WO2012093771A1 - Crow bar circuit for wind power generator - Google Patents

Crow bar circuit for wind power generator Download PDF

Info

Publication number
WO2012093771A1
WO2012093771A1 PCT/KR2011/008199 KR2011008199W WO2012093771A1 WO 2012093771 A1 WO2012093771 A1 WO 2012093771A1 KR 2011008199 W KR2011008199 W KR 2011008199W WO 2012093771 A1 WO2012093771 A1 WO 2012093771A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
wind
crow bar
diodes
bar circuit
Prior art date
Application number
PCT/KR2011/008199
Other languages
French (fr)
Korean (ko)
Inventor
이강주
구성영
양한진
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Publication of WO2012093771A1 publication Critical patent/WO2012093771A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/041Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/06Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/102Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for limiting effects of transients

Definitions

  • the present invention relates to a crowbar circuit for a wind generator, and more particularly to a crowbar circuit for a wind generator that can protect a wind converter from an accident voltage generated in a power system.
  • a double-fed induction generator has a low wind and the generator is separated from the power system under conditions where the windmill cannot be rotated. To power the grid.
  • a circuit for protecting the rotor's wind converter from being burned out due to an overvoltage applied to the rotor by an accident occurring in the power system is called a crow bar circuit.
  • the crow bar circuit shown in FIG. 3 detects when an overvoltage flows into the rotor side, conducts power semiconductors at the output stage of the rectifier circuit part of the rotor, and short-circuits the rotor of the wind generator through the rectifier circuit part. It protects the wind converter by blocking the inflow of energy into the converter.
  • the crow bar circuit shown in Fig. 3 can minimize the number of power semiconductors, but there is a problem that the energy of the rotor cannot be controlled.
  • the crow bar circuit shown in FIG. 4 detects when an overvoltage flows into the rotor, conducts power semiconductors at the output of the rectifier circuit part of the rotor, short-circuits the rotor of the wind generator through the rectifier circuit, and wind power. It protects the wind converter by blocking the inflow of energy into the converter. In addition, the energy introduced into the rotor is consumed through the resistor, and the energy introduced is controlled by appropriately adjusting the turn on or turn off of the power semiconductor.
  • the crow bar circuit shown in FIG. 4 can minimize the number of power semiconductors and control the energy of the rotor.
  • the crowbar circuit shown in FIG. There is a problem that the ripple component is generated to affect the torque of the wind generator can cause mechanical adverse effects.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a crow bar circuit for a wind generator that can minimize the occurrence of ripple while minimizing the number of power semiconductors.
  • Crow bar circuit for a wind generator for achieving the above object is connected between the rotor and the wind converter of the wind generator in parallel to the wind generator crow bar circuit for protecting the wind converter
  • the pair of diodes D1, D2, D3, and D4 and a pair of thyristors T1 and T2 are connected in parallel between the rotor and the wind converter, and the two pairs of diodes D1 are connected in series.
  • the pair of thyristors T1 and T2 connected in series with D2, D3 and D4 are connected in parallel with each other, and the pair of thyristors T1 and T2 are connected to the pair of diodes D1, D2 and D3.
  • D4 is connected in the opposite direction to the two pairs of diodes D1, D2, D3, and D4, and an overvoltage occurs on the rotor side due to an overvoltage of a grid voltage on a power grid connected to the wind generator.
  • Alternately conducting To protect the power converter is preferred.
  • resistors R1, R2 and R3 are respectively applied to the front ends of the two pairs of diodes D1, D2, D3 and D4 connected in parallel between the rotor and the wind converter and the pair of thyristors T1 and T2. In connection, it is preferable to consume the energy introduced into the rotor by heat.
  • the crow bar circuit for a wind generator of the present invention it is possible to minimize the occurrence of ripple while minimizing the number of power semiconductors.
  • 1 to 4 is a circuit diagram showing the configuration of a crow bar circuit for a wind generator according to the prior art.
  • FIG. 5 is a diagram illustrating an example of waveforms of current flowing in a rotor and a crow bar circuit in the crow bar circuit operation of the wind generator of FIG. 4;
  • FIG. 5 is a diagram illustrating an example of waveforms of current flowing in a rotor and a crow bar circuit in the crow bar circuit operation of the wind generator of FIG. 4;
  • FIG. 6 is a circuit diagram showing the configuration of a crow bar circuit for a wind generator according to the present invention.
  • FIG. 7 is a diagram showing section-by-step current waveforms of two pairs of diodes D1, D2, D3, and D4 and a pair of thyristors T1 and T2 constituting a crow bar circuit for a wind generator according to the present invention. drawing.
  • FIG 8 to 11 are views for explaining the operation of the crow bar circuit for a wind generator according to the present invention.
  • FIG. 12 is a diagram illustrating a rotor voltage / current waveform before and after an accident occurs.
  • FIG. 13 is a view showing an example of the waveform of the current flowing through the rotor and the crow bar circuit during the operation of the crow bar circuit for a wind generator according to the present invention.
  • FIG. 6 is a circuit diagram showing the configuration of a crow bar circuit for a wind generator according to the present invention, the crow bar circuit 40 according to the present invention is connected in parallel between the rotor and the wind converter 30 of the wind generator 20
  • the rotor side of the wind generator 20 is shorted through the crow bar circuit 40, thereby being induced from the wind generator 20.
  • the electronic voltage is blocked from flowing into the wind converter 30 to protect the wind converter 30.
  • the crow bar circuit 40 includes two pairs of diodes D1, D2, D3, D4 and a pair of thyristors in parallel between the rotor of the wind generator 20 and the wind converter 30.
  • T1 and T2 are connected, but a pair of thyristors T1 and T2 connected in series with two pairs of diodes D1, D2, D3 and D4 connected in series are connected in parallel.
  • the pair of thyristors (T1, T2) is connected in the opposite direction between the two pairs of diodes (D1, D2, D3, D4) between the two pairs of diodes (D1, D2, D3, D4), the wind generator ( When overvoltage occurs on the rotor side due to the overvoltage of the grid voltage on the power grid connected to 20), it alternately conducts to protect the wind converter 20.
  • FIG. 7 exemplarily shows current waveforms of sections of two pairs of diodes D1, D2, D3, and D4 and a pair of thyristors T1 and T2 constituting a crow bar circuit for a wind generator according to the present invention.
  • the first phase and the second phase are short-circuited through the diode D1 and the thyristor T1, and the second through the diode D3 and the thyristor T1 as shown in FIG.
  • the phase and the third phase are short-circuited, and the first and third phases are short-circuited through the diode D1, the diode D3, and the thyristor T1 to form a three-phase short circuit.
  • the diode D1 and the thyristor T1 are turned on so that the first phase and the second phase are connected, and the thyristor T2 and the diode D4 are turned on to form the second period.
  • the phase and the third phase are connected, and the first phase and the third phase are short-circuited through the diode D1, the thyristor T1, the thyristor T2, and the diode D4, thereby forming a three-phase short circuit.
  • the thyristor T2 and the diode D2 are turned on so that the second phase and the first phase are short-circuited, and the thyristor T2 and the diode D4 are turned on to form the second.
  • the phase and the third phase are short-circuited, and the first phase and the third phase are short-circuited through the thyristor T2, the diode D2, and the diode D4 to form a three-phase short circuit.
  • the thyristor T2 and the diode D2 are turned on so that the second phase and the first phase are short-circuited, and the diode D3 and the thyristor T1 are turned on to form the third section.
  • the phase and the second phase are short-circuited, and the first and third phases are short-circuited through the diode D3, the thyristor T1, the thyristor T2, and the diode D2 to form a three-phase short circuit.
  • FIG. 12 illustrates an example of a rotor voltage / current waveform before and after an accident, when an abnormal phenomenon occurs in the system 10 and an abnormal voltage is generated on the rotor side of the wind generator 20, a wind converter Over current is introduced into the (30).
  • the crow bar circuit 40 is operated, the rotor of the wind generator 20 is short-circuited, so that the overcurrent due to the abnormal voltage generated on the rotor side does not flow into the wind converter 30, but the crow bar circuit 40 Through the heat is consumed.
  • FIG. 13 is a road showing an example of the waveform of the current flowing through the crowbar circuit and the rotor during the operation of the crowbar circuit for a wind generator according to the present invention, rotated by the thyristors (T1, T2) of the crowbar circuit 40
  • T1, T2 thyristors
  • Crow bar circuit for a wind generator of the present invention is not limited to the above-described embodiment can be carried out in various modifications within the range allowed by the technical idea of the present invention.

