WO2012053424A1 - 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法 - Google Patents

風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法 Download PDF

Info

Publication number
WO2012053424A1
WO2012053424A1 PCT/JP2011/073566 JP2011073566W WO2012053424A1 WO 2012053424 A1 WO2012053424 A1 WO 2012053424A1 JP 2011073566 W JP2011073566 W JP 2011073566W WO 2012053424 A1 WO2012053424 A1 WO 2012053424A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
wind turbine
maximum
shape
region
Prior art date
Application number
PCT/JP2011/073566
Other languages
English (en)
French (fr)
Inventor
浩司 深見
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP11834264.1A priority Critical patent/EP2631473B1/en
Priority to KR1020137009990A priority patent/KR20130069812A/ko
Priority to US13/879,721 priority patent/US8911214B2/en
Priority to CN201180050612.6A priority patent/CN103168172B/zh
Publication of WO2012053424A1 publication Critical patent/WO2012053424A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/02Formulas of curves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making

Definitions

  • the present invention relates to a wind turbine blade, a wind turbine generator including the wind turbine blade, and a wind turbine blade design method.
  • the upper limit is about 0.5 due to the influence of the wind turbine wake and the air resistance of the blade. Therefore, further significant improvement in blade efficiency is difficult.
  • the blade diameter has an influence on the output by its square, it is effective to increase the blade diameter to improve the power generation amount.
  • the expansion of the blade diameter leads to an increase in aerodynamic load (thrust force acting in the inflow direction and moment transmitted to the blade root), which increases the size and weight of equipment such as the rotor head, nacelle, and tower, which in turn increases costs.
  • a technique for increasing the length of the blade while suppressing an increase in the aerodynamic load of the blade is essential.
  • a wind turbine blade has a predetermined optimum cord length for a predetermined peripheral speed ratio, and has the following relationship (Wind Energy Handbook, John Wiley & Sons, p378).
  • Copt / R ⁇ ⁇ 2 ⁇ CLdesign ⁇ r / R ⁇ 16 / 9 ⁇ ⁇ / n (3)
  • R (blade radius) is half the blade diameter
  • is the design peripheral speed ratio
  • CLdesign is the design lift coefficient
  • r is the radial position of the blade cross section
  • n is the number of blades.
  • the design peripheral speed ratio is the tip peripheral speed / infinite upstream wind speed.
  • the design lift coefficient is the lift coefficient at the angle of attack at which the lift / drag ratio (lift / drag) of the airfoil (blade cross section) is maximized.
  • the (aerodynamic) shape and inflow conditions (Reynolds number) of the airfoil (blade cross section) It depends on.
  • Patent Document 1 discloses an airfoil for improving wind turbine output. Specifically, an aerofoil having a blade thickness ratio in the range of 14% to 45% and a design lift coefficient in the range of 1.10 to 1.25 is disclosed (see claim 1).
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a wind turbine blade capable of reducing aerodynamic noise of the wind turbine blade, a wind turbine generator including the wind turbine blade, and a wind turbine blade design method. .
  • the wind turbine blade of the present invention the wind turbine generator equipped with the wind turbine blade, and the wind turbine blade design method employ the following means. That is, the wind turbine blade according to the first aspect of the present invention has a maximum blade back side when the distance from the leading edge along the chord line is X and the distance from the chord line to the blade back side is Y.
  • dY / dX which is a first-order differential amount related to X (distance from the leading edge along the chord line) of Y (distance from the chord line to the blade back side), was examined.
  • the first region extends from the maximum blade thickness position to the trailing edge side, and dY / dX decreases with the first change amount, and is located on the trailing edge side of the first region, and dY / dX is the first
  • a second region having a second variation amount smaller than the variation amount and extending to the trailing edge side, and a third variation amount located on the trailing edge side of the second region and having dY / dX greater than the second variation amount
  • the blade back side shape is defined from the maximum blade thickness position to the trailing edge so as to have a third region connected to the trailing edge.
  • dY / dX when the horizontal axis is X and the vertical axis is dY / dX, dY / dX changes so as to draw a substantially S-shaped curve depending on the first region, the second region, and the third region. Since the second region has a smaller amount of change in dY / dX than the first and third regions, in this second region, the rate of reduction of the blade surface velocity will be smaller and the development of the turbulent boundary layer will be suppressed. Can do. Thereby, the windmill blade which reduced the aerodynamic noise can be provided.
  • the second region is preferably defined so that the amount of change in dY / dX approaches substantially zero (dY / dX approaches substantially constant) in order to reduce the deceleration rate of the blade surface flow velocity.
  • the design peripheral speed ratio (blade tip peripheral speed / inflow wind speed) is 6 or more (more preferably 8.0 or more and 9.0 or less), and the Reynolds number is 3 to 10 million.
  • the X at the leading edge is 0% and the X at the trailing edge is 100% and the X is divided by the code length
