, the angle between the back side surface 14 and the rear edge surface 9 is made closer to an acute angle, and the closer to the blade root portion 4, the higher the lift angle is. (A high lift characteristic that does not stall until a higher angle of attack can be achieved).
  • the angle ⁇ between the end surface 9 of the trailing edge 8 and the orthogonal surface 17 is zero at the point where the flatback airfoil 10 starts to be applied (flatback start point 11 shown in FIG. 2), and the flatback start point.
  • the end face 9 of the trailing edge 8 may be a flat or curved surface without a twist so that the angle ⁇ gradually increases from 11 to the blade root 4.
  • the blade root usually has a cylindrical shape.
  • FIG. 5 is a graph showing a setting area used when determining the shape of the flatback airfoil 10.
  • the shape of a flat back airfoil 10 is determined to fit in the allowable area 30 to the trailing edge thickness ratio Y is surrounded by the lower limit value Y L and the upper limit value Y H at any blade thickness ratio X
  • the blade thickness ratio X decreases as the blade root portion 4 approaches the blade tip 2 side.
  • the left side of the drawing is the blade root portion 4 side
  • the right side of the drawing is the blade tip portion 2 side.
  • the lower limit value Y L of the allowable area 30 is 5%
  • the trailing edge thickness ratio Y By setting the trailing edge thickness ratio Y to 5% or more in the region where the blade thickness ratio X is 40 to 50%, the negative pressure generated due to the wake on the wake side of the trailing edge 8 causes Separation of the boundary layer can be effectively delayed. That is, it is possible to effectively suppress separation of the boundary layer from the back side surface 14 by drawing the air flow toward the back side surface 14 by the negative pressure generated on the back side of the rear edge 8. Therefore, lift can be generated up to a high angle of attack (high lift characteristics that do not stall until a high angle of attack can be realized). Moreover, since the section modulus of the wind turbine blade 1 is improved by setting the trailing edge thickness ratio Y to 5% or more, the weight of the wind turbine blade 1 can be reduced while maintaining the strength.
  • the lift-drag ratio is at least partially in the attack angle range. You can enjoy a sufficient improvement effect.
  • the trailing edge thickness ratio Y is set to X ⁇ 35 or more, the peeling of the boundary layer on the back side surface 14 is effectively delayed by the negative pressure generated due to the wake on the downstream side of the trailing edge 8.
  • the lift can be generated up to a high angle of attack.
  • the trailing edge thickness ratio Y is set to X ⁇ 35 or more, the wind turbine blade 1 can be reduced in weight while maintaining the strength by improving the section modulus of the wind turbine blade 1.
  • the trailing edge thickness ratio Y is set to 4X-130 or less, it is possible to enjoy the effect of improving the lift-drag ratio in at least one of the attack angle ranges.
  • the trailing edge thickness ratio Y is gradually increased as the blade thickness ratio X decreases toward the flatback starting point 11 (see FIG. 2). Make it smaller.
  • the allowable area 30 in the range where the blade thickness ratio X is 35 to 50% is divided into a first area 32, a second area 34, and a third area 36.
  • the area of the flat back airfoil 10 is determined by selecting any area according to the above.
  • the first area 32 is a region that satisfies the relationship X-20 ⁇ Y ⁇ 1.5X-30
  • the second area 34 is 0.5X ⁇ 5 ⁇
  • the third area 36 is a region satisfying the relationship of 5% ⁇ Y ⁇ 0.5X-5.
  • the first area 32 is a region satisfying 3X-100 ⁇ Y ⁇ 4X-130, and the second area 34 is 2X ⁇ 65 ⁇ Y ⁇ 3X ⁇ 100.
  • the third area is a region that satisfies the relationship of X ⁇ 35 ⁇ Y ⁇ 2X ⁇ 65.
  • FIG. 6 is a diagram showing a map for selecting the first area 32, the second area 34, and the third area 36.
  • the parameter S is used as the horizontal axis and the parameter T is used as the vertical axis.
  • This parameter S is an index indicating the change sensitivity of the angle of attack ⁇ with respect to the wind speed (the amount of increase in the angle of attack ⁇ with respect to the increase in wind speed on the infinite upstream side).
  • the parameter T is an index indicating the difference between the wind speed V 2 and V 3 (wind speed corresponding to the rated output) rated wind speed reaches the rated speed.
  • the shape of the flatback airfoil 10 determines the shape of the flatback airfoil 10. That is, when the blade thickness ratio X is in the range of 40% or more and 50% or less, the relationship X-20 ⁇ Y ⁇ 1.5X-30 is satisfied, and in the range where the blade thickness ratio X is 35% or more and less than 40%, 3X-100 ⁇
  • the shape of the flat back airfoil 10 is determined so as to satisfy the relationship of Y ⁇ 4X ⁇ 130.
  • the trailing edge thickness ratio Y can be set to be relatively large within the range of the allowable area 30, and separation of the boundary layer on the back side surface 14 can be suppressed up to a high angle of attack ⁇ .
  • the same parameter T the wind speed reaching the rated speed and the rated wind speed are compared with the case where T ⁇ ⁇ 5S + 5 (region A)). Is large (that is, the change sensitivity of the angle of attack ⁇ with respect to the wind speed is small). Further, regarding the same parameter S, the region A has a larger parameter T (wind speed V 2 reaching the rated rotational speed) than the region C (that is, the wind speed difference V 3 ⁇ V 2 is small). Therefore, in the case of the specification of the wind turbine blade 1 in which the parameters S and T belong to the region C, the third area 36 is selected from the allowable areas 30 in FIG.
  • the shape of the flat back airfoil 10 determines the shape of the flat back airfoil 10. That is, when the blade thickness ratio X is in the range of 40% or more and 50% or less, the relationship of 5% ⁇ Y ⁇ 0.5X-5 is satisfied, and in the range where the blade thickness ratio X is 35% or more and less than 40%, X ⁇ 35 ⁇ Y.
  • the shape of the flat back airfoil 10 is determined so as to satisfy ⁇ 2X ⁇ 65. Accordingly, to set a relatively small trailing edge thickness ratio Y in the range of permissible area 30, it is absolutely necessary to rear thickness t TE, while suppressing an increase in drag, thereby increasing the lift .
  • the second area 34 is selected from the allowable areas 30 in FIG. That is, when the blade thickness ratio X is in the range of 40% or more and 50% or less, the relationship of 0.5X-5 ⁇ Y ⁇ X-20 is satisfied, and in the range where the blade thickness ratio X is 35% or more and less than 40%, 2X ⁇ 65 ⁇
  • the shape of the flat back airfoil 10 is determined so as to satisfy Y ⁇ 3X-100. Thereby, the rear end thickness ratio Y is set to an appropriate value within the range of the allowable area 30, and the separation of the boundary layer can be suppressed to a certain angle of attack ⁇ and the increase in the drag can be suppressed to some extent.
  • FIG. 7 is a diagram illustrating an example of the internal structure of the wind turbine blade 1.
  • FIGS. 8A and 8B are diagrams illustrating another example of the internal structure of the wind turbine blade 1.
  • the wind turbine blade 1 includes a ventral side skin 42 that forms the ventral side surface 12 of the flat back airfoil 10, a back side skin 44 that forms the back side surface 14 of the flat back airfoil 10, a ventral side skin 42, and a back side skin 44.
  • the main girder 46 extends in the blade length direction of the wind turbine blade 1 in the internal space of the wind turbine blade 1 between the ventral skin 42 and the back skin 44.
  • the main girder 46 includes a spar cap 46A that is bonded and fixed to the inner surfaces of the ventral skin 42 and the back skin 44, and a shear web 46B provided between the spar caps 46A.
  • a rear edge beam 48 is provided at a position closer to the rear edge 8 than the main beam 46.
  • the trailing edge girder 48 extends in the blade length direction of the wind turbine blade 1 in the internal space of the wind turbine blade 1 between the ventral outer skin 42 and the back outer skin 44, similarly to the main girder 46.
  • the trailing edge girder 48 includes a spar cap 48A that is bonded and fixed to the inner surfaces of the ventral outer skin 42 and the back outer skin 44, and a sheer web 48B provided between the spar caps 48A.
  • the ventral outer skin 42 and the dorsal outer skin 44 may be closed at the rear edge 8 as shown in FIG. 7, but may not be closed at the rear edge 8 as shown in FIGS. 8 (a) and (b). Good. Since the abdominal skin 42 and the back skin 44 are joined via the rear edge girder 48, sufficient strength can be secured even if the rear edge 8 is not closed. Even if the rear edge 8 is opened, this hardly affects the flow of air on the ventral side and the back side, so that aerodynamic performance can be maintained. Further, since the trailing edge 8 is opened and the trailing edge beam 48 is exposed to the outside, it is possible to confirm the attachment state of the trailing edge beam 48 (adhesion state between the spar cap 48A and the inner surface of the outer skin). It is.
  • ventral outer skin 42 and the back outer skin 44 does not extend further to the rear stream side than the rear edge girder 48.
  • FIG. 8 (b) it is possible to extend the dorsal skin 44 to the position of the trailing edge girder 48 and not extend the dorsal skin 44 to the downstream side.
  • the wind turbine blade of the present embodiment is the same as the wind turbine blade 1 of the first embodiment except that an extended portion is added to the flat back airfoil 10 of the airfoil portion 6. Therefore, here, the description will focus on the points that are different from the wind turbine blade 1 of the first embodiment, that is, the extending portion added to the flatback airfoil 10.
  • FIG. 9 is a view showing an example of an extending portion added to the flatback airfoil 10.
  • the extending portion 50 is provided so as to extend rearward from the rear edge 8 of the flatback airfoil 10.
  • the extending portion 50 includes a ventral side extending surface 52 extending rearward from the rear side edge 8 from the ventral side surface 12 of the flat back airfoil 10 and a rear side from the rear side surface 14 of the flat back airfoil 10 to the rear edge 8.
  • an extended dorsal surface 54 is provided.
  • the shape of the flat back airfoil 10 itself is determined by the same method as in the first embodiment.
  • the ventral side extending surface 52 is a concave curved surface or a flat surface continuously extending from the ventral side surface 12 of the flat back airfoil 10.
  • the abdomen extending surface 52 is inclined with respect to the cord 16 so as to move away from the cord 16 (toward the abdomen) as it approaches the rear end surface 56 of the extending portion 50. Therefore, the flow of air (wind) on the ventral side of the flat-back airfoil 10 is turned further downward (in the direction away from the ventral side surface 12) by the ventral-side extending surface 52, and the lift acting on the wind turbine blade 1 is increased.
  • the rear end surface 56 of the extended portion 50 is provided substantially in parallel with the end surface (rear edge surface) 9 of the rear edge 8 of the flat back airfoil 10.
  • the extending portion 50 may be added in order to change the aerodynamic characteristics of the flat back airfoil 10 when designing the airfoil blade airfoil. That is, for the purpose of improving aerodynamic characteristics, the extending portion 50 is added to the flatback airfoil 10 to design the airfoil blade airfoil, and the ventral outer skin 42 and the back side are obtained so that the designed airfoil can be obtained.