Abstract

The present invention provides a crow bar circuit for a wind power generator, in which the crow bar circuit is connected in parallel between a rotor of a wind power generator and a wind power converter and protects said wind power converter, wherein two pairs of diodes (D1, D2, D3, D4) and one pair of thyristors (T1, T2) are connected in parallel between the rotor and the wind power converter, and it is desirable that: the two pairs of the diodes (D1, D2, D3, D4) connected in serial and the one pair of the thyristors (T1, T2) connected in serial are connected with each other in parallel; the one pair of the thyristors (T1, T2) are connected in an opposite direction to the two pairs of the diodes (D1, D2, D3, D4) between the two pairs of the diodes (D1, D2, D3, D4); and if an overvoltage is generated from said rotor by an overvoltage of a power system voltage which is connected with said wind power generator, the invention is alternately communicated to protect said wind power converter.

Description

풍력발전기용 크로우바 회로Crowbar Circuit for Wind Power Generator
본 발명은 풍력발전기용 크로우바 회로에 관한 것으로서, 특히 전력 계통에서 발생한 사고 전압으로부터 풍력 컨버터를 보호할 수 있도록 하는 풍력 발전기용 크로우 바 회로에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crowbar circuit for a wind generator, and more particularly to a crowbar circuit for a wind generator that can protect a wind converter from an accident voltage generated in a power system.
일반적으로 이중여자 유도형 풍력 발전기(Doubly Fed Induction Generator)는 바람이 적어 풍차가 회전되지 않는 발전이 불가능한 조건에서는 발전기가 전력 계통에서 분리된 상태를 유지하다가, 발전 가능한 상황이 되면, 고정자를 계통에 연결하여 계통에 전력을 공급한다.In general, a double-fed induction generator has a low wind and the generator is separated from the power system under conditions where the windmill cannot be rotated. To power the grid.
전술한 바와 같이, 고정자를 계통에 연결하여 계통에 전력을 공급하는 경우, 계통 전압이 일정하게 유지될 경우 발전기와 전력 변환 장치에 흐르는 전류와 전압은 일정한 값을 유지한다. 그러나, 풍력 발전기와 연결된 계통에서 이상 현상이 발생하는 경우 즉, 전압이 증가 또는 감소하는 현상이 발생하는 경우에는 풍력 발전기로부터 출력되는 회전자 출력 전압에 과전압이 유도되고, 회전자 측에 유도된 과전압은 풍력 컨버터를 구성하고 있는 전력 반도체 등에 영향을 주어 영구 파손 또는 그에 상응하는 장애를 일으키게 된다.As described above, when the stator is connected to the grid to supply power to the grid, the current and voltage flowing through the generator and the power converter maintain a constant value when the grid voltage is kept constant. However, when an abnormality occurs in the grid connected to the wind generator, that is, when the voltage increases or decreases, overvoltage is induced to the rotor output voltage output from the wind generator, and overvoltage induced to the rotor side. This affects the power semiconductor constituting the wind converter, causing permanent damage or a corresponding failure.
전술한 바와 같이, 전력 계통에 발생한 사고에 의해서 회전자 측에 과전압이 인가되어서 회전자 측의 풍력 컨버터가 소손되지 않도록 보호하기 위한 회로를 크로우 바 회로(Crow Bar Circuit)라 하며, 이러한 크로우 바 회로는 풍력 발전기의 회전자와 풍력 컨버터 사이에 병렬로 접속하여 풍력 컨버터를 보호한다.As described above, a circuit for protecting the rotor's wind converter from being burned out due to an overvoltage applied to the rotor by an accident occurring in the power system is called a crow bar circuit. Protects the wind converter by connecting in parallel between the wind generator's rotor and the wind converter.
종래에는 도 1 내지 도 4에 도시하는 바와 같이, 다양한 크로우 바 회로를 이용하여 풍력 컨버터를 보호한다.Conventionally, as shown in Figs. 1 to 4, various crow bar circuits are used to protect the wind converter.