  • the X is 29 It is preferable that the maximum blade thickness position is provided within a range of not less than 31% and not more than 31%.
  • the maximum camber position is provided within a range in which is 50% or more and 65% or less.
  • the wind turbine blade according to the first aspect of the present invention includes a blade main body portion that extends in a radial direction from the blade root side to the blade tip side and whose maximum blade thickness changes at each radial position.
  • the blade shape in the cross section at each radial position of the blade main body is preferably such that the dY / dX is increased or decreased in accordance with the increase or decrease in the maximum blade thickness in each cross section.
  • the blade shape is determined by increasing / decreasing dY / dX according to the increase / decrease of the maximum blade thickness, it is possible to easily design a blade shape with low aerodynamic noise.
  • the blade main body portion that extends in the radial direction from the blade root side to the blade tip side and whose maximum blade thickness position changes at each radial position is provided. It is preferable that the blade shape in the cross section at each radial position of the blade main body is changed in accordance with the change in the maximum blade thickness position in each cross section.
  • the blade shape is determined by changing X according to the change in the maximum blade thickness position, it is possible to easily design a blade shape with low aerodynamic noise.
  • the code length of the blade cross section is C
  • X / C, Y / C and the dY / dX are: It is preferable that the blade shape has an error range of ⁇ 3% with respect to each value of Y / C.
  • a wind turbine generator includes the wind turbine blade described above, a rotor connected to the blade root side of the wind turbine blade and rotated by the wind turbine blade, and a rotational force obtained by the rotor. And a generator for converting into electrical output.
  • the wind turbine blade design method is such that the distance from the leading edge along the chord line is X, and the distance from the chord line to the blade back side is Y.
  • the first region A second region that is located on the trailing edge side, and dY / dX has a second variation amount smaller than the first variation amount and extends toward the trailing edge side, and is located on the trailing edge side of the second region.
  • DY / dX decreases with a third variation greater than the second variation, and has a third region connected to the trailing edge so that the blade extends from the maximum blade thickness position to the trailing edge. It defines the dorsal shape.
  • dY / dX which is a first-order differential amount related to X (distance from the leading edge along the chord line) of Y (distance from the chord line to the blade back side), was examined.
  • the first region extends from the maximum blade thickness position to the trailing edge side, and dY / dX decreases with the first change amount, and is located on the trailing edge side of the first region, and dY / dX is the first
  • a second region having a second variation amount smaller than the variation amount and extending to the trailing edge side, and a third variation amount located on the trailing edge side of the second region and having dY / dX greater than the second variation amount
  • the blade back side shape is defined from the maximum blade thickness position to the trailing edge so as to have a third region connected to the trailing edge.
  • dY / dX when the horizontal axis is X and the vertical axis is dY / dX, dY / dX changes so as to draw a substantially S-shaped curve depending on the first region, the second region, and the third region. Since the second region has a smaller amount of change in dY / dX than the first and third regions, in this second region, the rate of reduction of the blade surface velocity will be smaller and the development of the turbulent boundary layer will be suppressed. Can do. Thereby, the windmill blade which reduced the aerodynamic noise can be provided.
  • the second region is preferably defined so that the amount of change in dY / dX approaches substantially zero (dY / dX approaches substantially constant) in order to reduce the deceleration rate of the blade surface flow velocity.
  • the design peripheral speed ratio (blade tip peripheral speed / inflow wind speed) is 6 or more (more preferably 8.0 or more and 9.0 or less), and the Reynolds number is 3 to 10 million.
  • a reference blade shape determination step for determining a reference blade shape as a reference by the wind turbine blade design method described above, and a determination by the reference blade shape determination step
  • the dY / dX is increased or decreased according to the increase or decrease of the maximum blade thickness with respect to the maximum blade thickness of the reference blade shape.
  • a second blade shape determining step for determining the shape.
  • the blade shape is determined by increasing / decreasing dY / dX according to the increase / decrease of the maximum blade thickness, it is possible to easily design a blade shape with low aerodynamic noise.
  • the reference blade shape determination step for determining the reference blade shape as a reference by the wind turbine blade design method, and the reference blade shape determination step.
  • the X is changed according to a change in the maximum blade thickness position with respect to the maximum blade thickness position of the reference blade shape. It is preferable to have a third blade shape determining step for determining the third blade shape.
  • the blade shape is determined by changing X according to the change in the maximum blade thickness position, it is possible to easily design a blade shape with low aerodynamic noise.