  • the outer skin 44 (see FIGS. 7 and 8) may be molded. Thereby, the windmill blade in which the aerodynamic characteristic was improved by the ventral-side extending surface 52 of the extending portion 50 can be manufactured at a low cost by a simple method.
  • the extended portion 50 may be formed separately from the flatback airfoil 10 and added to the flatback airfoil 10 when the wind turbine blade is manufactured or modified.
  • the extended portion 50 may be formed of fiber reinforced plastic (FRP) and adhered and fixed to the flat back airfoil 10.
  • FRP fiber reinforced plastic
  • the ventral side extending surface 52 depending on the shape of the ventral side extending surface 52, it may be difficult to integrally form the extending part 50 and the flat back airfoil 10, and the degree of freedom of the shape of the ventral side extending surface 52 is limited. Sometimes. Therefore, by forming the extended portion 50 separately from the flat back airfoil 10, any shape of the ventral side extended surface 52 can be adopted, and the aerodynamic characteristics of the flat back airfoil 10 are further improved. Can be improved. Further, in some cases wind turbine because the appropriate code length L C of the wind turbine blade is different depending on the region that is installed, it becomes necessary to implement the code length L C corresponding to each region.
  • the extension portion 50 can be added to the flat-back airfoil 10 to achieve the desired aerodynamic characteristics.
  • the rigidity of the trailing edge 8 of the flat back airfoil 10 the buckling strength of the wind turbine blade, and the ventral skin 42.
  • the adhesive strength of the dorsal outer skin 44 can be improved.
  • the extending portion 50 is not limited to the example shown in FIG. 9 and can take various shapes.
  • FIG. 10 is a diagram illustrating another shape example of the extending portion 50.
  • the rear end surface 56 of the extending portion 50 is inclined with respect to the rear edge surface 9 of the flat back airfoil 10, and the ventral side extending surface 52 is replaced with the back side extending surface. It extends longer than 54. Thereby, the lift can be further increased by the long ventral side extending surface 52.
  • the rear end surface 56 of the extending portion 50 is recessed, and the angle formed between the rear end surface 56 and the back-side extended surface 54 is the back side surface 14 of the flat back airfoil 10 and the rear side.
  • the angle is smaller than the angle formed by the edge surface 9.
  • the extended portion 50 is not provided with the back-side extended surface 54, and the rear end surface 56 of the extended portion 50 is connected to the rear side surface 14 of the flat-back airfoil 10 and the rear surface. It is connected to the intersection with the edge surface 9. Thereby, lift can be increased by the ventral side extending surface 52. Further, the ventral side extending surface 52 is a concave curved surface continuously extending from the ventral side surface 12 of the flat back airfoil 10.
  • FIG. 10 (d) is the same as the example shown in FIG. 10 (c) except that the ventral side extension surface 52 of the extension part 50 is formed as a flat surface.
  • the rear end surface 56 of the extending portion 50 is recessed, and the angle formed by the rear end surface 56 and the back-side extending surface 54 is set so that the back side surface 14 of the flat-back airfoil 10 and the rear surface are rear. Except for the point made smaller than the angle formed by the edge surface 9, it is the same as the example shown in FIG.
  • the rear end surface 56 of the extended portion 50 is in the middle of the rear edge surface 9 of the flat back airfoil 10 (position on the abdomen side from the intersection of the rear edge surface 9 and the back side surface 14).
  • the intersection of the rear edge surface 9 and the back side surface 14 of the flat back airfoil 10 is exposed. Therefore, the effect of increasing the lift by the ventral-side extending surface 52 of the extending portion 50 is obtained without affecting the effect of suppressing the separation of the boundary layer of the flat-back airfoil 10 at the intersection of the rear edge surface 9 and the back side surface 14. be able to.
  • FIG. 10 (g) is the same as the example shown in FIG. 10 (f) except that the ventral-side extending surface 52 of the extending portion 50 is not a flat surface but a concave curved surface.
  • the extending portion 50 is configured by a plate-like member, and is connected to the intersection of the rear edge surface 9 and the ventral side surface 12 of the flat back airfoil 10.
  • the abdominal side extended surface 52 is comprised by the surface of the abdominal side of the extended part 50 which consists of a plate-shaped member.
  • FIG. 10 (i) is the same as the example shown in FIG. 10 (f) except that the abdomen extending surface 52 of the extending part 50 is not a flat surface but a concave curved surface.
  • the wind turbine blade of this embodiment is the same as the wind turbine blade 1 of the first embodiment except that the periphery of the trailing edge 8 of the flat back airfoil 10 of the airfoil portion 6 is covered with a covering portion. Therefore, here, a description will be given focusing on a different point from the wind turbine blade 1 of the first embodiment, that is, a covering portion covering the periphery of the rear edge 8 of the flatback airfoil 10.
  • FIG. 11 is a view showing an example of a covering portion covering the periphery of the rear edge 8 of the flat back airfoil 10.
  • FIG. 12 is a view showing another example of the covering portion covering the periphery of the trailing edge 8 of the flat back airfoil 10.
  • the covering portion 60 covers the rear edge surface 9 of the flat back airfoil 10 and the portions on the rear edge 8 side of the abdominal side surface 12 and the back side surface 14.
  • An outer surface 62 on the ventral side of the covering portion 60 continuously extends from the ventral side surface 12 of the flat back airfoil 10.
  • the outer surface 64 on the back side of the covering portion 60 continuously extends from the back side surface 14 of the flat back airfoil 10.
  • the shape of the flat back airfoil 10 is determined by the same method as in the first embodiment.
  • the outer surface 62 on the ventral side of the covering portion 60 is a concave curved surface or a flat surface continuously extending from the ventral side surface 12 of the flat back airfoil 10.
  • the outer surface 62 on the ventral side of the covering portion 60 is inclined with respect to the cord 16 so as to move away from the cord 16 (toward the ventral side) as it approaches the rear end surface 66 of the covering portion 60. Therefore, the flow of air (wind) on the ventral side of the flat-back airfoil 10 is turned further downward (in the direction away from the ventral side surface 12) by the outer surface 62 of the covering portion 60, and the lift acting on the windmill blade is increased. To do.
  • the rigidity of the trailing edge 8 of the flatback airfoil 10 and the buckling strength of the wind turbine blade can be improved.
  • FIG. 11 shows an example in which the rear end surface 66 of the covering portion 60 is a flat surface, but the rear end surface 66 of the covering portion 60 may be recessed as shown in FIG.
  • the back end surface 66 of the flat back airfoil 10 and the rear edge surface 9 form an angle formed by the rear end surface 66 of the covering portion 60 being recessed so that the rear end surface 66 and the outer surface 64 on the back side are formed. It can also be made smaller than the angle.
  • the intersection of the rear end surface 66 and the outer surface 64 on the back side approaches an acute angle, and the air flowing along the back side surface 14 (and the outer surface 64 on the back side) due to the negative pressure in the wake of the covering portion 60.
  • the flow can be sucked more strongly and the separation of the boundary layer on the dorsal side can be further delayed.
  • the wind turbine blade according to the present embodiment has an angle ⁇ formed with respect to the plane of the flat back airfoil 10 (rear end face 9 orthogonal to the cord 16) described with reference to FIGS. 4A to 4C in the first embodiment.
  • An extension portion is added to a flat-back airfoil made different in the longitudinal direction. Since the other configuration of the wind turbine blade of the present embodiment is the same as that of the wind turbine blade 1 of the first embodiment, the following description will focus on differences from the wind turbine blade 1 of the first embodiment.
  • FIG. 13 is a diagram illustrating an example of a wind turbine blade according to the fourth embodiment.
  • FIG. 14 is a diagram illustrating another example of the wind turbine blade of the fourth embodiment.
  • the flat back airfoil 10 has the cord 16 with the rear end surface 9 of the flat back airfoil 10 as described in the first embodiment with reference to FIGS.
  • the angle ⁇ formed with respect to the orthogonal plane 17 is varied with respect to the blade length direction so as to increase as it approaches the blade root 4 side.
  • the rear end surface 9 of the flat back airfoil 10 is made flat or curved without a twist so that the wind turbine blade 1 can be easily manufactured.
  • the extending portion 70 is provided so as to extend rearward from the rear edge 8 so that the shape of the rear edge 8 can be arbitrarily adjusted by the extending portion 70.
  • the extending portion 70 has a ventral-side extending surface 72 extending rearward from the rear edge 8 of the flat back airfoil 10.
  • the ventral side extending surface 72 is a concave curved surface or a flat surface continuously extending from the ventral side surface 12 of the flat back airfoil 10.
  • the abdomen extending surface 72 is inclined with respect to the cord 16 so as to move away from the cord 16 (toward the abdomen) as it approaches the rear end surface 76 of the extending portion 70.
  • the shape of the extending part 70 is not limited to the example shown in FIG. 13, and various shapes can be taken.
  • the rear end surface 76 of the extending portion 70 is in the middle of the rear edge surface 9 of the flat-back airfoil 10 (more than the intersection of the rear edge surface 9 and the back side surface 14). The position of the back edge surface 9 and the back side surface 14 of the flat back airfoil 10 is exposed.
  • the effect of increasing the lift by the ventral-side extending surface 52 of the extending portion 50 is obtained without affecting the effect of suppressing the separation of the boundary layer of the flat-back airfoil 10 at the intersection of the rear edge surface 9 and the back side surface 14. be able to.
  • At least, spanwise region wing thickness ratio X indicating a ratio of a maximum thickness t MAX for the code length L C of 50% or less than 40% in the airfoil section 6 and the flat back airfoil 10
  • the region of TsubasaAtsuhi X is less than 50% to 40%
  • KoenAtsu indicating a ratio of a thickness t TE of the trailing edge to the maximum thickness t MAX
  • the trailing edge in the region relatively close to the blade root portion side where the blade thickness ratio X is 40% or more and 50% or less, the trailing edge is thickened to form a flat back blade type.
  • the lift-drag ratio characteristic can be effectively improved.
  • the trailing edge thickness ratio Y is set to 5% or more in the region where the blade thickness ratio X is 40 to 50%, it is possible to generate lift up to a high angle of attack and to improve the section coefficient of the wind turbine blade. Thus, it is possible to reduce the weight of the wind turbine blade while maintaining the strength.