여기서, 도 1 및 도 2에 도시하는 크로우 바 회로는 회전자 측에 과전압이 유입되면, 이를 감지하여 전력 반도체를 도통시킴으로써, 회전자를 단락시켜 풍력 컨버터로의 에너지 유입을 차단한다. 그러나, 도 1 및 도 2에 도시하는 크로우 바 회로는 많은 수의 전력 반도체를 사용하며, 이를 구동하기 위한 제어 기술 및 주변 장치가 추가로 필요하게 되고, 회전자의 에너지를 제어할 수 없는 문제점이 있다.Here, the crow bar circuit shown in Figs. 1 and 2 detects when an overvoltage flows into the rotor side and conducts the power semiconductor, thereby shortening the rotor to block the inflow of energy into the wind converter. However, the crow bar circuit shown in Figs. 1 and 2 uses a large number of power semiconductors, and a control technique and a peripheral device for driving them are additionally required, and the problem of not being able to control the energy of the rotor have.
한편, 도 3에 도시하는 크로우 바 회로는 회전자 측에 과전압이 유입되면, 이를 감지하여 회전자의 정류 회로부 출력단의 전력 반도체를 도통시키고, 정류 회로부를 통해 풍력 발전기의 회전자를 단락시켜, 풍력 컨버터로의 에너지 유입을 차단하여 풍력 컨버터를 보호한다. 그러나, 도 3에 도시하는 크로우 바 회로는 전력 반도체 수를 최소화할 수 있지만, 회전자의 에너지를 제어할 수 없는 문제점이 있다.On the other hand, the crow bar circuit shown in FIG. 3 detects when an overvoltage flows into the rotor side, conducts power semiconductors at the output stage of the rectifier circuit part of the rotor, and short-circuits the rotor of the wind generator through the rectifier circuit part. It protects the wind converter by blocking the inflow of energy into the converter. However, the crow bar circuit shown in Fig. 3 can minimize the number of power semiconductors, but there is a problem that the energy of the rotor cannot be controlled.
한편, 도 4에 도시하는 크로우 바 회로는 회전자 측에 과전압이 유입되면, 이를 감지하여 회전자의 정류 회로부 출력단의 전력 반도체를 도통시키고, 정류 회로부를 통해 풍력 발전기의 회전자를 단락시켜, 풍력 컨버터로의 에너지 유입을 차단하여 풍력 컨버터를 보호한다. 또한, 회전자로 유입된 에너지를 저항을 통해 소모시키며, 전력 반도체의 턴 온(Turn On) 또는 턴 오프(Turn Off)를 적절하게 조절함으로써, 유입된 에너지를 조절한다. 그러나, 도 4에 도시하는 크로우 바 회로는 전력 반도체 수를 최소화할 수 있고, 회전자의 에너지를 제어할 수 있지만, 정류 회로부를 사용함으로써, 도 5에 도시하는 바와 같이 풍력 발전기의 회전자 전류에 리플 성분이 발생하여 풍력 발전기의 토크에 영향을 주어 기계적 악영향을 야기할 수 있는 문제점이 있다.On the other hand, the crow bar circuit shown in FIG. 4 detects when an overvoltage flows into the rotor, conducts power semiconductors at the output of the rectifier circuit part of the rotor, short-circuits the rotor of the wind generator through the rectifier circuit, and wind power. It protects the wind converter by blocking the inflow of energy into the converter. In addition, the energy introduced into the rotor is consumed through the resistor, and the energy introduced is controlled by appropriately adjusting the turn on or turn off of the power semiconductor. However, the crow bar circuit shown in FIG. 4 can minimize the number of power semiconductors and control the energy of the rotor. However, by using the rectifying circuit section, the crowbar circuit shown in FIG. There is a problem that the ripple component is generated to affect the torque of the wind generator can cause mechanical adverse effects.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 전력 반도체 수를 최소화하면서 리플 발생을 최소화할 수 있도록 하는 풍력 발전기용 크로우 바 회로를 제공함에 그 목적이 있다.The present invention has been made in view of the above-described problems, and an object thereof is to provide a crow bar circuit for a wind generator that can minimize the occurrence of ripple while minimizing the number of power semiconductors.
전술한 목적을 달성하기 위한 본 발명의 일 실시예에 따른 풍력 발전기용 크로우 바 회로는, 풍력 발전기의 회전자와 풍력 컨버터 사이에 병렬로 연결되어 상기 풍력 컨버터를 보호하기 위한 풍력 발전기용 크로우 바 회로에 있어서, 상기 회전자와 풍력 컨버터 사이에 병렬로 두 쌍의 다이오드(D1, D2, D3, D4)와 한 쌍의 사이리스터(T1, T2)가 연결되되, 직렬 연결되는 상기 두 쌍의 다이오드(D1, D2, D3, D4)와 직렬 연결되는 상기 한 쌍의 사이리스터(T1, T2)는 서로 병렬로 연결되고, 상기 한 쌍의 사이리스터(T1, T2)는 상기 두 쌍의 다이오드(D1, D2, D3, D4) 사이에서 상기 두 쌍의 다이오드(D1, D2, D3, D4)와 반대 방향으로 연결되며, 상기 풍력 발전기와 접속되는 전력 계통상 계통 전압의 과전압에 의해 상기 회전자 측에 과전압이 발생한 경우 교번적으로 도통되어 상기 풍력 컨버터를 보호하는 것이 바람직하다.Crow bar circuit for a wind generator according to an embodiment of the present invention for achieving the above object is connected between the rotor and the wind converter