  • the thickness of the turbulent boundary layer that develops from the maximum blade thickness position on the blade back side to the trailing edge can be reduced, thereby reducing aerodynamic noise.
  • the wind turbine blade according to the present embodiment is suitably used for a wind turbine for power generation.
  • a wind turbine for power generation For example, three wind turbine blades are provided, and each is connected to the rotor with an interval of about 120 °.
  • the rotational diameter (blade diameter) of the wind turbine blade is 60 m or more, and the blade has a solidity of 0.2 to 0.6.
  • the design peripheral speed ratio (blade tip peripheral speed / inflow wind speed) is 6 or more (more preferably 8.0 or more and 9.0 or less), and the Reynolds number is 3 to 10 million.
  • the wind turbine blades may have a variable pitch or a fixed pitch.
  • the wind turbine blade 1 is a three-dimensional blade, and extends from the blade root 1a side, which is the rotation center side, toward the blade tip 1b side.
  • Z in the longitudinal axis direction of the blade
  • FIG. 1 shows that blade element cross sections cut at radial positions with blade thickness ratios of 18%, 21%, 24%, 30%, 36%, and 42% are used as the definition of the shape of the wind turbine blade. ing.
  • a radial position r corresponding to the distance from the rotation center of the blade (or a dimensionless radial position r / R obtained by dividing the radial position by the blade radius). ) May be used.
  • the blade element cross section of FIG. 1 is projected onto the XY plane (a plane perpendicular to the Z axis).
  • the right side is the blade leading edge.
  • FIG. 3 shows an airfoil according to the present embodiment.
  • the airfoil is normalized by dividing the blade section at each blade thickness ratio of the wind turbine blade 1 by the chord length C, which is the length on the chord line 7 passing through the trailing edge 4 from the leading edge 6. ing.
  • a turbulent boundary layer 5 develops from the backmost blade thickness maximum position 3 to the trailing edge 4. Aerodynamic noise is caused by vortices in the boundary layer discharged from the turbulent boundary layer 5.
  • the maximum blade thickness position in the airfoil of the present embodiment is set within a range where the chord direction position X / C is 0.29 (29%) or more and 0.31 (31%) or less.
  • the maximum camber position is set within a range where the chord direction position X / C is 0.5 (50%) or more and 0.65 (65%) or less.
  • FIG. 4 shows how to determine the shape from the blade thickness maximum position 3 to the trailing edge 4 on the back side of the airfoil shown in FIG.
  • This figure shows an airfoil with a blade thickness ratio t / C of 0.18 (18%)
  • the horizontal axis indicates the chord direction position X / C normalized by the chord length C
  • the vertical axis indicates dY / dX which is the first derivative with respect to the distance X from the leading edge with respect to the distance Y from the chord line 7 to the dorsal side.
  • the chord direction position X / C at the maximum blade thickness position is 0.3 (30%).
  • the first region 11 extends from the maximum blade thickness position 3 to the trailing edge 4 side, and dY / dX decreases with a first change amount, and the first region 11 A second region 12 located on the trailing edge 4 side, dY / dX having a second variation amount smaller than the first variation amount and extending toward the trailing edge 4 side, and a trailing edge of the second region 12 A third region 13 is provided, which is located on the fourth side, dY / dX decreases with a third change amount larger than the second change amount, and is connected to the trailing edge 4. That is, dY / dX changes so as to draw a substantially S-shaped curve by the first region 11, the second region 12 and the third region 13.
  • the second region 12 is preferably defined so that the amount of change in dY / dX approaches substantially zero (so that dY / dX approaches substantially constant). Thereby, as will be described later, the reduction rate of the blade surface flow velocity can be reduced.
  • FIG. 5 shows a case where the maximum blade thickness (blade thickness ratio) is changed with respect to the blade shape of FIG. 4 in which the blade thickness ratio is 18% (FIG. 5A), and the maximum blade.
  • the method of giving dY / dX in the case of an airfoil with a changed thickness position (FIG. 5B) is shown. If the maximum blade thickness (blade thickness ratio) changes, increase or decrease the absolute value of dY / dX according to the increase or decrease of the blade thickness ratio. In the case shown in FIG. 5A, since the blade thickness ratio increases from 18% to 20%, the absolute value of dY / dX is increased by 20/18 times.
  • the blade thickness ratio of 20% is located below the blade thickness ratio of 18%, because this is because dY / dX on the vertical axis is a negative value.
  • the maximum blade thickness position changes, the distance X / C from the leading edge is expanded or contracted (changed) in the X direction according to the change in the maximum blade thickness position.
  • the airfoil shape is determined as follows.
  • an error range of ⁇ 3% is allowed for each value of Y / C.
  • the effect shown in FIG. 7 is obtained. That is, unlike the comparative blade compared at the same angle of attack as shown in FIG. 7 (a), by providing the second region 12 that is substantially horizontal, the second region as shown in FIG. 7 (b). As a result, the turbulent boundary layer thickness (exclusion thickness) at the trailing edge 4 is reduced by 40%, as shown in FIG. 7C. This reduces the aerodynamic noise by 2 dB compared to the comparative example.