Abstract

フラットバック翼型を備え、空力特性や剛性に優れた風車翼及びこれを備えた風力発電装置ならびに風車翼の設計方法を提供することを目的とする。風車翼1は、翼先端部2と、ハブ112に連結される翼根部4と、前記翼先端部2と前記翼根部4との間に位置する翼型部6とを備える。翼型部6は、少なくとも、コード長Lに対する最大厚tMAXの割合を示す翼厚比Xが40%以上50%以下になる翼長方向の領域において、後縁8が厚みを持つフラットバック翼型10を有する。フラットバック翼型10は、前記翼厚比Xが40%以上50%以下の前記領域において、前記最大厚tMAXに対する後縁8の厚さtTEの割合を示す後縁厚比Yが5%以上Y%以下であり、Yは、前記翼厚比Xを用いて、Y=1.5X-30で表される。

Description

風車翼及びこれを備えた風力発電装置ならびに風車翼の設計方法
 本発明は、風車翼及びこれを備えた風力発電装置ならびに風車翼の設計方法に関する。
 近年、地球環境の保全の観点から、風力を利用した風力発電装置の普及が進んでいる。風力発電装置は、風の運動エネルギーを翼(正確には翼を含むロータ全体)の回転エネルギーに変換し、さらにこの回転エネルギーを発電機にて電力に変換するようになっている。
 風力発電装置による発電出力(風車出力)は、次式で表され、翼効率が高く、翼直径が大きいほど向上する。
 (数1)
  風車出力=1/2×空気密度×(風速)×翼効率×変換効率×π×(翼直径/2)
 ここで、翼効率は、風の運動エネルギーを翼(正確には翼を含むロータ全体)の回転エネルギーに変換する際の効率である。また、変換効率は、ロータの回転エネルギーを発電機に伝達し、発電機で電力を生成する際の効率である。
 ところで、翼効率には、理論上の上限値(ベッツ限界=0.593)が存在することが知られている。つまり、理論上の最大効率ですら、風の運動エネルギーのうち59.3%しか、翼(正確には翼を含むロータ全体)の回転エネルギーに変換することができない。実際の風車翼では、風車後流のスワールの影響や、空気抵抗の存在のために、実現しうる翼効率は最大でも0.5程度になってしまう。
 現在、実用化されている風車翼の翼効率は、典型値として0.49程度であるから、翼設計の改良によって翼効率を改善できる余地は、高々0.01(現状の翼効率全体に対して2%)程度に過ぎない。しかも、翼設計の改良は、騒音増大や非設計点における効率低下を招くおそれがあり、望ましくないこともある。
 したがって、翼効率の改善によって、風力発電装置の発電出力を大幅に高めることは難しい。
 一方、翼直径はその二乗で発電出力に影響するから、発電出力の向上のためには翼直径の拡大が効果的である。しかし、翼直径の拡大は、風車翼が風から受ける荷重(空力荷重)の増大および風車翼の重量増加に伴う荷重(重量荷重)の増大を招くから、ロータを支持するナセルの大型化、ひいてはコスト増の要因になる。
 よって、翼型(風車翼の断面形状)を工夫して、風車翼のコード長を短くして風車翼が風から受ける荷重(空力荷重)を低減するとともに、風車翼の重量増加に伴う荷重(重量荷重)の増大を抑制することが考えられる。
 そこで、風車翼のハブ側に近い部分の後縁(トレイリングエッジ)を厚くしたフラットバック翼型(flatback airfoil)が提案されている(例えば、特許文献1~5及び非特許文献1参照)。
 具体的には、特許文献1には、座標により規定された複数のフラットバック翼型を有する風車翼が記載されている。特許文献2には、後縁周辺における翼厚が後縁に近づくほど大きくなるダイバージェント形状のフラットバック翼型が記載されている。また特許文献3には、フラットバック翼型インサートを用いてフラットバック翼型を有する風車翼を製造する技術が開示されている。また特許文献4には、騒音を低減するためのスプリッタプレートを後縁に取り付けたフラットバック翼型の風車翼が開示されている。また特許文献5には、シャープな後縁を有する初期翼型に対してブレードエレメントを追設して、後縁に厚みを持たせてフラットバック翼型とすることが開示されている。さらに、非特許文献1には、複数の計算手法を用いて、フラットバック翼型の空力特性を評価した結果が記載されている。
 図15は、フラットバック翼型を備えた風車翼を示す図である。風車翼100は、後縁8が厚みを持つため、後縁8の後流側の領域102にウェークが生じて領域102が負圧になる性質を有する。後縁8の後流側の領域102の負圧は、背側面14に沿って流れる空気流を吸引し、背側面14における境界層の剥離を遅らせる。すなわち、後縁8の後流側の領域102に生じる負圧によって空気流を背側面14に引き寄せることで、境界層の剥離が抑制され、背側面14における境界層の剥離点が後縁8近傍まで後流側にずれる(境界層の剥離点が後縁8近傍に固定される)。そのため、シャープな後縁を有する従来の翼型に比べて、高い迎え角まで揚力を発生させることができる。よって、コード16の長さ(コード長)を短くしても十分な揚力が得られるため、コード長を低減して、風車翼が風から受ける荷重(空力荷重)を小さくできる。
 またフラットバック翼型では、後縁が厚みを有するため、シャープな後縁を有する従来の翼型に比べて断面係数に優れているから、強度を確保しながら重量を低減することができる。
 なお、フラットバック翼型に関するものではないが、特許文献6には、翼型部と翼根部との間の遷移部において、後縁周辺の腹側面に付加領域を設けて揚力を増大させるようにした風車翼が開示されている。
米国特許第7883324号明細書 米国特許出願公開第2009/0263252号明細書 米国特許出願公開第2010/0143146号明細書 欧州特許出願公開第2063106号明細書 欧州特許出願公開第2031242号明細書 欧州特許出願公開第1845258号明細書
K.J.Standish、他1名、「Aerodynamic Analysis of Blunt Trailing Edge Airfoils」、Journal of Solar Energy Engineering、2003年11月、vol.125、p.479-487
 ところで、一般的な風車翼は、定格回転数に到達する風速よりも高い高風速域では、翼根部に近い翼長方向位置であるほど、風速上昇に伴う迎え角の増加量が大きく、迎え角が大きくなりやすいという傾向がある。このことについて、図15に示す速度三角形を用いて説明する。
 図15において、風車翼100は矢印Rの方向に回転する。風車翼100は、コード16が翼回転方向Rに対して角度θをなすように配置されている。この角度θは、コード16の延長線L1と翼回転方向Rに平行な直線L2との間の角度であり、風車翼100の取付け角(ピッチ角)を意味している。また、相対風速ベクトルWは、翼回転方向Rに回転している風車翼100に対する風の相対的な速度ベクトルであり、風車翼100の回転方向に対して直角方向から吹き付ける風の速度ベクトルAと、風車翼100の周速ベクトルrΩとを合成したベクトルである。そして、この相対風速ベクトルWとコード16の延長線L1との間の角度αが、風車翼100の迎え角である。
 ここで、定格回転数に到達する風速よりも高い高風速域では、風車翼100の回転数は定格回転数に維持されるから、周速ベクトルrΩは一定である。そのため、風速が上昇して、風の速度ベクトルAが大きくなると、その分だけ風車翼100の迎え角αは大きくなる。その迎え角αの増加量は、周速ベクトルrΩが小さい翼根部側の翼長方向位置ほど大きい。すなわち、周速ベクトルrΩが小さい翼根部側の翼長方向位置であるほど、風速上昇に伴う迎え角αの増加量が大きく、迎え角αが大きくなりやすいという傾向がある。
 よって、翼根部側に近い領域では、後縁に厚みを持たせて(フラットバック翼型を採用して)、高い迎え角まで揚力を維持することが望まれる。後縁に厚みを持たせると、揚力だけでなく抗力も増大してしまうが、翼根部に近い領域では、揚力増大というメリットのほうが抗力増大というデメリットよりも大きいため、後縁を厚くすることの技術的利得が大きい(すなわち、高い揚抗比を実現できる)。逆に、翼先端部側に近づくほど、フラットバック翼型を採用することによる抗力増大というデメリットが、揚力増大というメリットに比べて勝るようになり、後縁を厚くすることによって揚抗比がむしろ小さくなる場合もある。
 本発明者は、検討の結果、コード長に対する最大厚の割合を示す翼厚比Xが40%以上50%以下になるような比較的翼根部に近い領域において、後縁に厚みを持たせることの技術的利得が大きい(すなわち、高い揚抗比を実現しうる)という知見を得た。そのため、この領域におけるフラットバック翼型の後縁厚を適切な範囲内に設定して、空力特性や剛性の改善を図ることが重要であると考えられる。
 ところが、フラットバック翼型に関する知見はまだそれほど蓄積されておらず、上述した領域におけるフラットバック翼型の後縁厚をどのような範囲に設定するのかについて十分な知見は存在しない。
 特許文献1~6及び非特許文献1においても、上述した翼厚比Xが40%以上50%以下の領域において、フラットバック翼型の後縁の厚みをどのような範囲とするかについて、具体的な開示はなされていない。
 本発明は、上述の事情に鑑みてなされたものであり、フラットバック翼型を備え、空力特性や剛性に優れた風車翼及びこれを備えた風力発電装置ならびに風車翼の設計方法を提供することを目的とする。
 本発明に係る風車翼は、翼先端部と、風車のハブに連結される翼根部と、前記翼先端部と前記翼根部との間に位置し、少なくとも、コード長Lに対する最大厚tMAXの割合を示す翼厚比Xが40%以上50%以下になる翼長方向の領域において、後縁が厚みを持つフラットバック翼型を有する翼型部とを備える風車翼であって、前記フラットバック翼型は、前記翼厚比Xが40%以上50%以下の前記領域において、前記最大厚tMAXに対する後縁の厚さtTEの割合を示す後縁厚比Yが5%以上Y%以下であり、Yは、前記翼厚比Xを用いて、Y=1.5X-30で表されることを特徴とする。
 本発明者の知見によれば、翼厚比Xが40%以上50%以下になる翼根部側に比較的近い領域において、後縁に厚みを持たせてフラットバック翼型とすることで、揚抗比特性を効果的に改善できる。そこで、上記風車翼では、少なくとも、翼厚比Xが40~50%の翼長方向の領域では、後縁に厚みを持たせたフラットバック翼型としている。
 また、上記風車翼では、翼厚比Xが40~50%の前記領域において後縁厚比Yを5%以上にしたので、後縁の後流側のウェークに起因して発生する負圧により、背側面における境界層の剥離を効果的に遅らせることができる。すなわち、後縁の後流側に生じる負圧によって空気流を背側面に引き寄せて、背側面からの境界層の剥離を効果的に抑制できる。したがって、高い迎え角まで揚力を発生させることができる(高い迎え角まで失速しない高揚力特性を実現できる)。また、後縁厚比Yを5%以上にすることで、風車翼の断面係数が向上するので、強度を維持しながら風車翼の軽量化を図ることができる。
 ところで、後縁厚比Yを大きくして後端を厚くすると、揚力だけでなく抗力も増大するため、後端を厚くすればするほど揚抗比(=揚力/抗力)が大きくなり空力特性が改善されるというわけではない。本発明者の検討結果によれば、後縁厚比Yを上限値Y(=1.5X-30)よりも大きくすると、揚力の増加分よりも抗力の増加分のほうが勝るようになり、ほぼ全ての迎え角範囲において揚抗比の十分な改善効果がみられなくなる。この点、上記風車翼では、翼厚比Xが40~50%の前記領域において後縁厚比Yを上限値Y(=1.5X-30)以下にしたので、少なくとも一部の迎え角範囲において揚抗比の十分な改善効果を享受できる。
 上記風車翼において、前記風車翼の回転半径Rに対する最大コード長LCMAXの割合を示すパラメータSと、前記翼先端部の周速および翼端代表コード長の積を前記回転半径Rで除したパラメータTとがT≦-5S+5の関係を満たす場合、前記フラットバック翼型は、前記翼厚比Xが40%以上50%以下の前記領域において、前記後縁厚比YがX-20≦Y≦1.5X-30であり、前記パラメータSと前記パラメータTとがT≧-5S+6の関係を満たす場合、前記フラットバック翼型は、前記翼厚比Xが40%以上50%以下の前記領域において、前記後縁厚比Yが5≦Y≦0.5X-5であり、前記パラメータSと前記パラメータTとが-5S+5<T<-5S+6の関係を満たす場合、前記フラットバック翼型は、前記翼厚比Xが40%以上50%以下の前記領域において、前記後縁厚比Yが0.5X-5<Y<X-20であってもよい。
 なお、前記翼端代表コード長は、前記回転半径Rに対する比が0.8である翼半径位置rにおけるコード長である。
 ここで、パラメータS及びTの技術的意味について、図16(a)~(d)を用いて説明する。
 一般的な風車では、風速がカットイン風速V以上に達した後、定格回転数に到達する風速Vになるまでの間、性能(効率)が最適(最大)となるほぼ一定の周速比(最適周速比または設計周速比という)で運転される(図16(b)参照)。ここで、周速比は、風車翼の存在の影響を受けない無限上流側の風速(上流風速)を用いて、翼端周速[rpm]/上流風速[m/s]で表される。風速がカットイン風速V~定格回転数に到達する風速Vの可変速域では、周速比が最適周速比(設計周速比)に維持されるように風の速度ベクトルAの変化に応じて周速ベクトルWが変化し、迎え角αは風車翼に適したほぼ一定値(=最適迎え角αopt)に維持される(図16(b)及び(d)参照)。
 これに対し、風速が定格回転数に到達する風速Vに達した後、回転数は一定値(定格回転数)に維持されるから、周速ベクトルrΩはほぼ一定の大きさに保たれる。そのため、定格回転数に到達する風速V~定格出力に到達する風速Vの高風速域では、風速が上昇すると、周速ベクトルrΩが一定に維持されたまま、風の速度ベクトルAのみが大きくなって、結果的に風車翼の迎え角αは大きくなる(図16(d)参照)。この迎え角αの増加傾向は、風車出力が定格出力に到達する風速(定格風速)Vまで継続する。そして、定格風速Vに達した後、風車翼のピッチ制御により迎え角αが低減されて風車出力が一定に維持される。なお、V2~V3の間でもピッチ制御が働き図16に示す各状況と若干異なる場合もある。