of the wind generator in parallel to the wind generator crow bar circuit for protecting the wind converter The pair of diodes D1, D2, D3, and D4 and a pair of thyristors T1 and T2 are connected in parallel between the rotor and the wind converter, and the two pairs of diodes D1 are connected in series. And the pair of thyristors T1 and T2 connected in series with D2, D3 and D4 are connected in parallel with each other, and the pair of thyristors T1 and T2 are connected to the pair of diodes D1, D2 and D3. , D4) is connected in the opposite direction to the two pairs of diodes D1, D2, D3, and D4, and an overvoltage occurs on the rotor side due to an overvoltage of a grid voltage on a power grid connected to the wind generator. Alternately conducting To protect the power converter is preferred.
나아가, 상기 회전자와 풍력 컨버터 사이에 병렬로 연결되는 두 쌍의 다이오드(D1, D2, D3, D4)와 한 쌍의 사이리스터(T1, T2)의 앞단에 각각 저항(R1, R2, R3)을 연결하여, 회전자로 유입된 에너지를 열로 소모토록 하는 것이 바람직하다.Furthermore, resistors R1, R2 and R3 are respectively applied to the front ends of the two pairs of diodes D1, D2, D3 and D4 connected in parallel between the rotor and the wind converter and the pair of thyristors T1 and T2. In connection, it is preferable to consume the energy introduced into the rotor by heat.
본 발명의 풍력 발전기용 크로우 바 회로에 따르면, 전력 반도체 수를 최소화하면서 리플 발생을 최소화할 수 있게 된다.According to the crow bar circuit for a wind generator of the present invention, it is possible to minimize the occurrence of ripple while minimizing the number of power semiconductors.
도 1 내지 도 4는 종래 기술에 따른 풍력 발전기용 크로우 바 회로의 구성을 보여주는 회로도.1 to 4 is a circuit diagram showing the configuration of a crow bar circuit for a wind generator according to the prior art.
도 5는 도 4의 풍력 발전기용 크로우 바 회로 동작시의 회전자와 크로우 바 회로에 흐르는 전류의 파형을 예시적으로 보인 도면.FIG. 5 is a diagram illustrating an example of waveforms of current flowing in a rotor and a crow bar circuit in the crow bar circuit operation of the wind generator of FIG. 4; FIG.
도 6은 본 발명에 따른 풍력 발전기용 크로우 바 회로의 구성을 보여주는 회로도.6 is a circuit diagram showing the configuration of a crow bar circuit for a wind generator according to the present invention.
도 7은 본 발명에 따른 풍력 발전기용 크로우 바 회로를 구성하고 있는 두 쌍의 다이오드(D1, D2, D3, D4)와 한 쌍의 사이리스터(T1, T2)의 구간별 전류 파형을 예시적으로 보인 도면.FIG. 7 is a diagram showing section-by-step current waveforms of two pairs of diodes D1, D2, D3, and D4 and a pair of thyristors T1 and T2 constituting a crow bar circuit for a wind generator according to the present invention. drawing.
도 8 내지 도 11은 본 발명에 따른 풍력 발전기용 크로우 바 회로의 동작을 설명하기 위한 도면.8 to 11 are views for explaining the operation of the crow bar circuit for a wind generator according to the present invention.
도 12는 사고 발생 전/후의 회전자 전압/전류 파형을 예시적으로 보인 도면.12 is a diagram illustrating a rotor voltage / current waveform before and after an accident occurs.
도 13은 본 발명에 따른 풍력 발전기용 크로우 바 회로 동작시의 회전자와 크로우 바 회로에 흐르는 전류의 파형을 예시적으로 보인 도면.13 is a view showing an example of the waveform of the current flowing through the rotor and the crow bar circuit during the operation of the crow bar circuit for a wind generator according to the present invention.
이하에서는 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 따른 풍력 발전기용 크로우 바 회로에 대해서 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the crow bar circuit for a wind generator according to an embodiment of the present invention.