Abstract

 翼弦線に沿う前縁からの距離をX、翼弦線から翼背側までの距離をYとした場合に、翼背側の最大翼厚位置(3)から後縁(4)側へと延在し、YのXに関する1次微分量であるdY/dXが第1変化量を有して減少する第1領域(11)と、第1領域(11)の後縁(4)側に位置し、dY/dXが第1変化量よりも小さい第2変化量を有して後縁(4)側へと延在する第2領域(12)と、第2領域(12)の後縁(4)側に位置し、dY/dXが前記第2変化量よりも大きい第3変化量を有して減少し、後縁(4)まで接続される第3領域(13)とを有するように、最大翼厚位置(3)から後縁(4)にかけて翼背側形状が規定されている。

Description

風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法
 本発明は、風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法に関するものである。
 近年、クリーンエネルギーとして、風車による発電が進められている。風車は、風力によって翼を軸周りに回転させ、この回転力を電力に変換して発電出力を得る。
 風車の発電出力は、軸端出力(翼が発生する出力)と、変換効率(軸受や発電機などの効率)との積で表される。また、軸端出力は次式で表され、翼効率が高く、翼直径が大きい翼であれば、発電量が向上する。
  軸端出力=1/2×空気密度×風速×翼効率×π×(翼直径/2)
 翼効率は、理論上の上限値(ベッツ限界=0.593)が存在し、実際上は風車後流の影響と翼の空気抵抗の存在で上限値は0.5程度となる。したがって、翼効率のこれ以上の大幅な改善は難しい。
 一方、翼直径はその自乗で出力に影響を持つため、発電量向上のためには翼直径の拡大が効果的である。しかし、翼直径の拡大は空力荷重(流入方向に作用するスラスト力および翼根に伝わるモーメント)の増大に繋がるため、ロータヘッド、ナセル、タワーなどの機器の大型化や重量増大、ひいてはコスト増に繋がる懸念・傾向がある。したがって、翼の空力荷重の増大を抑えながら長翼化する技術が必須とされる。荷重増大の問題を避けるため、空力的(翼形状的)に考えられる方法としては、コード長(翼弦長)をより短くして(即ち、アスペクト比をより大きくして、又はソリディティをより小さくして)、翼投影面積を減少させて空力荷重を低減させる手法が考えられる。
 ここで、アスペクト比およびソリディティは、下式で表される。
  アスペクト比=翼長/翼投影面積・・・(1)
  ソリディティ=全翼投影面積 / 翼掃過面積
    =(翼枚数×平均コード長)/(π×(翼直径/2))・・・(2)
 一般に、風車翼は、所定の周速比に対して所定の最適コード長を持ち、次式の関係がある(Wind
Energy Handbook, John Wiley & Sons, p378)。
  Copt/R×λ×CLdesign×r/R≒16/9×π/n・・・(3)
 ここで、Coptは最適コード長,R(翼半径)は翼直径の2分の1,λは設計周速比,CLdesignは設計揚力係数,rは翼断面の半径位置,nは翼枚数である。
 設計周速比は、翼端周速/無限上流風速である。設計揚力係数は、翼型(翼断面)の揚抗比(揚力/抗力)が最大となる迎角における揚力係数であり、翼型(翼断面)の(空力)形状と流入条件(レイノルズ数)によって決まる。
 図8には、本明細書にて用いるレイノルズ数の定義が示されている。同図に示されているように、風車におけるレイノルズ数は、所定の回転数で回転する翼の所定断面A-Aにおける相対風速度を考慮したものであり、下式にて表される。
 レイノルズ数=空気密度×翼断面への相対風速度×翼断面のコード長/空気の粘性係数
 下記特許文献1には、風車出力向上のための翼型が開示されている。具体的には、翼厚比が14%から45%の範囲で設計揚力係数が1.10~1.25の範囲とされた翼型が開示されている(請求項1参照)。
欧州特許出願公開第1152148号明細書
 しかし、特許文献1のように所望の設計揚力係数を定めて風車出力の向上が図れたとしても、これと同時に風車翼の空力騒音についても考慮されなければ、風車を設置した周囲環境に悪影響を及ぼすことになる。
 本発明は、このような事情に鑑みてなされたものであって、風車翼の空力騒音を低減できる風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法を提供することを目的とする。
 上記課題を解決するために、本発明の風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法は以下の手段を採用する。
 すなわち、本発明の第一の態様にかかる風車翼は、翼弦線に沿う前縁からの距離をX、翼弦線から翼背側までの距離をYとした場合に、翼背側の最大翼厚位置から後縁側へと延在し、前記Yの前記Xに関する1次微分量であるdY/dXが第1変化量を有して減少する第1領域と、該第1領域の後縁側に位置し、前記dY/dXが前記第1変化量よりも小さい第2変化量を有して後縁側へと延在する第2領域と、該第2領域の後縁側に位置し、前記dY/dXが前記第2変化量よりも大きい第3変化量を有して減少し、後縁まで接続される第3領域とを有するように、前記最大翼厚位置から後縁にかけて翼背側形状が規定されているものである。
 風車翼の空力騒音の主要因は、翼背側の最大翼厚位置から後縁にかけて発達する乱流境界層から吐出される境界層中の渦である。したがって、翼背側の最大翼厚位置から後縁にかけて発達する乱流境界層の厚さを薄くすることにより、空力騒音を低減することができる。
 そこで、本発明では、Y(翼弦線から翼背側までの距離)のX(翼弦線に沿う前縁からの距離)に関する1次微分量であるdY/dXについて検討した。そして、最大翼厚位置から後縁側へと延在し、dY/dXが第1変化量を有して減少する第1領域と、第1領域の後縁側に位置し、dY/dXが第1変化量よりも小さい第2変化量を有して後縁側へと延在する第2領域と、第2領域の後縁側に位置し、dY/dXが第2変化量よりも大きい第3変化量を有して減少し、後縁まで接続される第3領域とを有するように、最大翼厚位置から後縁にかけて翼背側形状を規定することとした。すなわち、横軸をX、縦軸をdY/dXとした場合、第1領域、第2領域および第3領域によって、略S字形状の曲線を描くようにdY/dXが変化するようにした。
 第2領域を、第1領域および第3領域よりもdY/dXの変化量を小さくしているので、この第2領域では翼面流速の減速率が小さくなり乱流境界層の発達を抑えることができる。これにより、空力騒音を低減した風車翼を提供することができる。
 なお、第2領域は、翼面流速の減速率を小さくするために、dY/dXの変化量が略ゼロに近づくように(dY/dXが略一定に近づくように)規定することが好ましい。
 なお、好ましくは、設計周速比(翼端周速/流入風速)は6以上(より好ましくは8.0以上9.0以下)、レイノルズ数は300万以上1000万以下とされる。
 本発明の第一の態様にかかる風車翼においては、前縁における前記Xを0%および後縁における前記Xを100%として前記Xをコード長で除して正規化した場合、該Xが29%以上31%以下とされる範囲内に、前記最大翼厚位置が設けられていることが好ましい。
 また、本発明の第一の態様にかかる風車翼においては、前縁における前記Xを0%および後縁における前記Xを100%として前記Xをコード長で除して正規化した場合、該Xが50%以上65%以下とされる範囲内に、最大キャンバー位置が設けられていることが好ましい。
 さらに、本発明の第一の態様にかかる風車翼においては、翼根側から翼先端側へと向かう半径方向に延在するとともに、各半径位置にて最大翼厚が変化する翼本体部を備え、該翼本体部の各半径位置の断面における翼形状が、それぞれの断面における最大翼厚の増減に応じて前記dY/dXが増減させられていることが好ましい。
 最大翼厚の増減に応じてdY/dXを増減することによって翼形状が決定されるので、空力騒音の小さい翼形状を容易に設計することができる。
 さらに、本発明の第一の態様にかかる風車翼においては、翼根側から翼先端側へと向かう半径方向に延在するとともに、各半径位置にて最大翼厚位置が変化する翼本体部を備え、該翼本体部の各半径位置の断面における翼形状が、それぞれの断面における最大翼厚位置の変化に応じて前記Xが変化させられていることが好ましい。
 最大翼厚位置の変化に応じてXを変化することによって翼形状が決定されるので、空力騒音の小さい翼形状を容易に設計することができる。
 さらに、本発明の第一の態様にかかる風車翼においては、翼断面のコード長をCとした場合、X/C、Y/C及び前記dY/dXが、
Figure JPOXMLDOC01-appb-T000002
 