 ところで、定格回転数に到達する風速V~定格出力に到達する風速Vの高風速域における、上流風速の上昇分に対する迎え角αの増大量(図16(d)のグラフの傾き)は、コード長の影響を受ける。仮にコード長がゼロの風車翼であれば、無限上流側の風速の上昇分だけ風の速度ベクトルAの大きさが増加して、この速度ベクトルAの大きさの増加量に応じて風車翼の迎え角αが大きくなる。しかし、現実の風車翼のコード長はゼロではないため、風車翼に向かって実際に流れてくる風の速度ベクトルAの大きさは、風車翼の存在の影響を少なからず受けることになり、無限上流側の風速(上流風速)の上昇分よりも小さい量しか増加しない。そして、風車翼のコード長が大きくなるほど、風車翼の存在の影響が無視できなくなるため、無限上流側の風速(上流風速)が上昇したときの風の速度ベクトルAの大きさの増加量は小さくなる。したがって、無限上流側の風速の上昇分に対する迎え角αの増大量(すなわち、風速に対する迎え角の変化感度、より具体的には図16(d)におけるグラフの傾き)は、コード長が大きくなるほど小さくなる。そうすると、風車翼の回転半径Rに対する最大コード長LCMAXの割合を示すパラメータSは、風車翼のコード長の大きさの程度を示す無次元数であるから、このパラメータSが大きくなるほど風速に対する迎え角の変化感度は小さくなる。すなわち、パラメータSは、風速に対する迎え角の変化感度(無限上流側の風速の上昇分に対する迎え角αの増大量)の指標である。
 また、図16(d)から明らかなように、定格回転数に到達する風速Vと定格出力に到達する風速(定格風速)Vとの風速差(=V-V)が大きいほど、風車の運転範囲内においてとりうる迎え角の最大値αMAXが大きくなる。そのため、(特に翼根側の翼長方向位置において)迎え角が失速角を超える可能性が高まり、高い迎え角まで失速しないように風車翼を設計することが重要になる。
 ここで、定格風速Vは多くの風車でおよそ10m/s付近の値(典型的には11~12m/s)であるから、風車の運転範囲内においてとりうる迎え角の最大値αMAXは主に定格回転数に到達する風速Vにより支配される。すなわち、定格回転数に到達する風速Vが小さいほど、上記風速差V-Vが大きくなり、その分だけ最適迎え角αoptからの迎え角の上昇量が大きくなって、迎え角の最大値αMAXが増大する。
 そして、この風速Vは翼端周速/設計周速比で与えられる。さらに、設計周速比は、風車翼のコード長分布と強い相関を有し、空気力学の事実として、設計周速比と、コード長/回転半径Rとがおよそ反比例の関係にある。なお、コード長は風車翼の翼長方向に異なる値で分布するが、風車翼の性能に最も影響度が強い翼端代表コード長(=回転半径Rに対する比が0.8である翼半径位置rにおけるコード長)によって良く代表される。つまり、1/設計周速比∝翼端代表コード長/回転半径Rの関係が成立するから、翼先端部の周速および翼端代表コード長の積を回転半径Rで除したパラメータTは、定格回転数に到達する風速Vの大きさを表す(T=翼端周速×翼端代表コード長/回転半径R∝翼端周速/設計周速比、すなわちT∝風速Vの関係が概ね成立する)。
 そうすると、定格風速Vは多くの風車で同様な値を採るため、定格回転数に到達する風速Vの大きさを表すパラメータTは、上記風速差V-Vの大きさを意味することになり、結果的には風車翼の運転範囲内における迎え角の最大値αMAXの大きさの程度を示す。具体的には、パラメータTが大きく風速Vが大きい場合には、風速差V-Vが小さくなり、その分だけ最適迎え角αoptからの迎え角の上昇量は小さいため、迎え角の最大値αMAXも比較的小さい。逆に、パラメータTが小さく風速Vが小さい場合、風速差V-Vが大きくなり、その分だけ最適迎え角αoptからの迎え角の上昇量は大きいため、迎え角の最大値αMAXも比較的大きい。
 したがって、パラメータS及びTがT≦-5S+5の関係を満たす場合は、T≧-5S+6の場合に比べて、同じパラメータT(定格回転数に到達する風速と定格風速との差)についてみれば、パラメータSは小さい(すなわち、風速に対する迎え角αの変化感度は大きい)。そのため、定格回転数に到達する風速から定格風速まで風速が上昇するまでの間に、風車翼の迎え角αが増大する量は大きい。また、同じパラメータSについてみても、パラメータS及びTがT≦-5S+5の関係を満たす場合は、T≧-5S+6の場合に比べてパラメータTが小さい(すなわち、風速差V-Vが大きい)から、定格回転数に到達する風速から定格風速まで風速が上昇するまでの間に風車翼の迎え角αが増大する量は大きい。つまり、パラメータS及びTがT≦-5S+5の関係を満たす場合、定格回転数に達してから定格出力に至るまでの風車の運転範囲において、風車翼の迎え角αは比較的高い値まで増加することになる。そこで、この場合には、翼厚比Xが40%以上50%以下の領域において後縁厚比YをX-20≦Y≦1.5X-30に設定して、高い迎え角αまで背側面における境界層の剥離を抑制することが有効である。
 逆に、パラメータS及びTがT≧-5S+6を満たす場合は、T≦-5S+5の場合に比べて、同じパラメータT(定格回転数に到達する風速と定格風速との差)についてみれば、パラメータSが大きい(すなわち、風速に対する迎え角αの変化感度が小さい)。そのため、定格回転数に到達する風速から定格風速まで風速が上昇するまでの間に、風車翼の迎え角αが増大する量は小さい。また、同じパラメータSについてみても、パラメータS及びTがT≦-5S+5の関係を満たす場合は、T≧-5S+6の場合に比べてパラメータTが大きい(すなわち、風速差V-Vが小さい)から、定格回転数に到達する風速から定格風速まで風速が上昇するまでの間に風車翼の迎え角αが増大する量は小さい。つまり、パラメータS及びTがT≧-5S+6の関係を満たす場合、定格回転数に達してから定格出力に至るまでの風車の運転範囲において、風車翼の迎え角αはそれほど増加しない。そこで、この場合には、翼厚比Xが40%以上50%以下の領域において後縁厚比Yを5≦Y≦0.5X-5に設定して、後端厚を必要最小限にとどめて、抗力の増加を抑制しながら、揚力を増加させることができる。
 なお、パラメータS及びTが-5S+5<T<-5S+6の関係を満たす場合は、翼厚比Xが40%以上50%以下の領域において後縁厚比Yを0.5X-5<Y<X-20に設定して、後端厚を適切な範囲内に維持して、ある程度の迎え角αまで境界層の剥離を抑制するとともに、抗力の増加をある程度抑制できる。
 上記風車翼において、前記フラットバック翼型は、前記翼厚比Xが35%以上40%以下になる翼長方向の領域において、前記翼厚比Xと前記後縁厚比YとがX-35≦Y≦4X-130を満たすように規定されていてもよい。
 このように後縁厚比YをX-35以上にすることで、後縁の後流側のウェークに起因して発生する負圧により、背側面における境界層の剥離を効果的に遅らせて、高い迎え角まで揚力を発生させることができる。また、後縁厚比YをX-35以上にすることで、風車翼の断面係数の改善によって、強度を維持しながら風車翼の軽量化を図ることができる。
 一方、後縁厚比Yを4X-130以下にすることで、少なくともいずれかの迎え角範囲において揚抗比の改善効果を享受できる。
 上記風車翼において、前記フラットバック翼型は、後縁がシャープな基準翼型の腹側面と背側面との間隔を広げて該基準翼型の前記シャープな後縁を厚くした断面形状として規定され、前記翼型部には、前記フラットバック翼型の腹側面から、前記フラットバック翼型の前記後縁よりも後方に連続的に延ばした凹状湾曲面又は平面からなる腹側延設面が設けられており、前記腹側延設面は、後流側に向かうにつれて前記フラットバック翼型のコードから離れるように該コードに対して傾斜していてもよい。
 このように、フラットバック翼型の腹側面から後方に延ばした凹状湾曲面又は平面からなる腹側延設面を設けることで、フラットバック翼型の腹側における空気(風)の流れを下向き(腹側面から離れる方向)に変向し、風車翼に作用する揚力を増大させることができる。
 前記腹側延設面を設ける場合、前記翼型部には、前記フラットバック翼型の背側面から、前記フラットバック翼型の前記後縁よりも後方に延びる背側延設面が設けられており、前記腹側延設面及び前記背側延設面は、それぞれ、前記フラットバック翼型の前記後縁から後方に延在するように設けられた延設部の腹側の外表面と背側の外表面であり、前記延設部の後端面と前記背側延設面とがなす角度は、前記フラットバック翼型の前記背側面と前記後縁の端面とがなす角度に比べて小さくしてもよい。
 これにより、フラットバック翼型の前記後縁から後方に延在するように設けられた延設部の後端面と前記背側延設面とがなす角度を鋭角に近づけることができる。したがって、延設部の後流における負圧によって、背側面に沿って流れる空気流をより強く吸引し、背側面における境界層の剥離をより一層遅らせることができる。
 また、フラットバック翼型とは別体として延設部を形成し、この延設部をフラットバック翼型に付加するようにすれば、フラットバック翼型の後縁の剛性と、風車翼の座屈強度と、風車翼を構成する腹側外皮及び背側外皮の接着強度とを向上させることができる。
 あるいは、前記腹側延設面を設ける場合、前記腹側延設面は、前記フラットバック翼型の前記後縁から後方に延びるように設けられた延設部の腹側の外表面であり、前記延設部の背側の外表面は、前記フラットバック翼型の前記背側面と前記後縁との交点よりも腹側の位置において、前記フラットバック翼型の前記後縁の端面と交わっており、前記フラットバック翼型の前記背側面と前記後縁との前記交点は、前記延設部に覆われていなくてもよい。
 このように、フラットバック翼型の背側面と後縁との交点を延設部によって覆わずに露出させることで、フラットバック翼型の境界層剥離の抑制効果に影響を及ぼすことなく、腹側延設面による揚力増大効果を得ることができる。
 上記風車翼において、前記フラットバック翼型は、後縁がシャープな基準翼型の腹側面と背側面との間隔を広げて該基準翼型の前記シャープな後縁を厚くした断面形状として規定され、前記翼型部には、前記フラットバック翼型の前記後縁と、前記フラットバック翼型の腹側面及び背側面の前記後縁側の部分を覆う被覆部が設けられており、前記被覆部の腹側の外表面は、前記フラットバック翼型の腹側面から連続的に延びている凹状湾曲面又は平面であり、かつ、後流側に向かうにつれて前記フラットバック翼型のコードから離れるように該コードに対して傾斜していてもよい。
 このように、フラットバック翼型の後縁側を覆う被覆部の腹側の外表面を、フラットバック翼型の腹側面から後方に延ばした凹状湾曲面又は平面とすることで、フラットバック翼型の腹側における空気(風)の流れを下向き(腹側面から離れる方向)に変向し、風車翼に作用する揚力を増大させることができる。
 また、フラットバック翼型の後縁側を被覆部で覆うことで、後縁の剛性や、風車翼の座屈強度を向上させることができる。
 上記風車翼において、前記翼型部は、翼長方向に関してツイストされており、前記フラットバック翼型の前記後縁の端面がツイストされていない平面又は曲面になるように、該端面が前記フラットバック翼型のコードの直交面に対してなす角度θを翼長方向に関して異ならせてもよい。
 これにより、フラットバック翼型の後縁の端面(後縁面)がツイストされていない(ひねられていない)平面又は曲面になるので、風車翼の製造を容易に行うことができる。
 なお、角度θは、翼根部に近づくにつれて大きくなるようにしてもよい。
 風車翼は、一般に、翼根部に近い翼根部に近い翼長方向位置であるほど、風速上昇に伴う迎え角の増加量が大きく、迎え角が大きくなりやすいという傾向がある。そこで、翼根部に近づくほど上記角度θを大きくすることで、フラットバック翼型の背側面と後縁面との間の角度を鋭角に近づけて、翼根部に近づくほど、より高い迎え角まで揚力を発生させることができる(より高い迎え角まで失速しない高揚力特性を実現できる)。
 上記風車翼において、前記フラットバック翼型は、該フラットバック翼型の腹側面を形成する腹側外皮と、該フラットバック翼型の背側面を形成する背側外皮とが、前記後縁において閉じておらず、前記腹側外皮と前記背側外皮とは、前記後縁寄りの位置において、前記腹側外皮と前記背側外皮との間に設けられて翼長方向に延在する後縁桁を介して接合されていてもよい。
 後縁桁を介して腹側外皮と背側外皮を接合することで、腹側外皮と背側外皮とが後縁において閉じていなくても、十分な強度を確保できる。また、後縁が開放されていても、このことが腹側及び背側における風の流れに影響を及ぼすことは殆どない。また、後縁を閉じないことで、後縁桁が外部に露出し、後縁桁の取付け状態を確認することができて有利である。
 本発明によれば、翼厚比Xが40%以上50%以下になる翼根部側に比較的近い領域において、後縁に厚みを持たせてフラットバック翼型とすることで、揚抗比特性を効果的に改善できる。
 また、翼厚比Xが40~50%の前記領域において後縁厚比Yを5%以上にしたので、後縁の後流側のウェークに起因して発生する負圧により、背側面における境界層の剥離を効果的に遅らせることができる。すなわち、後縁の後流側に生じる負圧によって空気流を背側面に引き寄せて、背側面からの境界層の剥離を効果的に抑制できる。したがって、高い迎え角まで揚力を発生させることができる。また、後縁厚比Yを5%以上にすることで、風車翼の断面係数が向上するので、強度を維持しながら風車翼の軽量化を図ることができる。
 また、翼厚比Xが40~50%の前記領域において後縁厚比Yを上限値Y(=1.5X-30)以下にしたので、少なくとも一部の迎え角範囲において揚抗比の十分な改善効果を享受できる。
風力発電装置の構成例を示す図である。 第1実施形態に係る風車翼の構成例を示す斜視図である。 フラットバック翼型の一例を示す図である。 (a)は図2におけるA-A断面図、(b)は図2におけるB-B断面図、(c)は図2におけるC-C断面図である。 フラットバック翼型の形状決定時に用いる設定エリアを示すグラフである。 図5に示す設定エリアのうち第1~第3エリアのいずれかを選択するためのマップを示す図である。 風車翼の内部構造の例を示す図である。 風車翼の内部構造の他の例を示す図である。 第2実施形態の風車翼の例を示す図である。 第2実施形態の風車翼の他の例を示す図である。 第3実施形態の風車翼の例を示す図である。 第3実施形態の風車翼の他の例を示す図である。 第4実施形態の風車翼の例を示す図である。 第4実施形態の風車翼の他の例を示す図である。 フラットバック翼型を備えた風車翼を示す図である。 一般的な風車の運転条件を示す図であり、(a)は上流風速と風車の回転数との関係を示すグラフであり、(b)は上流風速と周速比との関係を示すグラフであり、(c)は上流風速と風車出力との関係を示すグラフであり、(d)は上流風速と迎え角との関係を示すグラフである。
 以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。
[第1実施形態]
 最初に、第1実施形態に係る風車翼について説明する。
 図1は、風力発電装置の構成例を示す図である。図2は、第1実施形態に係る風車翼を示す斜視図である。
 図1に示すように、風力発電装置110は、1本以上(この例では3本)の風車翼1と、風車翼1が取り付けられるハブ112と、風車翼1及びハブ112を含むロータを支持するナセル114と、ナセル114を旋回自在に支持するタワー116とを備える。なお、ロータの回転は不図示の発電機に入力されて、該発電機において電力が生成されるようになっている。