도 6은 본 발명에 따른 풍력 발전기용 크로우 바 회로의 구성을 보여주는 회로도로, 본 발명에 따른 크로우 바 회로(40)는 풍력 발전기(20)의 회전자와 풍력 컨버터(30) 사이에 병렬로 연결되어 계통(10)에서 이상 현상이 발생하여 회전자 측에 과전압이 유입되면, 크로우 바 회로(40)를 통해 풍력 발전기(20)의 회전자 측을 단락시킴으로써, 풍력 발전기(20)로부터 유도되는 회전자 전압이 풍력 컨버터(30)로 유입되는 것을 차단하여 풍력 컨버터(30)를 보호하게 된다.6 is a circuit diagram showing the configuration of a crow bar circuit for a wind generator according to the present invention, the crow bar circuit 40 according to the present invention is connected in parallel between the rotor and the wind converter 30 of the wind generator 20 When an abnormal phenomenon occurs in the system 10 and the overvoltage flows into the rotor side, the rotor side of the wind generator 20 is shorted through the crow bar circuit 40, thereby being induced from the wind generator 20. The electronic voltage is blocked from flowing into the wind converter 30 to protect the wind converter 30.
이와 같은, 크로우 바 회로(40)는 풍력 발전기(20)의 회전자와 풍력 컨버터(30) 사이에 병렬로 두 쌍의 다이오드(D1, D2, D3, D4)와 한 쌍의 사이리스터(Thyristor)(T1, T2)가 연결되되, 직렬 연결되는 두 쌍의 다이오드(D1, D2, D3, D4)와 직렬 연결되는 한 쌍의 사이리스터(T1, T2)는 서로 병렬로 연결되어 있다.As such, the crow bar circuit 40 includes two pairs of diodes D1, D2, D3, D4 and a pair of thyristors in parallel between the rotor of the wind generator 20 and the wind converter 30. T1 and T2 are connected, but a pair of thyristors T1 and T2 connected in series with two pairs of diodes D1, D2, D3 and D4 connected in series are connected in parallel.
여기서, 한 쌍의 사이리스터(T1, T2)는 두 쌍의 다이오드(D1, D2, D3, D4) 사이에서 두 쌍의 다이오드(D1, D2, D3, D4)와 반대 방향으로 연결되며, 풍력 발전기(20)와 접속되는 전력 계통상 계통 전압의 과전압에 의해 회전자 측에 과전압이 발생한 경우 교번적으로 도통되어 풍력 컨버터(20)를 보호한다.Here, the pair of thyristors (T1, T2) is connected in the opposite direction between the two pairs of diodes (D1, D2, D3, D4) between the two pairs of diodes (D1, D2, D3, D4), the wind generator ( When overvoltage occurs on the rotor side due to the overvoltage of the grid voltage on the power grid connected to 20), it alternately conducts to protect the wind converter 20.
그리고, 회전자와 풍력 컨버터(20) 사이에 병렬로 연결되는 두 쌍의 다이오드(D1, D2, D3, D4)와 한 쌍의 사이리스터(T1, T2)의 앞단에 각각 저항(R1, R2, R3)을 연결하여, 회전자로 유입된 에너지를 열로 소모토록 함으로써, 회전자로 유입된 에너지를 좀 더 신속하게 해소시킬 수 있도록 하는 것이 바람직하다.In addition, the resistors R1, R2, and R3 at the front ends of the two pairs of diodes D1, D2, D3, and D4 and the pair of thyristors T1 and T2 connected in parallel between the rotor and the wind converter 20, respectively. ) By connecting the energy introduced into the rotor to heat, it is desirable to be able to solve the energy introduced into the rotor more quickly.
이하에서는 도 7 내지 도 11을 참조하여 본 발명에 따른 풍력 발전기용 크로우 바 회로의 동작에 대해서 설명한다.Hereinafter, the operation of the crow bar circuit for a wind generator according to the present invention will be described with reference to FIGS. 7 to 11.
우선, 도 7은 본 발명에 따른 풍력 발전기용 크로우 바 회로를 구성하고 있는 두 쌍의 다이오드(D1, D2, D3, D4)와 한 쌍의 사이리스터(T1, T2)의 구간별 전류 파형을 예시적으로 보인 도로, 제 1구간에서는 도 8에 도시하는 바와 같이 다이오드(D1)과 사이리스터(T1)을 통하여 제 1상과 제 2상이 단락되어 지고, 다이오드(D3)과 사이리스터(T1)을 통하여 제 2상과 제 3상이 단락되어 지며, 다이오드(D1), 다이오드(D3), 사이리스터(T1)를 통해 제 1상과 제 3상이 단락되어, 3상 단락회로를 형성하게 된다.First, FIG. 7 exemplarily shows current waveforms of sections of two pairs of diodes D1, D2, D3, and D4 and a pair of thyristors T1 and T2 constituting a crow bar circuit for a wind generator according to the present invention. As shown in FIG. 8, the first phase and the second phase are short-circuited through the diode D1 and the thyristor T1, and the second through the diode D3 and the thyristor T1 as shown in FIG. The phase and the third phase are short-circuited, and the first and third phases are short-circuited through the diode D1, the diode D3, and the thyristor T1 to form a three-phase short circuit.