と定義され、前記Y/Cの各数値に関して±3%の誤差範囲内にある翼形状を有することが好ましい。
 本発明の第二の態様にかかる風力発電装置は、上記の風車翼と、該風車翼の翼根側に接続され、該風車翼によって回転させられるロータと、該ロータによって得られた回転力を電気出力に変換する発電機とを備えているものである。
 また、本発明の第三の態様にかかる風車翼の設計方法は、翼弦線に沿う前縁からの距離をX、翼弦線から翼背側までの距離をYとした場合に、翼背側の最大翼厚位置から後縁側へと延在し、前記Yの前記Xに関する1次微分量であるdY/dXが第1変化量を有して減少する第1領域と、該第1領域の後縁側に位置し、前記dY/dXが前記第1変化量よりも小さい第2変化量を有して後縁側へと延在する第2領域と、該第2領域の後縁側に位置し、前記dY/dXが前記第2変化量よりも大きい第3変化量を有して減少し、後縁まで接続される第3領域とを有するように、前記最大翼厚位置から後縁にかけて翼背側形状を規定するものである。
 風車翼の空力騒音の主要因は、翼背側の最大翼厚位置から後縁にかけて発達する乱流境界層から吐出される境界層中の渦である。したがって、翼背側の最大翼厚位置から後縁にかけて発達する乱流境界層の厚さを薄くすることにより、空力騒音を低減することができる。
 そこで、本発明では、Y(翼弦線から翼背側までの距離)のX(翼弦線に沿う前縁からの距離)に関する1次微分量であるdY/dXについて検討した。そして、最大翼厚位置から後縁側へと延在し、dY/dXが第1変化量を有して減少する第1領域と、第1領域の後縁側に位置し、dY/dXが第1変化量よりも小さい第2変化量を有して後縁側へと延在する第2領域と、第2領域の後縁側に位置し、dY/dXが第2変化量よりも大きい第3変化量を有して減少し、後縁まで接続される第3領域とを有するように、最大翼厚位置から後縁にかけて翼背側形状を規定することとした。すなわち、横軸をX、縦軸をdY/dXとした場合、第1領域、第2領域および第3領域によって、略S字形状の曲線を描くようにdY/dXが変化するようにした。
 第2領域を、第1領域および第3領域よりもdY/dXの変化量を小さくしているので、この第2領域では翼面流速の減速率が小さくなり乱流境界層の発達を抑えることができる。これにより、空力騒音を低減した風車翼を提供することができる。
 なお、第2領域は、翼面流速の減速率を小さくするために、dY/dXの変化量が略ゼロに近づくように(dY/dXが略一定に近づくように)規定することが好ましい。
 なお、好ましくは、設計周速比(翼端周速/流入風速)は6以上(より好ましくは8.0以上9.0以下)、レイノルズ数は300万以上1000万以下とされる。
 本発明の第三の態様にかかる風車翼の設計方法においては、上記の風車翼の設計方法によって基準となる基準翼形状を決定する基準翼形状決定ステップと、該基準翼形状決定ステップにて決定された前記基準翼形状の最大翼厚が異なる第2翼形状を決定する際に、該基準翼形状の最大翼厚に対する最大翼厚の増減に応じて前記dY/dXを増減させて第2翼形状を決定する第2翼形状決定ステップと、を有していることが好ましい。
 最大翼厚の増減に応じてdY/dXを増減することによって翼形状が決定されるので、空力騒音の小さい翼形状を容易に設計することができる。
 また、本発明の第三の態様にかかる風車翼の設計方法においては、上記の風車翼の設計方法によって基準となる基準翼形状を決定する基準翼形状決定ステップと、該基準翼形状決定ステップにて決定された前記基準翼形状の最大翼厚位置が異なる第3翼形状を決定する際に、該基準翼形状の最大翼厚位置に対する最大翼厚位置の変化に応じて前記Xを変化させて第3翼形状を決定する第3翼形状決定ステップとを有していることが好ましい。
 最大翼厚位置の変化に応じてXを変化することによって翼形状が決定されるので、空力騒音の小さい翼形状を容易に設計することができる。
 本発明によれば、翼背側の最大翼厚位置から後縁にかけて発達する乱流境界層の厚さを薄くすることができ、これにより空力騒音を低減することができる。
風車翼の代表的形状を示した斜視図である。 図1の各翼厚比における断面を示した図である。 空力騒音の主要因となる乱流境界層について示した説明図である。 本発明の実施形態にかかる風車翼の背側形状の規定の仕方を示した図である。 図4に示したdY/dX曲線を変化させた図である。 図4の翼型の設計思想を示した説明図である。 図4の翼型の効果を示したグラフである。 レイノルズ数の定義を示した説明図である。
 以下に、本発明にかかる実施形態について、図面を参照して説明する。
 本実施形態にかかる風車翼は、発電用の風車に対して好適に用いられる。風車翼は、例えば3枚設けられ、それぞれが約120°の間隔を有してロータに接続されている。好ましくは、風車翼の回転直径(翼直径)は60m以上とされ、ソリディティが0.2以上0.6以下の細長翼とされる。また、設計周速比(翼端周速/流入風速)は6以上(より好ましくは8.0以上9.0以下)、レイノルズ数は300万以上1000万以下とされる。風車翼は、可変ピッチとされていても良いし、固定ピッチとされていても良い。
 図1に示すように、風車翼1は三次元翼とされており、回転中心側である翼根1a側から翼先端1b側に向かって延在している。
 翼形状を定義する場合、同図に示されているように、各翼厚比(翼厚の最大値をコード長で除した値の百分率)の半径位置においてZ(翼の長手軸方向)=一定の断面で切断した翼素断面を用いて表される。図1では、翼厚比が18%,21%,24%,30%,36%,42%の各半径位置にて切断した翼素断面が風車翼の形状の定義として用いられることが示されている。なお、風車翼1の半径位置を示す場合に、翼厚比に代えて、翼の回転中心からの距離に相当する半径位置r(あるいは半径位置を翼半径で除した無次元半径位置r/R)が用いられることもある。
 図2には、図1の翼素断面をXY平面(Z軸に直交する平面)へ投影したものである。同図のように風車翼1の長手方向先端から見た場合、右側が翼前縁となる。
 図3には、本実施形態にかかる翼型が示されている。翼型は、風車翼1の各翼厚比における翼素断面に対して、前縁6から後縁4を通る翼弦線7上の長さであるコード長Cで除することによって正規化されている。具体的には、前縁をX/C=0,Y/C=0、後縁をX/C=1,Y/C=0として正規化している。
 同図に示すように、背側の翼厚最大位置3から後縁4にかけて乱流境界層5が発達する。この乱流境界層5から吐出される境界層中の渦によって空力騒音が引き起こされる。したがって、後縁4における乱流境界層厚さDSTARを薄くすることによって空力騒音を低減することができる。
 本実施形態の翼型における最大翼厚位置は、翼弦方向位置X/Cが0.29(29%)以上0.31(31%)以下とされた範囲内に設定される。また、最大キャンバー位置は、翼弦方向位置X/Cが0.5(50%)以上0.65(65%)以下の範囲内に設定される。
 図4には、図3に示した翼型の背側における翼厚最大位置3から後縁4にかけての形状の定め方が示されている。同図は、翼厚比t/Cが0.18(18%)とされた翼型について示されており、横軸はコード長Cで正規化した翼弦方向位置X/Cを示し、縦軸は翼弦線7から背側までの距離Yについての前縁からの距離Xに関する1次微分であるdY/dXを示す。図4において、最大翼厚位置の翼弦方向位置X/Cは、0.3(30%)とされている。
 同図に示されているように、最大翼厚位置3から後縁4側へと延在し、dY/dXが第1変化量を有して減少する第1領域11と、第1領域11の後縁4側に位置し、dY/dXが第1変化量よりも小さい第2変化量を有して後縁4側へと延在する第2領域12と、第2領域12の後縁4側に位置し、dY/dXが第2変化量よりも大きい第3変化量を有して減少し、後縁4まで接続される第3領域13と、が設けられている。
 すなわち、第1領域11、第2領域12および第3領域13によって、略S字形状の曲線を描くようにdY/dXが変化するようになっている。
 なお、第2領域12については、dY/dXの変化量が略ゼロに近づくように(dY/dXが略一定に近づくように)規定することが好ましい。これにより、後述するように、翼面流速の減速率を小さくすることができる。
 図5には、翼厚比が18%とされた図4の翼型に対して、最大翼厚(翼厚比)が変化した翼型の場合(図5(a))、及び、最大翼厚位置が変化した翼型の場合(図5(b))におけるdY/dXの与え方が示されている。
 最大翼厚(翼厚比)が変化する場合は、翼厚比の増減に応じてdY/dXの絶対値を増減させる。図5(a)に示した場合は、翼厚比が18%から20%へと増加するので、dY/dXの絶対値を20/18倍として増加する。なお、同図において、翼厚比20%の方が翼厚比18%よりも下方に位置しているが、これば縦軸のdY/dXが負の値となっているためである。
 最大翼厚位置が変化する場合は、最大翼厚位置の変化に応じて前縁からの距離X/CをX方向に伸縮(変化)させる。図5(b)に示した場合は、最大翼厚位置がX/C=0.3から0.35に変化するので、前縁からの距離X/CをX方向に伸張する。この場合、略水平となる第2領域の範囲を維持するように伸張することが好ましい。
 次に、図6を用いて、図4に示した翼型の設計思想について説明する。
(1)設計自由度
 図3に示した風車翼の背側の最大翼厚位置3から後縁4までの領域には、以下のような前提のもとで設計自由度が存在する。
(i)最大翼厚位置3において、dY/dX=0を満たす。
(ii)後縁4において、翼強度確保の観点から、後縁角(後縁4において翼背面と翼腹面とがなす角)は所定値以上が必要となる。よって、後縁4におけるdY/dXは、所定値以上の絶対値を有する負の値であることが必要となる。
(iii)所定のキャンバーをもつ翼型を前提とした場合、翼背面の最大翼厚位置3から後縁4までについて曲線dY/dXを積分した値(∫(dY/dX)dX)、即ちdY/dXとX軸が挟む領域の面積は、本実施形態のように背側形状を最適化する前(図7の破線)と後(図7の実線)で等しくする必要がある。
 以上の(i)~(iii)の条件を満たしている限り、翼背面の最大翼厚位置3と後縁4とのつなぎ方には設計自由度がある。
(2)空力騒音と境界層厚さ(排除厚さ)の関係
 空力騒音の主要因は翼背面の後縁4付近の乱流境界層から吐出される境界層中の渦である。したがって、乱流境界層の厚さを低減することによって空力騒音が低減する。
(3)境界層厚さ(排除厚さ)と翼面流速の関係
 一般に、翼面流速(=境界層外縁の流速=主流速度;u)が大きいほど、かつ、翼面流速の減速率(=傾き(-du/dx))が大きいほど、境界層厚さは発達しやすい。
 したがって、境界層の発達を緩和し、空力騒音を低減するためには、翼面流速uを低め、かつ、翼面流速の減速率(-du/dx)を小さくすることが、有効である。特に、翼背面においては、境界層が乱流遷移する翼弦方向位置X/C=0.5よりも後方の領域である第2領域12(図4参照)において境界層が発達しやすいため、図6(a)の実線のような翼面流速分布になっていることが望ましい。
(4)翼面流速と翼型形状の関係
 翼背面の形状と翼面流速には、「凸面で増速する、凹面で減速する」という流体力学的な関係がある。数学的に表現すれば、d2Y/dX2(dY/dXの傾き)が大きいほど流速が増し、小さいほど流速が減ずる傾向がある。流速を図6(a)の実線のように分布させるために、図6(b)に示すように第2領域12でのd2Y/dX2(dY/dXの傾き)を小さくすることが有効である。
 そして、上記の(i)~(iii)の条件があるため、第2領域12と最大翼厚位置3との間、および、第2領域12と後縁4との間は、図6(b)の破線で示すように結び、結果としてdY/dX曲線は、略S字形状を描くこととなる。
 具体的には、翼型形状は以下のように定められる。
Figure JPOXMLDOC01-appb-T000003
 
 ここで、Y/Cの各数値に関して±3%の誤差範囲が許容される。
 したがって、図6に説明した設計思想の下で上表のようにdY/dXの分布を決定すると、図7に示すような効果を奏する。
 すなわち、図7(a)に示すように、同一迎角で比較した比較翼とは異なり、略水平となる第2領域12を設けることによって、図7(b)に示すように、第2領域12における翼面流速が減少し、結果として、図7(c)に示すように、後縁4における乱流境界層厚さ(排除厚さ)が40%低減される。これにより、比較例に対して空力騒音は2dBの低減となる。
 1 風車翼
 1a 翼根
 1b 翼先端
 3 最大翼厚位置
 4 後縁
 11 第1領域
 12 第2領域
 13 第3領域

Claims (10)

  1.  翼弦線に沿う前縁からの距離をX、翼弦線から翼背側までの距離をYとした場合に、
     翼背側の最大翼厚位置から後縁側へと延在し、前記Yの前記Xに関する1次微分量であるdY/dXが第1変化量を有して減少する第1領域と、
     該第1領域の後縁側に位置し、前記dY/dXが前記第1変化量よりも小さい第2変化量を有して後縁側へと延在する第2領域と、
     該第2領域の後縁側に位置し、前記dY/dXが前記第2変化量よりも大きい第3変化量を有して減少し、後縁まで接続される第3領域と、
    を有するように、前記最大翼厚位置から後縁にかけて翼背側形状が規定されている風車翼。
  2.  前縁における前記Xを0%および後縁における前記Xを100%として前記Xをコード長で除して正規化した場合、該Xが29%以上31%以下とされる範囲内に、前記最大翼厚位置が設けられている請求項1に記載の風車翼。
  3.  前縁における前記Xを0%および後縁における前記Xを100%として前記Xをコード長で除して正規化した場合、該Xが50%以上65%以下とされる範囲内に、最大キャンバー位置が設けられている請求項1又は2に記載の風車翼。
  4.  翼根側から翼先端側へと向かう半径方向に延在するとともに、各半径位置にて最大翼厚が変化する翼本体部を備え、
     該翼本体部の各半径位置の断面における翼形状が、それぞれの断面における最大翼厚の増減に応じて前記dY/dXが増減させられている請求項1から3のいずれかに記載の風車翼。
  5.  翼根側から翼先端側へと向かう半径方向に延在するとともに、各半径位置にて最大翼厚位置が変化する翼本体部を備え、
     該翼本体部の各半径位置の断面における翼形状が、それぞれの断面における最大翼厚位置の変化に応じて前記Xが変化させられている請求項1から4のいずれかに記載の風車翼。
  6.  翼断面のコード長をCとした場合、X/C、Y/C及び前記dY/dXが、
    Figure JPOXMLDOC01-appb-T000001
     
    と定義され、前記Y/Cの各数値に関して±3%の誤差範囲内にある翼形状を有する請求項1から5のいずれかに記載の風車翼。
  7.  請求項1から6のいずれかに記載された風車翼と、
     該風車翼の翼根側に接続され、該風車翼によって回転させられるロータと、
     該ロータによって得られた回転力を電気出力に変換する発電機と、
    を備えている風力発電装置。
  8.  翼弦線に沿う前縁からの距離をX、翼弦線から翼背側までの距離をYとした場合に、
     翼背側の最大翼厚位置から後縁側へと延在し、前記Yの前記Xに関する1次微分量であるdY/dXが第1変化量を有して減少する第1領域と、
     該第1領域の後縁側に位置し、前記dY/dXが前記第1変化量よりも小さい第2変化量を有して後縁側へと延在する第2領域と、
     該第2領域の後縁側に位置し、前記dY/dXが前記第2変化量よりも大きい第3変化量を有して減少し、後縁まで接続される第3領域と、
    を有するように、前記最大翼厚位置から後縁にかけて翼背側形状を規定する風車翼の設計方法。
  9.  請求項8に記載された風車翼の設計方法によって基準となる基準翼形状を決定する基準翼形状決定ステップと、
     該基準翼形状決定ステップにて決定された前記基準翼形状の最大翼厚が異なる第2翼形状を決定する際に、該基準翼形状の最大翼厚に対する最大翼厚の増減に応じて前記dY/dXを増減させて第2翼形状を決定する第2翼形状決定ステップと、
    を有している請求項8に記載の風車翼の設計方法。
  10.  請求項8に記載された風車翼の設計方法によって基準となる基準翼形状を決定する基準翼形状決定ステップと、
     該基準翼形状決定ステップにて決定された前記基準翼形状の最大翼厚位置が異なる第3翼形状を決定する際に、該基準翼形状の最大翼厚位置に対する最大翼厚位置の変化に応じて前記Xを変化させて第3翼形状を決定する第3翼形状決定ステップと、
    を有している請求項8又は9に記載の風車翼の設計方法。
PCT/JP2011/073566 2010-10-22 2011-10-13 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法 WO2012053424A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11834264.1A EP2631473B1 (en) 2010-10-22 2011-10-13 Wind turbine blade, wind power generating device comprising same, and wind turbine blade design method
KR1020137009990A KR20130069812A (ko) 2010-10-22 2011-10-13 풍차 날개 및 이를 구비한 풍력 발전 장치 및 풍차 날개의 설계 방법
US13/879,721 US8911214B2 (en) 2010-10-22 2011-10-13 Wind turbine blade, wind turbine generator including wind turbine blade, and method for designing wind turbine blade
CN201180050612.6A CN103168172B (zh) 2010-10-22 2011-10-13 风车叶片及具备该风车叶片的风力发电装置以及风车叶片的设计方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-238041 2010-10-22
JP2010238041A JP5479300B2 (ja) 2010-10-22 2010-10-22 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法

Publications (1)

Publication Number Publication Date
WO2012053424A1 true WO2012053424A1 (ja) 2012-04-26

Family

ID=45975139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073566 WO2012053424A1 (ja) 2010-10-22 2011-10-13 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法

Country Status (6)

Country Link
US (1) US8911214B2 (ja)
EP (1) EP2631473B1 (ja)
JP (1) JP5479300B2 (ja)
KR (1) KR20130069812A (ja)
CN (1) CN103168172B (ja)
WO (1) WO2012053424A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017124861A1 (de) 2017-10-24 2019-04-25 Wobben Properties Gmbh Rotorblatt einer Windenergieanlage und Verfahren zu dessen Auslegung
US20200088161A1 (en) * 2018-09-17 2020-03-19 General Electric Company Wind Turbine Rotor Blade Assembly for Reduced Noise
CN111288016B (zh) * 2018-12-07 2020-12-15 中国航发商用航空发动机有限责任公司 轴流压气机基元叶型造型方法
DE102019119027B4 (de) * 2019-07-12 2022-04-28 Wobben Properties Gmbh Rotorblatt und Windenergieanlage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0675285A1 (en) * 1994-03-14 1995-10-04 Midwest Research Institute Airfoils for wind turbine
EP1152148A1 (en) 2000-05-01 2001-11-07 Enron Wind Energy Systems Co. Airfoil profiles for wind turbines
JP3935804B2 (ja) * 2002-08-26 2007-06-27 三菱重工業株式会社 翼及びこれを備える風力発電装置
JP2009293622A (ja) * 2002-06-05 2009-12-17 Aloys Wobben 風力発電装置のローターブレード

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976587A (en) * 1988-07-20 1990-12-11 Dwr Wind Technologies Inc. Composite wind turbine rotor blade and method for making same
IL105107A (en) * 1992-03-18 1996-06-18 Advanced Wind Turbines Inc Wind turbines
ATE281600T1 (de) * 1999-08-25 2004-11-15 Forskningsct Riso Modifizierte windturbinenschaufel
KR20070063610A (ko) * 2002-06-05 2007-06-19 알로이즈 우벤 풍력 발전 장치용 로터 블레이드
DE10319246A1 (de) * 2003-04-28 2004-12-16 Aloys Wobben Rotorblatt einer Windenergieanlage
ES2561804T5 (es) * 2005-07-15 2019-04-03 Vestas Wind Sys As Pala de turbina eólica
US7686567B2 (en) * 2005-12-16 2010-03-30 United Technologies Corporation Airfoil embodying mixed loading conventions
DE102006017897B4 (de) * 2006-04-13 2008-03-13 Repower Systems Ag Rotorblatt einer Windenergieanlage
US7883324B2 (en) 2007-01-09 2011-02-08 General Electric Company Wind turbine airfoil family
US20100154781A1 (en) 2008-12-22 2010-06-24 General Electric Company System and method for heating a fuel using a solar heating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0675285A1 (en) * 1994-03-14 1995-10-04 Midwest Research Institute Airfoils for wind turbine
EP1152148A1 (en) 2000-05-01 2001-11-07 Enron Wind Energy Systems Co. Airfoil profiles for wind turbines
JP2009293622A (ja) * 2002-06-05 2009-12-17 Aloys Wobben 風力発電装置のローターブレード
JP3935804B2 (ja) * 2002-08-26 2007-06-27 三菱重工業株式会社 翼及びこれを備える風力発電装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Wind Energy Handbook", JOHN WILEY & SONS, pages: 378
See also references of EP2631473A4 *

Also Published As

Publication number Publication date
EP2631473B1 (en) 2018-02-07
EP2631473A4 (en) 2014-07-02
CN103168172B (zh) 2015-07-08
JP2012092660A (ja) 2012-05-17
US8911214B2 (en) 2014-12-16
CN103168172A (zh) 2013-06-19
KR20130069812A (ko) 2013-06-26
US20130272890A1 (en) 2013-10-17
EP2631473A1 (en) 2013-08-28
JP5479300B2 (ja) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5479388B2 (ja) 風車翼およびこれを備えた風力発電装置
EP2275672B1 (en) Boundary layer fins for wind turbine blade
CN105715449B (zh) 具有涡流发生器的转子叶片和风力涡轮机
WO2012053602A1 (ja) 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法
US20110211966A1 (en) Wind power generation system
DK2128434T3 (en) Wind turbine blades with twisted and tapered tips
WO2015003718A1 (en) Wind turbine blade assembly with a noise attenuator on the blade tip
JP5479300B2 (ja) 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法
US11428206B2 (en) Aerofoil tip structure, particularly for a HAWT rotor blade
CN101592122B (zh) 带有扭转梢部的风力涡轮机叶片
JP5433554B2 (ja) 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法
JP2004084522A (ja) 翼及びこれを備える風力発電装置
CN107923364B (zh) 成形为增强尾流扩散的转子叶片
EP3098436B1 (en) Noise reducing flap with opening
JP5675270B2 (ja) 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法
JP5433553B2 (ja) 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法
CN116157597A (zh) 风力涡轮机
JP5574915B2 (ja) 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法
EP2851556A1 (en) Arrangement to reduce noise of a wind turbine rotor blade
JP5574914B2 (ja) 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834264

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011834264

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137009990

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13879721

Country of ref document: US