 風車翼1のハブ112への取付けは、風車翼1の翼根部4をハブ112に任意の締結部材を用いて固定することで行われる。
 図2に示すように、風車翼1は、翼先端部2と、風車のハブ112(図1参照)に連結される翼根部4と、翼先端部2と翼根部4との間に位置する翼型部6とを備えている。翼型部6は、前縁(リーディングエッジ)7と後縁(トレイリングエッジ)8とを有する。翼型部6の後縁8は、少なくとも一部が厚みを持つように形成されている。言い換えると、翼型部6は、後縁8が厚いフラットバック翼型10を少なくとも一部に有している。
 ここで、翼型部6のフラットバック翼型10について説明する。図3(a)及び(b)は、フラットバック翼型10の例を示す図である。
 図3(a)及び(b)に示すように、フラットバック翼型10の外形は、腹側面(圧力側:pressure side)12と、背側面(吸引側:suction side)14とによって形成される。フラットバック翼型10の後縁8は、後縁厚tTEを有している。また、前縁7と後縁8(正確には、後縁面9の翼厚方向における中点)とを結ぶコード(翼弦線)16は、コード長Lを有している。
 なお、図3(b)に示すように、コード16に対して後縁面9が傾斜している場合、腹側面12及び背側面14の両方に交わる最も後流側のコード16の直交面Nにおける厚さを後端厚tTEとする。
 図3(a)及び(b)に示す例では、フラットバック翼型10の厚さ(すなわち腹側面12と背側面14との距離)は、前縁7から後縁8に向かうにつれてゼロから徐々に増加して最大厚tMAXを迎えた後、徐々に小さくなり、最終的には後縁厚tTEとなる。
 フラットバック翼型10は、後縁がシャープな基準翼型20の腹側面22と背側面24との間隔を広げて、該基準翼型20のシャープな後端を厚くした断面形状として規定されることが好ましい。すなわち、基準翼型20のシャープな後縁を切断するカットバック法ではなく、基準翼型20のシャープな後縁を開くオープンアップ法によって、フラットバック翼型10を規定することが好ましい。
 例えば、図3(a)に示すように、キャンバーライン26を中心線として、基準翼型20の腹側面22及び背側面24の位置を外方に同じ量ずらすことで、それぞれ、フラットバック翼型10の腹側面12と背側面14を得るようにしてもよい。なお、キャンバーライン26は、基準翼型20の腹側面22と背側面24との中点を結んだ線であり、翼型の空力的性質に影響する重要な因子の一つである。このように、キャンバーライン26を中心線として、基準翼型20の腹側面22及び背側面24の位置を外方に同じ量ずらすことで、空力的性質に影響するキャンバーライン26を維持したまま、後縁に厚みを持たせたフラットバック翼型10が得られる。
 なお、基準翼型20として、航空機用の翼型(例えばNACA翼型)を転用してもよいし、風車専用の翼型(例えばDU翼型やMEL翼型)を用いてもよい。
 また、風車翼1が、図2に示すように翼長方向に関してツイストされている場合、フラットバック翼型10の後縁8の端面(後縁面)9がひねりのない平面又は曲面になるように、後縁8の端面9のコード16の直交面に対してなす角度θを翼長方向に関して異ならせてもよい。
 図4(a)~(c)は、順に、図2におけるA-A断面図、B-B断面図、C-C断面図である。図4(a)~(c)に示すように、フラットバック翼型10の後端面9がコード16の直交面17に対してなす角度θは、翼根部4側に近づくにつれて大きくなる(θ>θ>θ)。このように後縁8の端面9と直交面17との間の角度θを翼長方向に関して異ならせることで、フラットバック翼型10の後縁8の端面9をひねりのない平面又は曲面として形成することができる。よって、風車翼1の製造を容易に行うことができる。なお、図2には後縁8の端面(後縁面)9が翼長方向に関して湾曲した曲面である例を示した。
 また、翼根部4側に近づくにつれて角度θを大きくすることで、背側面14と後縁面9との間の角度を鋭角に近づけて、翼根部4に近づくほど、より高い迎え角まで揚力を発生させることができる(より高い迎え角まで失速しない高揚力特性を実現できる)。
 また、後縁8の端面9と直交面17との間の角度θは、フラットバック翼型10が適用され始める点(図2に示すフラットバック開始点11)においてゼロであり、フラットバック開始点11から翼根部4に近づくにつれて前記角度θが徐々に大きくなるようにして、後縁8の端面9をひねりのない平面又は曲面としてもよい。なお、通常翼根部では円柱状の形状となる。
 本実施形態では、フラットバック翼型10の形状は、コード長Lに対する最大厚tMAXの割合を示す翼厚比X(=tMAX/L)と、最大厚tMAXに対する後縁厚tTEの割合を示す後縁厚比Y(=tTE/tMAX)との関係によって規定される。
 図5は、フラットバック翼型10の形状決定時に用いる設定エリアを示すグラフである。本実施形態では、フラットバック翼型10の形状は、任意の翼厚比Xにおける後縁厚比Yが下限値Yと上限値Yとで囲まれる許容エリア30内に収まるように決定される。
 なお、一般的な風車翼では、翼根部4から翼先端2側に近づくにつれて翼厚比Xが小さくなることが知られている。図5には、図面左側から図面右側に向かうにしたがって翼厚比Xが小さくなるから、図面左側が翼根部4側であり、図面右側が翼先端部2側である。
 翼厚比Xが40%以上50%以下の翼根部4側に比較的近い領域では、許容エリア30の下限値Yは5%であり、許容エリア30の上限値YはY=1.5X-30である。すなわち、翼厚比Xが40%以上50%以下の場合、フラットバック翼型10の形状は、翼厚比Xと後縁厚比Yとが、5%≦Y≦1.5X-30の関係を満たすように決定される。
 翼厚比Xが40~50%の前記領域において後縁厚比Yを5%以上にすることで、後縁8の後流側のウェークに起因して発生する負圧により、背側面14における境界層の剥離を効果的に遅らせることができる。すなわち、後縁8の後流側に生じる負圧によって空気流を背側面14に引き寄せて、背側面14からの境界層の剥離を効果的に抑制できる。したがって、高い迎え角まで揚力を発生させることができる(高い迎え角まで失速しない高揚力特性を実現できる)。また、後縁厚比Yを5%以上にすることで、風車翼1の断面係数が向上するので、強度を維持しながら風車翼1の軽量化を図ることができる。
 一方、翼厚比Xが40~50%の前記領域において後縁厚比Yを上限値Y(=1.5X-30)以下にすることで、少なくとも一部の迎え角範囲において揚抗比の十分な改善効果を享受できる。
 また、翼厚比Xが35%以上40%未満の領域では、許容エリア30の下限値YはY=X-35であり、許容エリア30の上限値YはY=4X-130である。すなわち、翼厚比Xが35%以上40%未満の場合、フラットバック翼型10の形状は、翼厚比Xと後縁厚比Yとが、X-35≦Y≦4X-130の関係を満たすように決定される。
 このように後縁厚比YをX-35以上にすることで、後縁8の後流側のウェークに起因して発生する負圧により、背側面14における境界層の剥離を効果的に遅らせて、高い迎え角まで揚力を発生させることができる。また、後縁厚比YをX-35以上にすることで、風車翼1の断面係数の改善によって、強度を維持しながら風車翼1の軽量化を図ることができる。
 一方、後縁厚比Yを4X-130以下にすることで、少なくともいずれかの迎え角範囲において揚抗比の改善効果を享受できる。
 また、翼厚比Xが35%未満の翼先端2側に近い領域では、フラットバック開始点11(図2参照)に向かって翼厚比Xが減少するにつれて、後縁厚比Yを徐々に小さくしていく。このとき、図5に示すように、後縁厚比Yが上限値Y(=X-25)以下になるように、後縁厚比Yを徐々に小さくしてもよい。
 なお、製造面での都合上、後縁8の厚さをゼロにすることはできないから、フラットバック開始点11よりも翼先端2側における後縁厚比Yは完全にゼロである必要はない。
 さらに、本実施形態では、翼厚比Xが35~50%の範囲における許容エリア30を、第1エリア32、第2エリア34、第3エリア36に三分割しており、風車翼1の仕様に応じていずれかのエリアを選択して、フラットバック翼型10の形状を決定する。
 翼厚比Xが40%以上50%以下の範囲では、第1エリア32はX-20≦Y≦1.5X-30の関係を満たす領域であり、第2エリア34は0.5X-5<Y<X-20の関係を満たす領域であり、第3エリア36は5%≦Y≦0.5X-5の関係を満たす領域である。
 また翼厚比Xが35%以上40%未満の範囲では、第1エリア32は3X-100≦Y≦4X-130を満たす領域であり、第2エリア34は2X-65<Y<3X-100の関係を満たす領域であり、第3エリアはX-35≦Y≦2X-65の関係を満たす領域である。
 ここで、風車翼1の仕様に応じていずれかのエリア(32,34,36)を選択する手法について説明する。
 図6は、第1エリア32、第2エリア34及び第3エリア36を選択するためのマップを示す図である。同図に示すマップでは、横軸としてパラメータSを用い、縦軸としてパラメータTを用いている。
 パラメータSは、風車翼1の回転半径R(図1参照)に対する最大コード長LCMAX(図1参照)の割合を示すパラメータである(すなわち、S=LCMAX/R)。このパラメータSは、風速に対する迎え角αの変化感度(無限上流側の風速の上昇分に対する迎え角αの増大量)を示す指標である。
 一方、パラメータTは、翼先端部2の周速RΩ(図1参照)および翼端代表コード長Lrの積を回転半径Rで除したパラメータである(すなわち、T=RΩ×Lr/R)。このパラメータTは、定格回転数に到達する風速Vと定格風速(定格出力に対応する風速)Vとの差を示す指標である。
 図6に示すマップでは、T=-5S+5で表される直線と、T=-5S+6で表される直線とを境にして、3つの領域A~Cに区分けされている。すなわち、T≦-5S+5を満たす場合を領域Aといい、-5S+5<T<-5S+6を満たす場合を領域Bといい、T≧-5S+6を満たす場合を領域Cという。
 パラメータS及びTがT≦-5S+5の関係を満たす場合(領域A)は、T≧-5S+6の場合(領域C)に比べて、同じパラメータT(定格回転数に到達する風速と定格風速との差)についてみれば、パラメータSが小さい(すなわち、風速に対する迎え角αの変化感度が大きい)。また、同じパラメータSについてみれば、領域Aは領域Cに比べてパラメータT(定格回転数に到達する風速V)が小さい(すなわち、風速差V-Vが大きい)。そこで、パラメータS及びTが領域Aに属するような風車翼1の仕様の場合、図5の許容エリア30のうち第1エリア32を選択して、フラットバック翼型10の形状を決定する。すなわち、翼厚比Xが40%以上50%以下の範囲ではX-20≦Y≦1.5X-30の関係を満たし、翼厚比Xが35%以上40%未満の範囲では3X-100≦Y≦4X-130の関係を満たすように、フラットババック翼型10の形状を決定する。これにより、許容エリア30の範囲内で後縁厚比Yを比較的大きく設定し、高い迎え角αまで背側面14における境界層の剥離を抑制することができる。
 逆に、パラメータS及びTがT≧-5S+6を満たす場合(領域C)は、T≦-5S+5の場合(領域A)に比べて、同じパラメータT(定格回転数に到達する風速と定格風速との差)についてみれば、パラメータSは大きい(すなわち、風速に対する迎え角αの変化感度が小さい)。また、同じパラメータSについてみれば、領域Aは領域Cに比べてパラメータT(定格回転数に到達する風速V)が大きい(すなわち、風速差V-Vが小さい)。そこで、パラメータS及びTが領域Cに属するような風車翼1の仕様の場合、図5の許容エリア30のうち第3エリア36を選択して、フラットバック翼型10の形状を決定する。すなわち、翼厚比Xが40%以上50%以下の範囲では5%≦Y≦0.5X-5の関係を満たし、翼厚比Xが35%以上40%未満の範囲ではX-35≦Y≦2X-65を満たすように、フラットバック翼型10の形状を決定する。これにより、許容エリア30の範囲内で後縁厚比Yを比較的小さく設定し、後端厚tTEを必要最小限にとどめて、抗力の増加を抑制しながら、揚力を増加させることができる。
 なお、パラメータS及びTが-5S+6<T<-5S+5の関係を満たす場合(領域B)は、図5の許容エリア30のうち第2エリア34を選択する。すなわち、翼厚比Xが40%以上50%以下の範囲では0.5X-5<Y<X-20の関係を満たし、翼厚比Xが35%以上40%未満の範囲では2X-65<Y<3X-100を満たすように、フラットバック翼型10の形状を決定する。これにより、許容エリア30の範囲内で後端厚比Yを適度な値に設定し、ある程度の迎え角αまで境界層の剥離を抑制するとともに、抗力の増加をある程度抑制できる。
 次に、上記形状のフラットバック翼型10を有する風車翼1の内部構造について説明する。図7は、風車翼1の内部構造の例を示す図である。図8(a)及び(b)は、風車翼1の内部構造の他の例を示す図である。
 図7及び8に示す風車翼1は、上述のフラットバック翼型10で規定される断面形状を有する。風車翼1は、フラットバック翼型10の腹側面12を形成する腹側外皮42と、フラットバック翼型10の背側面14を形成する背側外皮44と、腹側外皮42及び背側外皮44の間に設けられる主桁46及び後縁桁48とを有する。
 主桁46は、腹側外皮42と背側外皮44との間の風車翼1の内部空間において、風車翼1の翼長方向に延在している。また、主桁46は、腹側外皮42と背側外皮44の内面に接着固定されるスパーキャップ46Aと、スパーキャップ46A間に設けられるシアウェブ(shear web)46Bとで構成される。
 主桁46よりも後縁8寄りの位置には、後縁桁48が設けられている。後縁桁48は、主桁46と同様に、腹側外皮42と背側外皮44との間の風車翼1の内部空間において、風車翼1の翼長方向に延在している。また、後縁桁48は、腹側外皮42と背側外皮44の内面に接着固定されるスパーキャップ48Aと、スパーキャップ48A間に設けられるシアウェブ48Bとで構成される。
 腹側外皮42及び背側外皮44は、図7に示すように後縁8において閉じていてもよいが、図8(a)及び(b)に示すように後縁8において閉じていなくてもよい。
 腹側外皮42と背側外皮44とは、後縁桁48を介して接合されているから、後縁8において閉じていなくても、十分な強度を確保できる。また、後縁8が開放されていても、このことが腹側及び背側における風の流れに影響を及ぼすことは殆どないから、空力的な性能を維持できる。さらに、後縁8が開放されており後縁桁48が外部に露出しているため、後縁桁48の取付け状態(スパーキャップ48Aと外皮内面との接着状態)を確認することができて有利である。