그리고, 제 2구간에서는 도 9에 도시하는 바와 같이 다이오드(D1)과 사이리스터(T1)이 도통되어 제 1상과 제 2상이 연결되어 지고, 사이리스터(T2)와 다이오드(D4)가 도통되어 제 2상과 제 3상이 연결되어 지며, 다이오드(D1), 사이리스터(T1), 사이리스터(T2), 다이오드(D4)를 통해 제 1상과 제 3상이 단락되어, 3상 단락회로를 형성하게 된다.In the second section, as shown in FIG. 9, the diode D1 and the thyristor T1 are turned on so that the first phase and the second phase are connected, and the thyristor T2 and the diode D4 are turned on to form the second period. The phase and the third phase are connected, and the first phase and the third phase are short-circuited through the diode D1, the thyristor T1, the thyristor T2, and the diode D4, thereby forming a three-phase short circuit.
그리고, 제 3구간에서는 도 10에 도시하는 바와 같이 사이리스터(T2)와 다이오드(D2)가 도통되어 제 2상과 제 1상이 단락되어 지고, 사이리스터(T2)와 다이오드(D4)가 도통되어 제 2상과 제 3상이 단락되어 지며, 사이리스터(T2), 다이오드(D2), 다이오드(D4)를 통해 제 1상과 제 3상이 단락되어, 3상 단락회로를 형성하게 된다.In the third section, as shown in FIG. 10, the thyristor T2 and the diode D2 are turned on so that the second phase and the first phase are short-circuited, and the thyristor T2 and the diode D4 are turned on to form the second. The phase and the third phase are short-circuited, and the first phase and the third phase are short-circuited through the thyristor T2, the diode D2, and the diode D4 to form a three-phase short circuit.
마지막으로 제 4구간에서는 도 11에 도시하는 바와 같이 사이리스터(T2)와 다이오드(D2)가 도통되어 제 2상과 제 1상이 단락되어 지고, 다이오드(D3)과 사이리스터(T1)이 도통되어 제 3상과 제 2상이 단락되어 지며, 다이오드(D3), 사이리스터(T1), 사이리스터(T2), 다이오드(D2)를 통해 제 1상과 제 3상이 단락되어, 3상 단락회로를 형성하게 된다.Finally, in the fourth section, as shown in Fig. 11, the thyristor T2 and the diode D2 are turned on so that the second phase and the first phase are short-circuited, and the diode D3 and the thyristor T1 are turned on to form the third section. The phase and the second phase are short-circuited, and the first and third phases are short-circuited through the diode D3, the thyristor T1, the thyristor T2, and the diode D2 to form a three-phase short circuit.
도 12는 사고 발생 전/후의 회전자 전압/전류 파형을 예시적으로 보인 도로, 계통(10)에서 이상 현상이 발생하여 풍력 발전기(20)의 회전자 측에 이상 전압이 발생하게 되면, 풍력 컨버터(30)로 과전류가 유입되게 된다. 이때, 크로우 바 회로(40)가 동작하게 되면, 풍력 발전기(20)의 회전자는 단락되어, 회전자 측에 발생한 이상 전압으로 인한 과전류가 풍력 컨버터(30)로 유입되지 않고 크로우 바 회로(40)를 통하여 열로 소모되게 된다.12 illustrates an example of a rotor voltage / current waveform before and after an accident, when an abnormal phenomenon occurs in the system 10 and an abnormal voltage is generated on the rotor side of the wind generator 20, a wind converter Over current is introduced into the (30). At this time, when the crow bar circuit 40 is operated, the rotor of the wind generator 20 is short-circuited, so that the overcurrent due to the abnormal voltage generated on the rotor side does not flow into the wind converter 30, but the crow bar circuit 40 Through the heat is consumed.
도 13은 본 발명에 따른 풍력 발전기용 크로우 바 회로 동작시의 회전자와 크로우 바 회로에 흐르는 전류의 파형을 예시적으로 보인 도로, 크로우 바 회로(40)의 사이리스터(T1, T2)에 의해 회전자가 직접 단락됨에 따라 정류 회로부를 구비하는 종래 기술에 비해 리플 전류를 최소화시켜 풍력 발전기(20)의 기계적 진동을 최소화할 수 있게 된다.13 is a road showing an example of the waveform of the current flowing through the crowbar circuit and the rotor during the operation of the crowbar circuit for a wind generator according to the present invention, rotated by the thyristors (T1, T2) of the crowbar circuit 40 As the self-shorted directly, it is possible to minimize the mechanical vibration of the wind generator 20 by minimizing the ripple current compared to the prior art having a rectifier circuit.
본 발명의 풍력 발전기용 크로우 바 회로는 전술한 실시예에 국한되지 않고 본 발명의 기술 사상이 허용하는 범위 내에서 다양하게 변형하여 실시할 수 있다.Crow bar circuit for a wind generator of the present invention is not limited to the above-described embodiment can be carried out in various modifications within the range allowed by the technical idea of the present invention.

Claims (2)

  1. 풍력 발전기의 회전자와 풍력 컨버터 사이에 병렬로 연결되어 상기 풍력 컨버터를 보호하기 위한 풍력 발전기용 크로우 바 회로에 있어서,In the crow bar circuit for a wind generator to be connected in parallel between the rotor and the wind converter of the wind generator to protect the wind converter,
    상기 회전자와 풍력 컨버터 사이에 병렬로 두 쌍의 다이오드(D1, D2, D3, D4)와 한 쌍의 사이리스터(T1, T2)가 연결되되,Two pairs of diodes (D1, D2, D3, D4) and a pair of thyristors (T1, T2) are connected in parallel between the rotor and the wind converter,
    직렬 연결되는 상기 두 쌍의 다이오드(D1, D2, D3, D4)와 직렬 연결되는 상기 한 쌍의 사이리스터(T1, T2)는 서로 병렬로 연결되고,The pair of thyristors T1 and T2 connected in series with the two pairs of diodes D1, D2, D3 and D4 connected in series are connected in parallel with each other,
    상기 한 쌍의 사이리스터(T1, T2)는 상기 두 쌍의 다이오드(D1, D2, D3, D4) 사이에서 상기 두 쌍의 다이오드(D1, D2, D3, D4)와 반대 방향으로 연결되며, 상기 풍력 발전기와 접속되는 전력 계통상 계통 전압의 과전압에 의해 상기 회전자 측에 과전압이 발생한 경우 교번적으로 도통되어 상기 풍력 컨버터를 보호하는 것을 특징으로 하는 풍력 발전기용 크로우 바 회로.The pair of thyristors T1 and T2 are connected in the opposite direction to the two pairs of diodes D1, D2, D3, and D4 between the two pairs of diodes D1, D2, D3, and D4. A crowbar circuit for a wind generator, characterized in that when the overvoltage occurs on the rotor side due to the overvoltage of the grid voltage on the power grid connected to the generator, it is alternately conducted to protect the wind converter.
  2. 제 1항에 있어서, 상기 회전자와 풍력 컨버터 사이에 병렬로 연결되는 두 쌍의 다이오드(D1, D2, D3, D4)와 한 쌍의 사이리스터(T1, T2)의 앞단에 각각 저항(R1, R2, R3)을 연결하여, 회전자로 유입된 에너지를 열로 소모토록 하는 것을 특징으로 하는 풍력 발전기용 크로우 바 회로.2. The resistors R1 and R2 of claim 1, respectively, in front of two pairs of diodes D1, D2, D3 and D4 and a pair of thyristors T1 and T2 connected in parallel between the rotor and the wind converter. Crow bar circuit for a wind generator, characterized in that to connect, R3) to consume the energy introduced into the rotor as heat.
PCT/KR2011/008199 2011-01-03 2011-10-31 Crow bar circuit for wind power generator WO2012093771A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110000180A KR101145485B1 (en) 2011-01-03 2011-01-03 Crow bar circuit for wind power generator
KR10-2011-0000180 2011-01-03