 なお、腹側外皮42及び背側外皮44の少なくとも一方は、後縁桁48よりも後流側には延在していない構成も採りうる。例えば、図8(b)に示すように、背側外皮44を後縁桁48の位置まで延ばし、それよりも後流側には背側外皮44を延ばさないことも可能である。
[第2実施形態]
 次に、第2実施形態に係る風車翼について説明する。本実施形態の風車翼は、翼型部6のフラットバック翼型10に延設部を付加したことを除けば、第1実施形態の風車翼1と同様である。したがって、ここでは、第1実施形態の風車翼1と異なる点、すなわちフラットバック翼型10に付加される延設部を中心に説明する。
 図9は、フラットバック翼型10に付加された延設部の一例を示す図である。同図に示すように、延設部50は、フラットバック翼型10の後縁8から後方に延在するように設けられている。延設部50は、フラットバック翼型10の腹側面12から後縁8よりも後方に延ばした腹側延設面52と、フラットバック翼型10の背側面14から後縁8よりも後方に延ばした背側延設面54とを有する。
 なお、フラットバック翼型10自体の形状は、第1実施形態と同様な手法によって決定されている。
 腹側延設面52は、フラットバック翼型10の腹側面12から連続的に延びた凹状湾曲面又は平面である。この腹側延設面52は、延設部50の後端面56に近づくにつれてコード16から離れる(腹側に向かう)ように、コード16に対して傾斜している。そのため、フラットバック翼型10の腹側における空気(風)の流れが腹側延設面52によってより一層下向き(腹側面12から離れる方向)に変向され、風車翼1に作用する揚力が増大する。
 なお、延設部50の後端面56は、フラットバック翼型10の後縁8の端面(後縁面)9に略平行に設けられている。
 延設部50は、風車翼の翼型の設計時に、フラットバック翼型10の空力特性を変化させるために付加してもよい。すなわち、空力特性の改善を目的として延設部50をフラットバック翼型10に付加して風車翼の翼型を設計し、該設計された翼型が得られるように腹側外皮42及び背側外皮44(図7及び8参照)を成形してもよい。これにより、延設部50の腹側延設面52によって空力特性が改善された風車翼を簡素な手法によって低コストで製造できる。
 あるいは、延設部50は、風車翼の製造時又は改造時に、フラットバック翼型10とは別体として形成され、フラットバック翼型10に付加されてもよい。この場合、延設部50を繊維強化プラスチック(FRP)で形成し、フラットバック翼型10に接着固定してもよい。このように、延設部50をフラットバック翼型10とは別体として形成する場合、次のような利点がある。
 まず、腹側延設面52の形状によっては、延設部50及びフラットバック翼型10を一体的に形成することが難しいことがあり、腹側延設面52の形状の自由度が制限されることがある。そこで、延設部50をフラットバック翼型10とは別体として形成することで、腹側延設面52の任意の形状を採用することができ、フラットバック翼型10の空力特性をより一層改善することができる。
 また、風車が設置される地域によって風車翼の適切なコード長Lが異なるから、各地域に応じたコード長Lを実現する必要が生じる場合がある。例えば、風車の騒音を小さくする必要がある住宅地や市街地周辺の地域では、騒音低減の観点から、風車の定格回転数を下げるとともに、定格回転数の減少に応じてコード長Lを大きくする必要がある。一方、騒音が問題にならない山間部などの地域では、風車翼の輸送を容易にする観点から、逆にコード長Lをできるだけ小さくする必要がある。そこで、延設部50をフラットバック翼型10とは別体として形成することで、地域によって仕様の異なる風車翼のモールド(成形型)を共通化しながら、各地域に応じたコード長Lを実現することができる。
 また、フラットバック翼型は近年盛んに研究されているが、フラットバック翼型に関する風洞試験データはまだそれほど蓄積されておらず、フラットバック翼型10が所期の空力特性(特に揚抗比)を有しないことも考えられる。このような場合、フラットバック翼型10の空力特性を補完する目的で、フラットバック翼型10に延設部50を追設して、所期の空力特性を実現することができる。
 さらに、フラットバック翼型10とは別体として形成された延設部50を付加することで、フラットバック翼型10の後縁8の剛性や、風車翼の座屈強度や、腹側外皮42及び背側外皮44の接着強度を向上させることができる。
 また、延設部50は、図9に示した例に限られず、種々の形状を採りうる。図10は、延設部50の他の形状例を示す図である。
 図10(a)に示す例では、延設部50の後端面56は、フラットバック翼型10の後縁面9に対して傾斜しており、腹側延設面52を背側延設面54よりも長く延在させている。これにより、長い腹側延設面52によって揚力をより一層増大させることができる。
 図10(b)に示す例では、延設部50の後端面56は凹んでおり、後端面56と背側延設面54とがなす角度は、フラットバック翼型10の背側面14と後縁面9とがなす角度に比べて小さくなっている。これにより、後端面56と背側延設面54との交点が鋭角に近づいて、延設部50の後流における負圧によって、背側面14(及び背側延設面54)に沿って流れる空気流をより強く吸引し、背側における境界層の剥離をより一層遅らせることができる。
 図10(c)に示す例では、延設部50には背側延設面54が設けられておらず、延設部50の後端面56は、フラットバック翼型10の背側面14と後縁面9との交点に接続されている。これにより、腹側延設面52によって揚力を増大させることができる。また、腹側延設面52は、フラットバック翼型10の腹側面12から連続的に延びた凹状湾曲面である。
 図10(d)に示す例は、延設部50の腹側延設面52を平面で形成した点を除けば、図10(c)に示す例と同様である。
 図10(e)に示す例は、延設部50の後端面56を凹ませて、後端面56と背側延設面54とがなす角度を、フラットバック翼型10の背側面14と後縁面9とがなす角度に比べて小さくした点を除けば、図10(d)に示す例と同様である。
 図10(f)に示す例では、延設部50の後端面56がフラットバック翼型10の後縁面9の途中(後縁面9と背側面14との交点よりも腹側の位置)に接続されており、フラットバック翼型10の後縁面9と背側面14との交点が露出している。そのため、後縁面9と背側面14との交点におけるフラットバック翼型10の境界層の剥離抑制効果に影響を及ぼすことなく、延設部50の腹側延設面52による揚力増大効果を得ることができる。
 図10(g)に示す例は、延設部50の腹側延設面52を平面ではなく凹状湾曲面にしたことを除けば、図10(f)に示す例と同様である。
 図10(h)に示す例では、延設部50は、板状部材によって構成されており、フラットバック翼型10の後縁面9と腹側面12との交点に接続されている。そして、板状部材からなる延設部50の腹側の面によって腹側延設面52が構成されている。
 このように板状部材からなる延設部50を用いることで、フラットバック翼型10の後縁面9と背側面14との交点が露出し、該交点におけるフラットバック翼型10の境界層の剥離抑制効果に影響を及ぼすことなく、延設部50の腹側延設面52による揚力増大効果を得ることができる。
 図10(i)に示す例は、延設部50の腹側延設面52を平面ではなく凹状湾曲面にしたことを除けば、図10(f)に示す例と同様である。
[第3実施形態]
 次に第3実施形態に係る風車翼について説明する。本実施形態の風車翼は、翼型部6のフラットバック翼型10の後縁8周辺を被覆部によって覆ったことを除けば、第1実施形態の風車翼1と同様である。したがって、ここでは、第1実施形態の風車翼1と異なる点、すなわちフラットバック翼型10の後縁8周辺を覆う被覆部を中心に説明する。
 図11は、フラットバック翼型10の後縁8周辺を覆う被覆部の一例を示す図である。図12は、フラットバック翼型10の後縁8周辺を覆う被覆部の他の例を示す図である。
 図11に示すように、被覆部60は、フラットバック翼型10の後縁面9と、腹側面12及び背側面14の後縁8側の部分とを覆っている。被覆部60の腹側の外表面62は、フラットバック翼型10の腹側面12から連続的に延びている。同様に、被覆部60の背側の外表面64は、フラットバック翼型10の背側面14から連続的に延びている。
 なお、フラットバック翼型10の形状は、第1実施形態と同様な手法によって決定されている。
 被覆部60の腹側の外表面62は、フラットバック翼型10の腹側面12から連続的に延びた凹状湾曲面又は平面である。被覆部60の腹側の外表面62は、被覆部60の後端面66に近づくにつれてコード16から離れる(腹側に向かう)ように、コード16に対して傾斜している。そのため、フラットバック翼型10の腹側における空気(風)の流れが被覆部60の外表面62によってより一層下向き(腹側面12から離れる方向)に変向され、風車翼に作用する揚力が増大する。
 また、フラットバック翼型10の後縁8周辺を被覆部60によって覆うことで、フラットバック翼型10の後縁8の剛性や、風車翼の座屈強度を向上させることができる。
 また、図11には被覆部60の後端面66が平面である例を示したが、被覆部60の後端面66は図12に示すように凹んでいてもよい。このように、被覆部60の後端面66を凹ませることで、後端面66と背側の外表面64とがなす角度を、フラットバック翼型10の背側面14と後縁面9とがなす角度に比べて小さくすることもできる。これにより、後端面66と背側の外表面64との交点が鋭角に近づいて、被覆部60の後流における負圧によって、背側面14(及び背側の外表面64)に沿って流れる空気流をより強く吸引し、背側における境界層の剥離をより一層遅らせることができる。
[第4実施形態]
 次に、第4実施形態に係る風車翼について説明する。本実施形態の風車翼は、第1実施形態において図4(a)~(c)を用いて説明したフラットバック翼型10(後端面9のコード16の直交面に対してなす角度θを翼長方向に関して異ならせたフラットバック翼型)に延設部を付加したものである。それ以外の本実施形態の風車翼の構成は、第1実施形態の風車翼1と同様であるから、ここでは第1実施形態の風車翼1とは異なる点を中心に説明する。
 図13は、第4実施形態の風車翼の例を示す図である。図14は、第4実施形態の風車翼の他の例を示す図である。
 本実施形態の風車翼では、フラットバック翼型10は、図4(a)~(c)を用いて第1実施形態で説明したように、フラットバック翼型10の後端面9がコード16の直交面17に対してなす角度θは、翼根部4側に近づくにつれて大きくなるように翼長方向に関して異ならせている。これにより、フラットバック翼型10の後端面9をひねりのない平面又は曲面にして、風車翼1の製造を容易に行うことができるようにしている。
 ところが、このように、後端面9をツイストされていない平面又は曲面とする目的で角度θを翼長方向に関して異ならせると、フラットバック翼型10の後縁8の形状の自由度が制限されてしまう。
 そこで、本実施形態では、後縁8から後方に延在するように延設部70を設け、延設部70によって後縁8の形状を任意に調整できるようにする。
 延設部70は、フラットバック翼型10の後縁8よりも後方に延ばした腹側延在面72を有する。腹側延在面72は、フラットバック翼型10の腹側面12から連続的に延びた凹状湾曲面又は平面である。この腹側延設面72は、延設部70の後端面76に近づくにつれてコード16から離れる(腹側に向かう)ように、コード16に対して傾斜している。そのため、フラットバック翼型10の腹側における空気(風)の流れが腹側延設面72によってより一層下向き(腹側面12から離れる方向)に変向され、風車翼に作用する揚力が増大する。
 また、延設部70の形状は図13に示す例に限定されず、種々の形状を採りうる。
 例えば、図14(a)に示すように、延設部70の腹側延設面72を凹状湾曲面にしてもよい。また図14(b)及び(c)に示す例では、延設部70の後端面76がフラットバック翼型10の後縁面9の途中(後縁面9と背側面14との交点よりも腹側の位置)に接続されており、フラットバック翼型10の後縁面9と背側面14との交点が露出している。そのため、後縁面9と背側面14との交点におけるフラットバック翼型10の境界層の剥離抑制効果に影響を及ぼすことなく、延設部50の腹側延設面52による揚力増大効果を得ることができる。
 以上説明したように、上述の第1~第4実施形態では、少なくとも、コード長Lに対する最大厚tMAXの割合を示す翼厚比Xが40%以上50%以下になる翼長方向の領域では翼型部6をフラットバック翼型10とし、さらに、翼厚比Xが40%以上50%以下の前記領域において、最大厚tMAXに対する後縁の厚さtTEの割合を示す後縁厚比Yが5%以上Y(=1.5X-30)%以下になるようにフラットバック翼型10の形状を決定するようにした。
 上述の第1~第4実施形態によれば、翼厚比Xが40%以上50%以下になる翼根部側に比較的近い領域において、後縁に厚みを持たせてフラットバック翼型とすることで、揚抗比特性を効果的に改善できる。
 また、翼厚比Xが40~50%の前記領域において後縁厚比Yを5%以上にしたので、高い迎え角まで揚力を発生させることができるとともに、風車翼の断面係数が向上するので、強度を維持しながら風車翼の軽量化を図ることができる。
 さらに、翼厚比Xが40~50%の前記領域において後縁厚比Yを上限値Y(=1.5X-30)以下にしたので、少なくとも一部の迎え角範囲において揚抗比の十分な改善効果を享受できる。
 以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。例えば、上述の第1実施形態~第4実施形態を任意に組み合わせて実施してもよい。
1 風車翼
2 翼先端部
4 翼根部
6 翼型部
7 前縁(リーディングエッジ)
8 後縁(トレイリングエッジ)
9 端面(後縁面)
10 フラットバック翼型
12 腹側面
14 背側面
16 コード(翼弦線)
17 直交面
20 基準翼型
22 腹側面
24 背側面
26 キャンバーライン
30 許容エリア
32 第1エリア
34 第2エリア
36 第3エリア
42 腹側外皮
44 背側外皮
46 主桁
46A スパーキャップ
46B シアウェブ
48 後縁桁
48A スパーキャップ
48B シアウェブ
50 延設部
52 腹側延設面
54 背側延設面
56 後端面
60 被覆部
62 腹側の外表面
64 背側の外表面
66 後端面
70 延設部
72 腹側延設面
76 後端面
100 風車翼
102 後流側の領域
110 風力発電装置
112 ハブ
114 ナセル
116 タワー
 

Claims (12)

  1.  翼先端部と、
     風車のハブに連結される翼根部と、
     前記翼先端部と前記翼根部との間に位置し、少なくとも、コード長Lに対する最大厚tMAXの割合を示す翼厚比Xが40%以上50%以下になる翼長方向の領域において、後縁が厚みを持つフラットバック翼型を有する翼型部とを備える風車翼であって、
     前記フラットバック翼型は、前記翼厚比Xが40%以上50%以下の前記領域において、前記最大厚tMAXに対する後縁の厚さtTEの割合を示す後縁厚比Yが5%以上Y%以下であり、
     Yは、前記翼厚比Xを用いて、Y=1.5X-30で表されることを特徴とする風車翼。
  2.  前記風車翼の回転半径Rに対する最大コード長LCMAXの割合を示すパラメータSと、前記翼先端部の周速および翼端代表コード長の積を前記回転半径Rで除したパラメータTとがT≦-5S+5の関係を満たす場合、前記フラットバック翼型は、前記翼厚比Xが40%以上50%以下の前記領域において、前記後縁厚比YがX-20≦Y≦1.5X-30であり、
     前記パラメータSと前記パラメータTとがT≧-5S+6の関係を満たす場合、前記フラットバック翼型は、前記翼厚比Xが40%以上50%以下の前記領域において、前記後縁厚比Yが5≦Y≦0.5X-5であり、
     前記パラメータSと前記パラメータTとが-5S+5<T<-5S+6の関係を満たす場合、前記フラットバック翼型は、前記翼厚比Xが40%以上50%以下の前記領域において、前記後縁厚比Yが0.5X-5<Y<X-20であり、
     前記翼端代表コード長は、前記回転半径Rに対する比が0.8である翼半径位置rにおけるコード長であることを特徴とする請求項1に記載の風車翼。
  3.  前記フラットバック翼型は、前記翼厚比Xが35%以上40%以下になる翼長方向の領域において、前記翼厚比Xと前記後縁厚比YとがX-35≦Y≦4X-130を満たすことを特徴とする請求項1に記載の風車翼。
  4.  前記フラットバック翼型は、後縁がシャープな基準翼型の腹側面と背側面との間隔を広げて該基準翼型の前記シャープな後縁を厚くした断面形状として規定され、
     前記翼型部には、前記フラットバック翼型の腹側面から、前記フラットバック翼型の前記後縁よりも後方に連続的に延ばした凹状湾曲面又は平面からなる腹側延設面が設けられており、
     前記腹側延設面は、後流側に向かうにつれて前記フラットバック翼型のコードから離れるように該コードに対して傾斜していることを特徴とする請求項1に記載の風車翼。
  5.  前記翼型部には、前記フラットバック翼型の背側面から、前記フラットバック翼型の前記後縁よりも後方に延びる背側延設面が設けられており、
     前記腹側延設面及び前記背側延設面は、それぞれ、前記フラットバック翼型の前記後縁から後方に延在するように設けられた延設部の腹側の外表面と背側の外表面であり、
     前記延設部の後端面と前記背側延設面とがなす角度は、前記フラットバック翼型の前記背側面と前記後縁の端面とがなす角度に比べて小さいことを特徴とする請求項4に記載の風車翼。
  6.  前記腹側延設面は、前記フラットバック翼型の前記後縁から後方に延びるように設けられた延設部の腹側の外表面であり、
     前記延設部の背側の外表面は、前記フラットバック翼型の前記背側面と前記後縁との交点よりも腹側の位置において、前記フラットバック翼型の前記後縁の端面と交わっており、
     前記フラットバック翼型の前記背側面と前記後縁との前記交点は、前記延設部に覆われていないことを特徴とする請求項4に記載の風車翼。
  7.  前記フラットバック翼型は、後縁がシャープな基準翼型の腹側面と背側面との間隔を広げて該基準翼型の前記シャープな後縁を厚くした断面形状として規定され、
     前記翼型部には、前記フラットバック翼型の前記後縁と、前記フラットバック翼型の腹側面及び背側面の前記後縁側の部分を覆う被覆部が設けられており、
     前記被覆部の腹側の外表面は、前記フラットバック翼型の腹側面から連続的に延びている凹状湾曲面又は平面であり、かつ、後流側に向かうにつれて前記フラットバック翼型のコードから離れるように該コードに対して傾斜していることを特徴とする請求項1に記載の風車翼。
  8.  前記翼型部は、翼長方向に関してツイストされており、
     前記フラットバック翼型の前記後縁の端面がツイストされていない平面又は曲面になるように、該端面が前記フラットバック翼型のコードの直交面に対してなす角度θを翼長方向に関して異ならせたことを特徴とする請求項1に記載の風車翼。
  9.  前記フラットバック翼型は、前記翼根部に近づくにつれて前記角度θが大きくなることを特徴とする請求項8に記載の風車翼。
  10.  前記フラットバック翼型は、該フラットバック翼型の腹側面を形成する腹側外皮と、該フラットバック翼型の背側面を形成する背側外皮とが、前記後縁において閉じておらず、
     前記腹側外皮と前記背側外皮とは、前記後縁寄りの位置において、前記腹側外皮と前記背側外皮との間に設けられて翼長方向に延在する後縁桁を介して接合されていることを特徴とする請求項1に記載の風車翼。
  11.  請求項1に記載の風車翼を備えることを特徴とする風力発電装置。
  12.  翼先端部と、風車のハブに連結される翼根部と、前記翼先端部と前記翼根部との間に位置する翼型部とを備える風車翼の設計方法であって、
     前記翼型部は、少なくとも、コード長Lに対する最大厚tMAXの割合を示す翼厚比Xが40%以上50%以下になる翼長方向の領域において、後縁が厚みを持つフラットバック翼型とし、
     前記フラットバック翼型は、前記翼厚比Xが40%以上50%以下の前記領域において、前記最大厚tMAXに対する後縁の厚さtTEの割合を示す後縁厚比Yが5%以上Y%以下であり、Yは、前記翼厚比Xを用いて、Y=1.5X-30で表されるような形状とすることを特徴とする風車翼の設計方法。
     
     
PCT/JP2011/073409 2011-10-12 2011-10-12 風車翼及びこれを備えた風力発電装置ならびに風車翼の設計方法 WO2013054404A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2011/073409 WO2013054404A1 (ja) 2011-10-12 2011-10-12 風車翼及びこれを備えた風力発電装置ならびに風車翼の設計方法
KR1020127034093A KR20130064087A (ko) 2011-10-12 2011-10-12 풍차 날개, 이것을 구비한 풍력 발전 장치 및 풍차 날개의 설계 방법
JP2012503569A JP5297558B1 (ja) 2011-10-12 2011-10-12 風車翼及びこれを備えた風力発電装置ならびに風車翼の設計方法
CN201180022030.7A CN103270296B (zh) 2011-10-12 2011-10-12 风车叶片及具备该风车叶片的风力发电装置以及风车叶片的设计方法
EP11817193.3A EP2604856B1 (en) 2011-10-12 2011-10-12 Wind turbine blade, wind power generation device provided with same, and design method for wind turbine blade
US13/364,811 US8419373B1 (en) 2011-10-12 2012-02-02 Wind turbine blade, wind turbine generator equipped with wind turbine blade and method of designing wind turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/073409 WO2013054404A1 (ja) 2011-10-12 2011-10-12 風車翼及びこれを備えた風力発電装置ならびに風車翼の設計方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/364,811 Continuation US8419373B1 (en) 2011-10-12 2012-02-02 Wind turbine blade, wind turbine generator equipped with wind turbine blade and method of designing wind turbine blade

Publications (1)

Publication Number Publication Date
WO2013054404A1 true WO2013054404A1 (ja) 2013-04-18

Family

ID=48049076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073409 WO2013054404A1 (ja) 2011-10-12 2011-10-12 風車翼及びこれを備えた風力発電装置ならびに風車翼の設計方法

Country Status (6)

Country Link
US (1) US8419373B1 (ja)
EP (1) EP2604856B1 (ja)
JP (1) JP5297558B1 (ja)
KR (1) KR20130064087A (ja)
CN (1) CN103270296B (ja)
WO (1) WO2013054404A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101434469B1 (ko) * 2013-04-29 2014-08-26 삼성중공업 주식회사 풍력 발전장치용 블레이드
JP2015068197A (ja) * 2013-09-27 2015-04-13 株式会社東芝 軸流水車発電装置
JP2018510995A (ja) * 2015-04-10 2018-04-19 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh 風力発電装置−ロータブレード
JP2019078192A (ja) * 2017-10-20 2019-05-23 三菱重工業株式会社 風車翼へのボルテックスジェネレータの配置位置決定方法、風車翼アセンブリの製造方法及び風車翼アセンブリ
US10968885B2 (en) 2016-01-26 2021-04-06 Wobben Properties Gmbh Rotor blade of a wind turbine and a wind turbine