Publications (1)

Publication Number Publication Date
WO2012093771A1 true WO2012093771A1 (en) 2012-07-12

Family

ID=46272017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008199 WO2012093771A1 (en) 2011-01-03 2011-10-31 Crow bar circuit for wind power generator

Country Status (2)

Country Link
KR (1) KR101145485B1 (en)
WO (1) WO2012093771A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4598353A (en) * 1984-11-07 1986-07-01 Hughes Tool Company Thyristor firing circuit for determining phase angle
US5963440A (en) * 1998-01-12 1999-10-05 Eaton Corporation Controlled three-phase rectifier with current comparison between rectifier segments
US6046917A (en) * 1999-05-03 2000-04-04 Eaton Corporation Controlled rectifier bridge and system
JP2001103795A (en) * 1999-10-01 2001-04-13 Meidensha Corp Stationary exciting device for synchronous generator
US7321221B2 (en) * 2002-07-17 2008-01-22 General Electric Company Method for operating a wind power plant and method for operating it
KR100905018B1 (en) * 2007-04-03 2009-06-30 엘에스산전 주식회사 A crow bar circuit for a wind power generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975640A (en) * 1990-02-20 1990-12-04 Crosscheck Technology, Inc. Method for operating a linear feedback shift register as a serial shift register with a crosscheck grid structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4598353A (en) * 1984-11-07 1986-07-01 Hughes Tool Company Thyristor firing circuit for determining phase angle
US5963440A (en) * 1998-01-12 1999-10-05 Eaton Corporation Controlled three-phase rectifier with current comparison between rectifier segments
US6046917A (en) * 1999-05-03 2000-04-04 Eaton Corporation Controlled rectifier bridge and system
JP2001103795A (en) * 1999-10-01 2001-04-13 Meidensha Corp Stationary exciting device for synchronous generator
US7321221B2 (en) * 2002-07-17 2008-01-22 General Electric Company Method for operating a wind power plant and method for operating it
KR100905018B1 (en) * 2007-04-03 2009-06-30 엘에스산전 주식회사 A crow bar circuit for a wind power generator

Also Published As

Publication number Publication date
KR101145485B1 (en) 2012-05-15

Similar Documents

Publication Publication Date Title
EP2137808B1 (en) Dc voltage regulator
US20120281446A1 (en) Preventing load dump overvoltages in synchronous rectifiers,
JP6197110B2 (en) Overvoltage protection for active rectifiers during load shedding
CN102901919B (en) Double-feedback type induction generating system and self-testing method of active crowbar circuit thereof
US8928291B2 (en) Electric rotary machine for motor vehicle
US8274767B2 (en) Magnetic energy regeneration switch provided with protection circuit
ES2710555T3 (en) Procedure and device to protect an ESP power supply for transient overvoltages in the electrical network
US10530152B2 (en) Power distribution systems
KR20140135713A (en) Control circuit
EP2621070A1 (en) Method and arrangement for operating a wind turbine converter
US20140362625A1 (en) Motor Vehicle Electrical System Having An Active Bridge Rectifier And Overvoltage Protection During A Load Dump, Rectifier System, Associated Operating Method And Means For Its Implementation
WO2011135112A1 (en) System and method for control an electric generator
CN108370221A (en) Power inverter
US9455568B2 (en) Energy storage system for renewable energy source
CN104767188A (en) Current differential protecting method of wind electricity direct current microgrid under direct current bipolar short circuit failure
CN109997300B (en) Modular multilevel converter with full bridge cell fault current blocking for wind turbines
CN105814782B (en) For the circuit device by means of special operation method urgent operation polyphase voltage converter
US20140358350A1 (en) Motor Vehicle, Battery, and Method for Controlling a Battery
US8519663B2 (en) Power supply system for an element, among a rotor and a stator of an electric machine, and method for controlling such system
WO2012093771A1 (en) Crow bar circuit for wind power generator
CN103683893B (en) The method for protecting software of off-network inverter start short circuit
CN104584355B (en) For manipulating method, rectifier unit and the computer program product of active bridge rectification device when loading and reducing
US8576531B2 (en) Multiphase electric circuit for shutting down a current conducted over respectively one AC power controller
WO2013174528A2 (en) Gate driver for a power converter
EP3002864A1 (en) Power converter and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854850

Country of ref document: EP

Kind code of ref document: A1