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201109412D0 (en) * 2011-06-03 2011-07-20 Blade Dynamics Ltd A wind turbine rotor
NL2009286C2 (en) 2012-08-06 2014-02-10 Stichting Energie Swallow tail airfoil.
US11136958B2 (en) 2012-08-06 2021-10-05 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Swallow tail airfoil
EP2713044B2 (en) * 2012-09-28 2022-12-07 Siemens Gamesa Renewable Energy A/S Wind turbine rotor blade
US9926058B2 (en) 2012-12-10 2018-03-27 Sharrow Engineering Llc Propeller
US9377005B2 (en) 2013-03-15 2016-06-28 General Electric Company Airfoil modifiers for wind turbine rotor blades
GB201309280D0 (en) * 2013-05-23 2013-07-10 Rolls Royce Plc Aerofoil Recambering
CN103321857B (zh) * 2013-07-08 2015-05-06 国电联合动力技术有限公司 一种大型风机的大厚度钝尾缘翼型叶片
EP3027892B1 (en) * 2013-08-02 2017-06-14 Vestas Wind Systems A/S A blade for a wind turbine and a method for manufacturing a blade for a wind turbine
KR101466076B1 (ko) * 2013-08-22 2014-11-28 삼성중공업 주식회사 블레이드
CN103711655B (zh) * 2013-12-26 2016-04-06 中国科学院工程热物理研究所 一种大厚度钝尾缘风力机叶片
KR101498684B1 (ko) * 2013-12-31 2015-03-06 한국에너지기술연구원 사선 형 뒷전을 갖는 플랫 백 에어포일 및 이를 포함하는 풍력발전기의 블레이드
GB2523133B (en) * 2014-02-13 2016-06-01 X-Wind Power Ltd Vertical axis wind turbine rotor and aerofoil
JP6167051B2 (ja) 2014-02-21 2017-07-19 三菱重工業株式会社 風車翼、風車ロータ及び風力発電装置
DE102014203936B4 (de) * 2014-03-04 2016-03-24 Senvion Gmbh Verfahren zum Herstellen eines Rotorblatts einer Windenergieanlage, Rotorblatt und Windenergieanlage
GB2526847A (en) * 2014-06-05 2015-12-09 Vestas Wind Sys As Wind turbine blade with trailing edge flap
ES2602274T3 (es) * 2014-09-22 2017-02-20 Best Blades Gmbh Pala de rotor de aerogenerador
CN104405578A (zh) * 2014-09-25 2015-03-11 云南能投能源产业发展研究院 风力涡轮机叶片及风力涡轮发电机
US10180125B2 (en) 2015-04-20 2019-01-15 General Electric Company Airflow configuration for a wind turbine rotor blade
CA2986076A1 (en) * 2015-05-28 2016-12-01 Lm Wp Patent Holding A/S Wind turbine blade with a trailing edge spacing section
US11015569B2 (en) 2015-11-12 2021-05-25 Mitsubishi Heavy Industries, Ltd. Vortex generator, wind turbine blade, and wind turbine power generating apparatus
JP6148312B2 (ja) 2015-11-12 2017-06-14 三菱重工業株式会社 ボルテックスジェネレータ、風車翼および風力発電装置
JP6153989B2 (ja) 2015-11-13 2017-06-28 三菱重工業株式会社 ボルテックスジェネレータ、風車翼および風力発電装置
MX2018007239A (es) * 2015-12-14 2018-08-15 Hunter Fan Co Ventilador de techo.
CN105773085B (zh) * 2016-04-26 2017-10-17 杭州中水科技股份有限公司 一种扭曲叶片类工件的数控加工方法
BR112018074274B1 (pt) * 2016-05-27 2023-10-03 Sharrow Engineering Llc Hélices
CN106014853B (zh) * 2016-07-12 2018-09-04 申振华 一种大型风力机叶片的厚翼型族
DE102016117012A1 (de) * 2016-09-09 2018-03-15 Wobben Properties Gmbh Windenergieanlagen-Rotorblatt
DE102017004288A1 (de) * 2017-05-04 2018-11-08 Senvion Gmbh Rotorblatt einer Windenergieanlage
US10563512B2 (en) * 2017-10-25 2020-02-18 United Technologies Corporation Gas turbine engine airfoil
DE102018103678A1 (de) * 2018-02-19 2019-08-22 Wobben Properties Gmbh Rotorblatt einer Windenergieanlage mit einer Splitterplatte
US11126758B2 (en) * 2018-03-22 2021-09-21 Facebook, Inc. Automatic airfoil and wing design based on dynamic modeling of structural and aerodynamic performance
GB201905845D0 (en) * 2019-04-26 2019-06-12 Blade Dynamics Ltd Method for producting a wind turbine blade and wind turbine blade
DE102019113080A1 (de) * 2019-05-17 2020-11-19 Wobben Properties Gmbh Rotorblatt und Windenergieanlage
CN110080938A (zh) * 2019-06-04 2019-08-02 三一重能有限公司 一种风电叶片及风电机组
GB201911619D0 (en) 2019-08-14 2019-09-25 Lm Wind Power As Wind turbine blade assembly and method for producing a wind turbine blade
US11078883B2 (en) * 2019-10-08 2021-08-03 Michael L. Barrows Wind turbine blade with uncoupled trailing edge
CN111859801B (zh) * 2020-07-16 2022-07-19 湖北工业大学 失速型风力机翼型的设计方法
EP4008894A1 (en) * 2020-12-02 2022-06-08 Siemens Gamesa Renewable Energy A/S Rotor blade for a wind turbine
CN115059518B (zh) * 2022-05-29 2023-05-30 中国船舶重工集团公司第七0三研究所 一种吸力侧排气的气冷涡轮导叶尾缘结构
CN115879205B (zh) * 2022-12-27 2023-09-19 深圳大学 一种调整风力机翼型尾缘厚度的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210171A (en) * 1981-04-01 1982-12-23 Messerschmitt Boelkow Blohm Aerodynamical large-sized blade, particularly, rotor blade for large-sized air force device
JPH0666244A (ja) * 1992-08-21 1994-03-08 Mitsubishi Heavy Ind Ltd 風車翼
JP2003336572A (ja) * 2002-02-22 2003-11-28 Mitsubishi Heavy Ind Ltd ナセル構造の風車
JP2007009926A (ja) * 2006-10-18 2007-01-18 Tenryu Ind Co Ltd 風力発電機用のプロペラブレード用の主桁とその製造方法
JP2010043650A (ja) * 2003-04-28 2010-02-25 Aloys Wobben 風力発電設備のローターブレード

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1893064A (en) 1931-04-03 1933-01-03 Zap Dev Company Aircraft
FR2590229B1 (fr) * 1985-11-19 1988-01-29 Onera (Off Nat Aerospatiale) Perfectionnements apportes aux helices aeriennes en ce qui concerne le profil de leurs pales
US4976587A (en) * 1988-07-20 1990-12-11 Dwr Wind Technologies Inc. Composite wind turbine rotor blade and method for making same
GB2265672B (en) * 1992-03-18 1995-11-22 Advanced Wind Turbines Inc Wind turbines
DE50115739D1 (de) 1999-12-31 2011-01-27 Deutsch Zentr Luft & Raumfahrt Flügelprofil mit leistungs-steigernder Hinterkante
EP1338793A3 (en) 2002-02-22 2010-09-01 Mitsubishi Heavy Industries, Ltd. Serrated wind turbine blade trailing edge
KR20070063610A (ko) * 2002-06-05 2007-06-19 알로이즈 우벤 풍력 발전 장치용 로터 블레이드
DK176352B1 (da) * 2005-12-20 2007-09-10 Lm Glasfiber As Profilserie til vinge til vindenergianlæg
EP1845258A1 (en) * 2006-04-10 2007-10-17 Siemens Aktiengesellschaft Wind turbine rotor blade
ES2294927B1 (es) * 2006-05-31 2009-02-16 Gamesa Eolica, S.A. Pala de aerogenerador con borde de salida divergente.
ES2310958B1 (es) * 2006-09-15 2009-11-10 GAMESA INNOVATION & TECHNOLOGY, S.L. Pala de aerogenerador optimizada.
US7883324B2 (en) * 2007-01-09 2011-02-08 General Electric Company Wind turbine airfoil family
EP2031242A1 (en) 2007-08-29 2009-03-04 Lm Glasfiber A/S A blade element for mounting on a wind turbine blade and a method of changing the aerodynamic profile of a wind turbine blade
DE102008026474A1 (de) * 2008-06-03 2009-12-10 Mickeler, Siegfried, Prof. Dr.-Ing. Rotorblatt für eine Windkraftanlage sowie Windkraftanlage
DE102008052858B9 (de) * 2008-10-23 2014-06-12 Senvion Se Profil eines Rotorblatts und Rotorblatt einer Windenergieanlage
US8092187B2 (en) * 2008-12-30 2012-01-10 General Electric Company Flatback insert for turbine blades
US8075278B2 (en) * 2009-05-21 2011-12-13 Zuteck Michael D Shell structure of wind turbine blade having regions of low shear modulus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210171A (en) * 1981-04-01 1982-12-23 Messerschmitt Boelkow Blohm Aerodynamical large-sized blade, particularly, rotor blade for large-sized air force device
JPH0666244A (ja) * 1992-08-21 1994-03-08 Mitsubishi Heavy Ind Ltd 風車翼
JP2003336572A (ja) * 2002-02-22 2003-11-28 Mitsubishi Heavy Ind Ltd ナセル構造の風車
JP2010043650A (ja) * 2003-04-28 2010-02-25 Aloys Wobben 風力発電設備のローターブレード
JP2007009926A (ja) * 2006-10-18 2007-01-18 Tenryu Ind Co Ltd 風力発電機用のプロペラブレード用の主桁とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2604856A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101434469B1 (ko) * 2013-04-29 2014-08-26 삼성중공업 주식회사 풍력 발전장치용 블레이드
JP2015068197A (ja) * 2013-09-27 2015-04-13 株式会社東芝 軸流水車発電装置
JP2018510995A (ja) * 2015-04-10 2018-04-19 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh 風力発電装置−ロータブレード
US10968885B2 (en) 2016-01-26 2021-04-06 Wobben Properties Gmbh Rotor blade of a wind turbine and a wind turbine
JP2019078192A (ja) * 2017-10-20 2019-05-23 三菱重工業株式会社 風車翼へのボルテックスジェネレータの配置位置決定方法、風車翼アセンブリの製造方法及び風車翼アセンブリ
US10808676B2 (en) 2017-10-20 2020-10-20 Mitsubishi Heavy Industries, Ltd. Method for determining arrangement position of vortex generator on wind turbine blade, method for producing wind turbine blade assembly, and wind turbine blade assembly

Also Published As

Publication number Publication date
CN103270296A (zh) 2013-08-28
EP2604856B1 (en) 2016-04-27
US20130094970A1 (en) 2013-04-18
JPWO2013054404A1 (ja) 2015-03-30
KR20130064087A (ko) 2013-06-17
CN103270296B (zh) 2014-05-07
JP5297558B1 (ja) 2013-09-25
US8419373B1 (en) 2013-04-16
EP2604856A4 (en) 2013-12-18
EP2604856A1 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5297558B1 (ja) 風車翼及びこれを備えた風力発電装置ならびに風車翼の設計方法
US8932024B2 (en) Wind turbine blade and wind power generator using the same
DK178039B1 (da) Winglet til vindmøllerotorvinge
US9140233B2 (en) Wind power generation system
US7914259B2 (en) Wind turbine blades with vortex generators
CN105715449B (zh) 具有涡流发生器的转子叶片和风力涡轮机
EP1944505A1 (en) Wind turbine rotor blade with vortex generators
JP5479388B2 (ja) 風車翼およびこれを備えた風力発電装置
US20110150664A1 (en) Aeroacoustic rotor blade for a wind turbine, and wind turbine equipped therewith
EP3844386B1 (en) Noise reducer for a wind turbine rotor blade having a cambered serration
EP3453872B1 (en) Methods for mitigating noise during high wind speed conditions of wind turbines
JP5433554B2 (ja) 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法
JP5479300B2 (ja) 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法
EP3472456B1 (en) Wind turbine blade with tip end serrations
JP5675270B2 (ja) 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法
JP5433553B2 (ja) 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法
KR102606803B1 (ko) 풍력 발전기용 블레이드

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012503569

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011817193

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127034093

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE