WO2011000975A1 - Turbina eólica de par motor compensado - Google Patents

Turbina eólica de par motor compensado Download PDF

Info

Publication number
WO2011000975A1
WO2011000975A1 PCT/ES2009/000348 ES2009000348W WO2011000975A1 WO 2011000975 A1 WO2011000975 A1 WO 2011000975A1 ES 2009000348 W ES2009000348 W ES 2009000348W WO 2011000975 A1 WO2011000975 A1 WO 2011000975A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
generator
motor torque
wind turbine
torque
Prior art date
Application number
PCT/ES2009/000348
Other languages
English (en)
French (fr)
Inventor
Manuel Lahuerta Romeo
Original Assignee
Tempero 2000 S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012516804A priority Critical patent/JP5704464B2/ja
Priority to EA201101046A priority patent/EA022481B1/ru
Priority to CN200980160211.9A priority patent/CN102803713B/zh
Priority to EP09846732.7A priority patent/EP2458199B1/en
Priority to AU2009349161A priority patent/AU2009349161B2/en
Priority to ES09846732.7T priority patent/ES2582785T3/es
Application filed by Tempero 2000 S.L. filed Critical Tempero 2000 S.L.
Priority to US13/319,528 priority patent/US8841794B2/en
Priority to MX2012000008A priority patent/MX353575B/es
Priority to PCT/ES2009/000348 priority patent/WO2011000975A1/es
Publication of WO2011000975A1 publication Critical patent/WO2011000975A1/es
Priority to ZA2011/08736A priority patent/ZA201108736B/en
Priority to CL2011003238A priority patent/CL2011003238A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/42Storage of energy
    • F05B2260/421Storage of energy in the form of rotational kinetic energy, e.g. in flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • F05B2270/1014Purpose of the control system to control rotational speed (n) to keep rotational speed constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/109Purpose of the control system to prolong engine life
    • F05B2270/1095Purpose of the control system to prolong engine life by limiting mechanical stresses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/40Type of control system
    • F05B2270/402Type of control system passive or reactive, e.g. using large wind vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/50Control logic embodiment by
    • F05B2270/508Control logic embodiment by mechanical means, e.g. levers, gears or cams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention refers to a wind turbine of compensated torque.
  • the object of the invention is focused on a wind turbine with compensated motor torque thanks to the inertial pendulum it incorporates, so that its innovative structural design makes it capable of capturing wind energy with less fatigue than traditional machines , providing more uniform and higher quality energy, by incorporating passive mechanical systems that compensate, accumulate and restore power peaks and valleys caused by wind gusts, as well as instantaneous load variations in isolated areas of the network.
  • the new turbine has the peculiarity that it places the elements of the power train (generator, brake disc and multiplier) in a pendular shape, that is, suspended in a bearing aligned with the rotor shaft so that it allows them to rotate until the rotor torque is balanced in its displacement, freeing the gondola, tower and shoe from this effort, being said principle equally applicable to other motor machines, such as airplanes and mono-helix ships.
  • the elements of the power train generator, brake disc and multiplier
  • the offset torque wind turbine in a variant embodiment for isolated applications or where you want to improve the quality of the supply, is modified and complemented with a set (kit) that improves the stability and quality of the energy supply.
  • This modification consists of inserting a hydrostatic transmission between the multiplier and the generator, in such a way that the generator, in the through axle version, is located on a large flywheel, both located at the base of the tower and driven by a hydraulic servo motor variable displacement, through a hydraulic coupler.
  • the generator located at the base of the tower, will be replaced by a pump that, in solidarity with the steering wheel, will produce the fluid energization more stably.
  • the proposed turbine can be profitable in locations with lower wind potential, thereby increasing its diffusion.
  • the turbine of the invention is likewise suitable for replacing old turbines, allowing to take advantage of the tower, shoe and electrical infrastructure increasing the areas swept by the rotor and achieving more equivalent hours in The same location.
  • the field of application of the present invention is within the industry sector dedicated to the design, manufacture and installation of wind turbines, applied to grid generation, isolated generation, wind pumping and reverse osmosis desalination.
  • thrust, torque and rotation speed of the turbine and therefore its captured power are affected by any variation of swept area and wind speed.
  • Windward models are, in general, what we know as a Danish model, that is, gutters that incorporate generators of various technologies with or without speed multipliers solidly tied to a Gondola (nacelle) governed by active guidance systems.
  • Leeward models are usually bipalas or monopalas, which are faster rotors than the previous ones with active or passive orientation systems.
  • the rotor torque is supported by the mechanical elements that form the power train and is transmitted to the gondola structure to the tower, shoe and ground.
  • the rigidity with which any variation of the torque is transmitted to the power train components to the generator causes power spikes that tend to destabilize the network and fatigue the turbine components.
  • one of the main objectives of the present invention is to eliminate the described rigidities by means of systems that can compensate, accumulate and restore variations, preventing them from affecting the uniformity of rotation of the generator, attenuating, as a consequence, power peaks and structural overloads. .
  • the structures that it comprises tend to be balanced, either with respect to their supports or, if they rotate, with respect to their axis of rotation.
  • the masses that form its components can, depending on their location, weigh or balance.
  • the bonds between components can be rigid or with certain degrees of freedom. The former, in the face of a disturbance, are stressed, while the latter, in the face of a disturbance, are accommodated by changing position, avoiding tension.
  • the pendulum will not only balance the torque, but in its displacement will accumulate potential energy when rising and yield it when descending. Therefore it will behave as a regulator that will tend to standardize the amount of energy injected into the grid, attenuating the peaks and softening the power valleys.
  • the pendulum When the torque increases,. due to a gust of wind, the pendulum, having less inertia, will react rising immediately, turning in the same direction as the turbine rotor, therefore without appreciable relative movement between the two, to a new equilibrium position, without affecting substantially to the rotation uniformity of the generator rotor.
  • any disturbance (burst) that causes an increase in torque will be used in: a) Accelerate the rotor and the slow shaft increasing its kinetic energy.
  • both the first and the second involve high costs and other problems.
  • the most interesting thing is to go to designs that are based on fast rotors, that capture the power at low driving torque (single blades or bipalas) to try to make sure that with the own weights (generator, brake disc and multiplier), conveniently located, balance said pair engine.
  • These weights will be complemented with a flywheel, which, in our design, can be housed on the fast axis of the multiplier, inside it, or outside, thus increasing the inertia of the rotating parts and acting as a counterweight.
  • the power captured by a wind turbine is a function of the area swept by the rotor, being another of the important objectives of the present invention to be able to vary the area swept by the rotor before any increase or decrease in the wind speed, compensating the peaks or valleys of the axial thrust, and therefore, of the captured power.
  • the swept area is a function of the dihedral angle sine, in our case it will be projected close to 155 ° under nominal power conditions. From this angle, any increase or decrease thereof caused by axial thrust will significantly modify the swept area and serve as the first compensator for power peaks or valleys.
  • the rotor being conceived as an oscillating rotor that adapts its dihedral angle until it finds the dynamic equilibrium caused, on the one hand, by the destabilizing moment created by the axial thrust and on the other, by the stabilizing moment created by the misalignment of the centrifugal forces of the blade and counterweight.
  • This floating reciprocating blade is the first burst damper. When the burst comes, the dihedral becomes smaller by decreasing the area, when the burst ceases, the dihedral becomes larger by increasing the area, this damping phenomenon helps to improve the stability of the power. In our design, this damping is performed by elastomers, located on the fork of the rotor, which when compressed allow variations of + 10 ° of the dihedral.
  • the rotor that best adapts to the desired low-torque conditions is the single-blade, which also has other clear advantages, such as describing a dihedral angle in its rotation movement that tends to distance itself from the tower depending on the radius, thus favoring a distance from the tower that minimizes the wake effect.
  • the angle of the blade with the 'vertical plane is close to 155 ° in terms of nominal power, which blade further away from the tower.
  • Shovel and counterweight are attached, through the hub, to the rotor fork by means of an oscillating ligature, formed by fork and cardan cross that allows it to transmit the motor torque and axial thrust for each balance angle giving the whole a degree of freedom to avoid the moments of pitch derived from the different speeds of the incident wind when passing the shovel at different heights of the ground.
  • the cross is integrated over the outer ring of a bearing that houses an auger whose carved crown forms the inner ring of said bearing where the rotor bushing is flanged.
  • the hub serves as a link between the blade and counterweight.
  • the blade is joined to the bushing by means of an elliptical flange and the counterweight, usually of molten lead, is joined by a cylindrical flange of smaller diameter because the bushing has a conical shape.
  • the bushing is connected by its central part to the mobile ring of the cross, which it crosses through an external flange. Counterweight, bushing and blade form the rotor.
  • the power control will be carried out by changing the pitch of the blade, using an endless screw, which located on the cross, acts on the crown carved into the inner ring of the bearing, to which the rotor is flanged. Its position is controlled by encoder. This mechanism will also serve as an aerodynamic brake, putting the shovel in flag.
  • the turbine gondola is a clearly differentiating element with respect to the classic wind turbine. Formed by two directly welded semi-funds, as a lentil, it has an aerodynamic shape to minimize wind thrust and so that its wake does not negatively influence the rotor's performance. Within the space occupied by the semi-funds are housed hydraulic components, control cabinets and gearmotors responsible for orienting the turbine. Unlike all known machines, in our design, multiplier, disc brake and generator are not inside the gondola.
  • the turbine of the invention provides a reversible execution gearmotor, which meshed through a pinion, on the inner ring of the bearing that supports the gondola, governs its position until the Machine connects to the network. Once the machine is connected, the engine brake is unlocked, leaving the gondola assembly free, as it is a self-tuning turbine.
  • This gearmotor-brake serves to unwind, when necessary, the cables that form the loop inside the tower, or to position the gondola where it interests, for example in maintenance operations.
  • the gondola assembly is a convenient condition to achieve a correct self-tuning of the machine.
  • the guarantee of the self-tuning in progress is total, since the timonant force (axial thrust) is applied, in leeward execution, at a great distance from the rudder axis, as it is applied to the dihedral bisector that encompasses the rotor, which Guarantees stability in progress.
  • the generator will separate from the pendulum to be mounted, in double shaft execution, on a large flywheel, located at the base of the tower, at ground level.
  • an oil-hydraulic power plant In the place occupied by the generator, in the pendulum, an oil-hydraulic power plant will be mounted that will drive the pressurized oil to a servo-controlled variable displacement motor, passing its ducts through a rotating fitting, located in the gondola, which will allow it to be oriented to the turbine, without twisting the hydraulic lines. The return of the hydraulic fluid will return to the plant through a second rotary fitting.
  • the flexibility provided by the oleohydraulic servomotor will allow you to adjust, at all times, its displacement to the one necessary to provide torque variable at constant revolutions, a condition required by the great inertia of the steering wheel that will oppose varying its speed.
  • Steering wheel and generator rotor will rotate stable and supportive, allowing the turbine rotor to accelerate and decelerate to work at constant ⁇ (lambda), which will improve its performance (that of the rotor). Since they are generators that can be synchronous (sources), it will allow us to adjust the cos ⁇ to the desired one, generating the quality of energy that interests us.
  • a hydraulic torque coupler will be sandwiched between the oleohydraulic servo motor shaft and the generator shaft.
  • a pump coupled to the steering wheel will be installed in the place of the generator causing a more uniform flow that will avoid the formation of water hammer. If it were to pump from deep wells, the pump would be submerged in depth and its axis driven through the steering wheel, by means of gimbal transmission. For this, the tower will be installed directly over the well.
  • the described wind turbine of compensated motor torque therefore, represents an innovative solution of unknown characteristics and operation, until now for this purpose, reasons that together with its practical utility, provide it with a foundation enough to obtain the privilege of exclusivity that is requested.
  • Figure number 1. Shows a schematic side elevation view of the compensated parmotor wind turbine, object of the invention, in a preferred embodiment example of one-sided, leeward execution, showing in it the main parts and elements of which it consists.
  • Figure number 2.- Shows a schematic side elevation view of a variant embodiment of the turbine according to the invention, in an alternative example of execution with hydrostatic transmission, generator and large flywheel at the base of the tower.
  • Figure number 3. It shows a front elevation view of the turbine shown in figure 1, in operation, being able to appreciate in it the direction of rotation and the compensating effect of the pendulum.
  • Figure number 4. Shows two schematic views, in lateral section, of the elements that make up the pendular assembly, in the event that it incorporates the generator, appreciating in detail the configuration and arrangement of the same.
  • Figure number 5. Shows a perspective view of the pendular wind turbine in single-sided, leeward execution, such as that shown in figure 1, in which, in enlarged detail, the elements constituting the rotor and those shown are shown. integrate the propeller pitch drive.
  • Figure 6. It shows an enlarged view in lateral section where the arrangement of the pendular assembly and the rotor assembly on the gondola and tower can be seen.
  • Figure 7. Shows an enlarged view in side section where the arrangement of the stabilization kit at the base of the tower is appreciated.
  • Figure 8. It shows an enlarged view in lateral section where the pendular assembly with the oil-hydraulic power plant and the ducts can be seen up to the rotary fitting, located in the gondola.
  • Figure 9. It shows an enlarged view, in side section where the arrangement of the stabilization kit is seen, in its version for pumping application, at the base of the tower.
  • the compensated torque wind turbine which is recommended, consists of a self-tuning turbine with a single-blade rotor (1), preferably arranged in the lee of the tower (8) as shown in Figure 1. , alternatively being able to be located in windward, by means of the suitable variations of its structure, for example by means of a design of the same in the form of boomerang.
  • Said rotor (1) is oscillating, damped by elastomers (10) located on the periphery of the fork (16), coupled to a slow shaft (3) that passes through a hose (2) which holds a multiplier (5), a generator (6) and a brake disc (13), through a first bearing (4) that allows them to pendulum to compensate in their angular displacement to the engine torque releasing the gondola (9) from this effort.
  • the multiplier set (5), generator (6) and brake disc (13) form the pendulum or pendulum assembly (28).
  • the gondola (9) formed by two semi-funds as a lentil in which the hydraulic components, control cabinets and gearmotors (14) are in charge of guiding the turbine, in the start-up phase by engaging with the inner ring of another bearing of timona Terms (7), flanged to the end of the tower (8).
  • a cranked arm (15) starts, at whose upper end the hose (2) is traversed by the slow shaft (3), which aligns the rotor (1) with the pendulum assembly (28) r through two bearings, one it is the rotor bearing (18), and the other is the bearing (4) that supports the pendulum (28).
  • the oscillating rotor (1) is formed by the blade (12) attached to the counterweight (18), through the hub (17), by means of flanges.
  • the bushing (17) joins through its central part to the mobile ring of the cross (19), which it crosses, through an external flange.
  • a 28m diameter rotor turbine (1) in single-blade execution capable of capturing 200 Kw is taken as an example. at 11 m / s, when turning at 64.8 rpm with a torque of 2947 daNm. From this data (torque 2947 daNm), the pendulum assembly is determined and dimensioned, which is going to compensate for it by looking for the adequate mass arrangement (multiplier (5), generator (6), and brake-disc (13)) so that located at a convenient distance (arm of the pendulum), it is possible to balance the torque at a certain angle.
  • HGw ⁇ 2 (I uz (sen 2 ⁇ -cos 2 ⁇ ) + (I uu -I zz ) sen ⁇ * eos ⁇ )
  • HGw Fm eos ⁇ * trust (active zone)
  • T rh eos ⁇ * trust ⁇ 2 (I U2 (sen 2 ⁇ -cos 2 ⁇ ) + (I uu -I zz ) sen ⁇ * eos ⁇ ) Being:
  • I uz the product of inertia of the uz plane
  • I zz moment of inertia according to z axis (long axis blade)
  • the invention advocates a Offset torque wind turbine that has the particularity of arranging the elements that form the power train, that is, the multiplier (5), the generator (6) and the brake disc (13) in a pendular way, being suspended from the sleeve (2), by means of a first bearing (4) aligned with the axis (3) of the rotor (1) so that it allows them to rotate, compensating in an angular displacement to the torque delivered by the rotor (1) until it is balanced, preventing said pair from being transmitted to a gondola (9), tower (8) and a shoe that are unloaded.
  • This pendular assembly accumulates potential energy when rising in its angular displacement and yields it when the burst ceases and descends turning in the opposite direction to the rotation of the turbine rotor (1) restoring turns to the generator rotor (6), serving this effect as power regulator that will tend to standardize the amount of energy delivered to the network, softening the peaks and valleys through passive mechanical systems.
  • any gust of wind which modifies the axial thrust on the rotor (1), it adapt the dihedral angle generated by the blade (12), in its rotation movement by modifying its swept area, to the dihedral of about 155 ° in nominal conditions and being in dynamic equilibrium, on the one hand the stabilizing moment created by the misalignment of the masses of blade (12) and counterweight (18), and of the other, the destabilizing moment created by the result of the axial thrust of the wind.
  • This adaptation of the swept area is the first passive damping system for peaks and power valleys and thrusts on the turbine structure.
  • the turbine has a high inertia flywheel (11) located in line with the generator shaft (6) that can be located both inside the multiplier (5) and in the exterior thereof, acting as a brake disc (13) and in any case, always on the fast axle (29).
  • the transmission of power between the rotor (1) and slow shaft (3) is carried out by means of oscillating ligatures through forks (16) and cross (19).
  • the oscillation of the cross is limited to ⁇ 10 °, by means of a set of elastomers (10) to the oscillation axis (w-w) of the rotor (1).
  • the fork (16) and cross (19) assembly allows transmitting the torque and axial thrust for each angle of balance providing the set with a degree of freedom that prevents the transmission of pitching moments derived from the wind speed difference incident, when passing the shovel (12) at different heights of the ground in its rotation movement.
  • a crown and auger mechanism is contemplated, integrated in the cross (19), in which the crown constitutes the movable ring (21) of a double-row ball or roller bearing, carved in its central part and the screw (20) is integrated in the outer ring, fixed, of the bearing that forms the cross (19), as seen in Figure 4.
  • the bushing On the mobile ring (21) the bushing
  • This mechanism allows controlling the pitch of the propeller to adjust the power captured by the turbine when it is driven by a hydraulic or electric motor.
  • the bushing (17) serves as a link between the blade (12) and the counterweight (18). These three elements constitute the rotor (1).
  • the turbine of the invention provides for a reversible-running gearmotor (14), which meshed through a pinion, on the carved inner bearing ring (7) that Holds the gondola (9), governs its position until the machine connects to the network. Once the machine is connected, the engine brake is unlocked, leaving the gondola assembly (9) free.
  • This gearmotor-brake (14) is used to unwind, when necessary, the cables that form the loop inside the tower (8), or to position the gondola (9) where it is of interest, for example in maintenance operations.
  • an oil-hydraulic plant (25) will be installed on the multiplier (5), in the place where the generator (6) was previously installed, leaving the plant (25) being part, together with the multiplier (5), of the pendulum assembly (28) replacing the generator (6) that is located at the base of the tower.
  • the generator (6) will be located at the foot of the tower (8), where it will be part of the stabilization kit consisting of a second flywheel (22) integral with the through axis of the generator (6), both of which are driven by servo motor oleohydraulic (23) of variable displacement, through a hydraulic coupler (24).
  • This stabilizer kit will be optional and will be flanged between the base of the shoe and the base of the tower (8), both bases with flanges of the same dimensions providing greater height to the rotor shaft (1).
  • the mechanical power at the output of the multiplier (5) will be transformed into oleohydraulic power in the form of flow x oil pressure, in the pump located in the oleohydraulic power plant (25) transmitted to the oleohydraulic servo motor (23) by means of pressure conduits, which through a rotating fitting (26), located in the gondola (9 ), will form a closed circuit.
  • the pump (27) will be located in depth and its axis will be driven through a cardan transmission from the second flywheel (22).
  • the torque compensation will be designed with a multiplier (5) of spaced parallel axes that will allow us to increase the lever arm, so that the compensating masses (generator (6) + flywheel (H)) are not excessive .
  • the compensating masses generator (6) + flywheel (H)
  • this multiplier (5) (see figure 4) held from a concentric bearing with the motor shaft that allows it to pendulate compensating said motor torque in its angular displacement, is designed with two multiplication stages, the first consisting of a multiplier Epicicloidal design of three or more satellites, ideal to support the high input pairs and a second stage formed by a chain transmission, suitable to separate the distance between axes.

Abstract

Turbina eólica de par motor compensado, constituida un rotor (1) monopala (12) acoplado a eje lento (3) con mangueta (2) sostenida' en góndola (9), sobre rodamiento de timonación (7), en el extremo de la torre (8), disponiendo los elementos del tren de potencia: multiplicador (5), generador (6) y freno (13) suspendidos de la góndola (9) mediante un primer rodamiento (4) alineado con el eje lento (3), formando un conjunto pendular (28) que les permite girar, compensando en su desplazamiento angular el par motor del rotor (1), en que dicho conjunto pendular (28) acumula energía potencial al elevarse en su desplazamiento angular y la cede, al cesar la ráfaga por descender girando en sentido contrario al de rotación del rotor (1) de la turbina, restituyendo vueltas al rotor del generador (6), sirviendo este efecto como regulador de potencia.

Description

TURBINA EOLICA DE PAR MOTOR COMPENSADO D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La invención, tal como expresa el enunciado de la presente memoria descriptiva, se refiere a una turbina eólica de par motor compensado.
Más en particular, el objeto de la invención se centra en una turbina eólica de par motor compensado gracias al péndulo inercial que incorpora, de tal forma que su innovador diseño estructural la hace capaz de captar la energía del viento con menor fatiga que las máquinas tradicionales, proporcionando energía más uniforme y de más calidad, por incorporar sistemas mecánicos pasivos que compensan, acumulan y restituyen los picos y valles de potencia provocados por las ráfagas del viento, asi como las variaciones instantáneas de la carga en lugares aislados de la red.
Ello la convierte en una turbina más compatible con la red eléctrica, capaz de trabajar conectada a redes débiles, por ser una máquina más tolerante, que provoca menos perturbaciones en la red.
Asi mismo resulta ventajosamente adecuada para trabajar sola o en paralelo con otras fuentes de energía a la hora de satisfacer las demandas energéticas en lugares aislados.
Básicamente la nueva turbina presenta la particularidad de que sitúa los elementos del tren de potencia (generador, disco de freno y multiplicador) de forma pendular, es decir, suspendidos en un rodamiento alineado con el eje del rotor de forma que les permite girar hasta equilibrar, en su desplazamiento, al par motor del rotor, liberando de este esfuerzo a la góndola, torre y zapata, siendo dicho principio igualmente aplicable a otras máquinas motoras, tal como aviones y barcos monohélice.
Opcionalmente, la turbina eólica de par motor compensado, en una variante de realización para aplicaciones aisladas o donde se quiera mejorar la calidad del suministro, se modifica y complementa con un conjunto (kit) que mejora la estabilidad y calidad del suministro de energía.
Esta modificación consiste en intercalar una transmisión hidrostática entre el multiplicador y el generador, de tal manera que el generador, en versión eje pasante, se ubica sobre un gran volante de inercia, sitos ambos en la base de la torre y accionados por un servomotor hidráulico de cilindrada variable, a través de un acoplador hidráulico.
Sobre el multiplicador y en el lugar del generador, se monta una central hidráulica con su bomba, filtros y accesorios de control.
Esta solución permite utilizar directamente generadores síncronos para conseguir el tipo de generación (activa o reactiva) que interese, dando al rotor la posibilidad de trabajar a Lambda (λ) constante, manteniendo el generador a revoluciones constantes con la tolerancia que permita la frecuencia de la red.
Cuando se trate de bombeo eólico o desalación por osmosis inversa, el generador, situado en la base de la torre, se sustituirá por una bomba que, solidaria al volante, producirá la energización del fluido más establemente .
Además por su reducido coste y mantenimiento, derivados de su sencillez, la turbina que se propone podrá ser rentable en emplazamientos de menor potencial eólico, aumentando con ello su difusión.
Por otra parte, por tratarse de una estructura menos sobrecargada, la turbina de la invención resulta, asi mismo, adecuada para sustituir antiguas turbinas, permitiendo aprovechar la torre, zapata e infraestructura eléctrica aumentando las áreas barridas por el rotor y conseguir más horas equivalentes en el mismo emplazamiento.
CAMPO DE APLICACIÓN DE LA INVENCIÓN
El campo de aplicación de la presente invención s encuentra dentro del sector de la industria dedicado al diseño, fabricación e instalación de las turbinas eólicas, aplicadas a generación a red, generación aislada, bombeo eólico y desalación por osmosis inversa.
ANTECEDENTES DE LA INVENCIÓN
Como es sabido, el viento es una energía que viene aprovechándose desde la antigüedad, en especial como ayuda a la navegación. Actualmente las modernas turbinas eólicas transforman esta energía en electricidad, vertiéndola a la red. Sin embargo, su falta de continuidad, y en especial su falta de uniformidad en cuanto a intensidad y dirección, provocan afecciones desfavorables, tanto para las propias turbinas como para la estabilidad del sistema eléctrico al que se conectan, cuya característica fundamental debe ser su continuidad en el suministro y la constancia de tensión y frecuencia.
Asi, como el viento se manifiesta, en la mayoría de las ocasiones, en forma de ráfagas de corta duración, éstas, al interceptar con el rotor de la turbina eólica provocan esfuerzos que afectan tanto a la fatiga de la misma como a la cantidad y calidad de la energía generada.
En este sentido, es importante recordar que cualquier variación de la velocidad del viento afecta: a) Al empuje (trust) sobre la turbina, que es proporcional al área barrida por el rotor y al cuadrado de la velocidad de viento.
b) Al par de rotación (torque) de la turbina que es proporcional al área barrida por el rotor y al cuadrado de la velocidad del viento.
c) A1 la velocidad de rotación del rotor que, en turbinas con rotor a velocidad variable, es directamente proporcional a la velocidad del viento.
Así pues, empuje, par y velocidad de rotación de la turbina y por tanto su potencia captada, quedan afectados ante cualquier variación de área barrida y de la velocidad del viento.
Estas variaciones generan cargas que son soportadas por la estructura de la propia turbina, a través de sus componentes mecánicos, y transmitidas hasta el suelo a través de la zapata.
Cuando los cambios son de la dirección del viento, se provocan pares de fuerzas derivados de la desalineación del empuje axial, que deben ser soportados, en las máquinas clásicas (tripala a barlovento-modelo danés) , por un conjunto de frenos y motorreductores con piñón atacando sobre la corona de timonación que sobrecargan y fatigan toda la estructura y sus componentes mecánicos, hasta llegar al suelo a través de la zapata. Todo esto por no ser turbinas autotimonantes .
La tecnología actual de máquinas eólicas, cuyo diseño se basa en el modelo danés (tripala a barlovento) resuelve estos problemas dimensionando las estructuras para estos regímenes de cargas y gobernando las máquinas con servosistemas activos de regulación y de control, capaces devencer a los fenómenos naturales, hasta los límites que la seguridad aconseje y la economía soporte.
En el estado actual de la técnica, es conocida la existencia de dos familias de turbinas, las de eje horizontal y las de eje vertical. Dentro de las primeras que son las que pudieran afectarnos podríamos hacer una primera clasificación entre las que tienen el rotor a barlovento y las que lo sitúan a sotavento de la torre.
Los modelos a barlovento son, en general, lo que conocemos como modelo danés, es decir, tripalas que incorporan generadores de diversas tecnologías con o sin multiplicadores de velocidad sólidamente amarrados a una Góndola (nacelle) gobernada por sistemas de orientación activos. Los modelos a sotavento son por lo general bipalas o monopalas, que son rotores más rápidos que los anteriores con sistemas de orientación activos o pasivos .
En todos los casos conocidos, el par motor del rotor es soportado por los elementos mecánicos que forman el trende potencia y es transmitido a la estructura de la góndola hasta la torre, zapata y terreno. La rigidez con que cualquier variación del par es transmitida a los componentes del tren de potencia hasta el generador provoca picos depotencia que tienden a desestabilizar la red y a fatigar los componentes de la turbina.
Respecto de la variación del área barrida y de su influencia en los parámetros técnicos de la máquina, diremos que ningún fabricante conocido utiliza este concepto como regulador de potencia, ya que todos ofrecen áreas barridas constantes (afectadas sólo por la flexión de las palas) a diferencia de la presente patente que considera el área barrida por el rotor como una variable de control de picos y/o valles de potencia y atenuación de empujes.
Asi pues, uno de los principales objetivos de la presenteinvenciónes eliminarlas descritas rigideces mediante sistemas que puedan compensar, acumular y restituiresas variaciones, evitando que éstas afecten a la uniformidad de giro del generador, atenuando, como consecuencia, los picos de potencia y las sobrecargas estructurales.
Construir una máquina que se fatigue menos, concibiéndola mediante mecanismos que la doten de mayores grados de libertad de manera que las propias fuerzas del viento que la castigan, sirvan para protegerla, acomodándose a nuevas posiciones de trabajo en equilibrio (sistemas pasivos) es la filosofia del diseño objeto de la presente invención, debiendo señalarse que por parte del solicitante, no se tiene conocimiento de la existencia de ninguna otra invención que presente unas características técnicas estructurales y de configuración semejantes.
EXPLICACIÓN DE IiA INVENCIÓN
Asi, la turbina eólica de par compensado que la presente invención preconiza se configura por si misma como una destacable novedad dentro de de su campo de aplicación, yaque alcanza satisfactoriamente los objetivos anteriormente señalados, cuyos detalles caracterizadores, técnicos, estructurales y de configuración, se exponen exhaustivamente a continuación, estando asimismo adecuadamente recogidos en las reivindicaciones anexas que acompañan a la presente memoria descriptiva.
Asi pues, en todo diseño mecánico se tiende a buscar que las estructuras que comprende estén equilibradas, bien con respecto a sus apoyos o bien, si rotan, con respecto a su eje de rotación. Las masas que forman sus componentes pueden, según su ubicación, pesar o contrapesar. Lasligaduras entre componentes pueden ser rígidas o con ciertos grados de libertad. Las primeras, ante una perturbación, se tensionan, mientras que las segundas, ante una perturbación, se acomodan cambiando de posición, evitando tensionarse. Pues bien, el resultado de situar las masas de ciertos componentes de la turbina (generador, disco de freno y multiplicador) en forma pendular, suspendidos de un rodamiento alineado con el eje del rotor, que les permita girar hasta equilibrar en su desplazamiento al par motor del rotor, liberando de este esfuerzo a la góndola, torre y zapata, es uno de los principios mecánicos de la turbina objeto de la presente invención, siendo dicho principio, tal como se ha mencionado anteriormente, igualmente aplicable a máquinas motoras como aviones y barcos monohélice.
Con independencia de lo anterior, todos los componentes que forman el tren de potencia, tienen en si mismos o en su interior elementos que están girando a diferentes velocidades y que acumulan energías cinéticas de rotación muy superiores a la del propio conjunto pendular. Entendiendo como inercia la propiedad de un cuerpo a oponerse a cualquier cambio de posición o de velocidad de rotación o translación, diremos, que cuando la suma de las inercias de las partes rotantes de los diversos elementos que forman el tren de potencia (ejes y engranajes y/o poleas, si fuese el caso, disco de freno y rotor del generador) sea superior a la inercia del propio péndulo contrapesante (multiplicador , disco freno, generador) , ante cualquier perturbación del par motor, reaccionará antes el de menor inercia, es decir el péndulo, afectando mucho menos al de mayor inercia, las masas rotantes . Para mejorar este efecto, el disco de freno se situará en el eje rápido y se acompañará de un volante de inerciadimensionado en función decada aplicación para proporcionar la estabilidad de marcha deseada.
Este es otro objetivo que persigue la presente invención, es decir, que cualquier perturbación del par motor sea absorbida en su mayor parte por el conjunto pendular sin casi afectar a la uniformidad de rotación del generador. Aspecto, éste, intimamente ligado a la calidad de la electricidad generada.
Por otra parte, elpéndulo, no sólo equilibrará el par motor, si no que en su desplazamiento acumulará energía potencial al elevarse y la cederá al descender. Por tanto se comportará como un regulador que tenderá a uniformizar la cantidad de energía inyectada a red, atenuando los picos y suavizando los valles de potencia.
Cuando el par motor aumente, . debido a una ráfaga de viento, el péndulo, por tener menor inercia, reaccionará elevándose de inmediato, girando en el mismo sentido que el rotor de la turbina, por tanto sin movimiento relativo apreciable entre ambos, hasta una nueva posición de equilibrio, sin afectar sensiblemente a la uniformidad de rotación del rotor del generador.
Por el contrario cuando cese la ráfaga, al caer el par motor, el péndulo descenderá a ocupar una nueva posición de equilibrio, en su descenso irá en sentido contrario al de rotaciónde la turbina y restituirá su energia potencial al rotor del generador devolviendo una cantidad de vueltas en función de la relación de desmultiplicación, que es fija, entre rotor y generador.
Si la relación de desmultiplicación fuese, a modo de ejemplo 1/32 significarla que cuando el péndulo dé H de vuelta (90°) el eje del rotor del generador, habrá girado 32/4=8 revoluciones. Asi pues, el péndulo en su descenso restituye, en forma de revoluciones del rotor del generador, la energía acumulada en su desplazamiento . Por tanto, en máquinas concebidas al amparo de la presente invención, cuando se quiera maximizar este efecto, se tenderá a buscar altas relaciones de desmultiplicación entre rotor y generador, característica que se da en máquinas de gran potencia por los grandes diámetros del rotor.
En resumen, cualquier perturbación (ráfaga) que provoque un aumento del par motor, se empleará en: a) Acelerar el rotor y el eje lento incrementando su energía cinética.
b) Incrementar la energía cinético-potencial del conjunto pendular elevándolo hasta una nueva posición de equilibrio.
c) Incrementar la energía cinética de las masas rotantes que forman el tren de potencia, incluyendo el rotor del generador, disco de freno y volante de inercia . Repartiéndose estos incrementos de forma inversamente proporcional a sus respectivas inercias .
Por otra parte, para compensar el par motor se necesitarán grandes masas pendentes, o bien, grandes brazos del péndulo, tanto lo primero como lo segundo suponen altos costes y otros problemas. Lo más interesante es ir a diseños que se basen en rotores rápidos, que capten la potencia a bajo par motriz (monopalas o bipalas) para tratar de que con los pesos propios (generador, disco de freno y multiplicador) , convenientemente ubicados, lograr equilibrar dicho par motor. Estos pesos irán complementados con un volante de inercia, que, en nuestro diseño, podrá ir alojado en el eje rápido del multiplicador, dentro del mismo, o fuera, aumentando, asi, la inercia de las partes rotantes y actuando de contrapeso.
Tal como se ha comentado en el aparatado anterior, la potencia captada por una turbina eólica es función del área barrida por el rotor, siendo otro de los objetivos importantes de la presente invención conseguir variar el área barrida por el rotor ante cualquier aumento o disminución de la velocidad del viento, compensando los picos o valles del empuje axial, y por tanto, de la potencia captada.
Como el área barrida es función del seno del ángulo diedro, en nuestro caso éste se proyectará próximo a 155° en condiciones de potencia nominal. A partir de este ángulo cualquier aumento o disminución del mismo provocado por el empuje axial modificará sensiblemente el área barrida y servirá como primer compensador de los picos o valles de potencia.
Esto se consigue al estar el rotor concebido como un rotor oscilante que adapta su ángulo diedro hasta encontrarel equilibrio dinámico provocado, de una parte, por el momento desestabilizante creado por el empuje axial y de otra, por el momento estabilizante creado por la desalineación de las fuerzas centrifugas de la pala y contrapeso. Este vaivén flotante de la pala es el primer amortiguador de ráfagas. Cuando viene la ráfaga, el diedro se hace menor disminuyendo el área, cuando cesa la ráfaga, el diedro se hace mayor aumentando el área, este fenómeno de amortiguación contribuye a mejorar la estabilidad de la potencia. En nuestro diseño, esta amortiguación se realiza por elastómeros, situados en la horquilla del rotor, que al comprimirse permiten variaciones de + 10° del diedro.
Por tratarse de un diseño a sotavento, deberemos distanciar adecuadamente la pala de la torre para evitar el efecto sombra derivado de la estela de la torre. En nuestro diseño esto se consigue dimensionando adecuadamente la longitud de la mangueta. Como resulta que el perfil del ancho de la estela para una torre circular es más reducido para ciertos números de Reynold (Re <103 preferible o Re > 5*105) , buscaremos los diámetros más adecuados para minimizar el efecto estela en el rango de velocidades de viento de operación de la máquina.
Por otra parte, el rotor que mejor se adapta a las condiciones deseadas de bajo par motor es el monopala, que, además, presenta otras ventajas claras como es el de describir en su movimiento de rotación un ángulo diedro que tiende a distanciarse de la torre en función del radio, favoreciendo asi, el conseguir un distanciamiento de la torre que minimice el efecto estela. En nuestro diseño pretendemos, por las razones que ya hemos explicado, que el ángulo de la pala con el ' plano vertical sea cercano a los 155° en condiciones de potencia nominal, lo cual aleja aún más la pala de la torre.
Cabe señalar que el rotor en versión monopala se contrapesa para su equilibrio tanto estático como dinámico. Por su parte, la distribución de masas a lo largo de la pala, asi como la colocación del contrapeso son objeto de un detallado estudio para lograr el ángulo deseado de equilibrio dinámico de rotación que se pretende. Pala y contrapeso se unen, a través del buje, a la horquilla de rotor mediante una ligadura oscilante, formada por horquilla y cruz cardan que le permite transmitir el par motor y el empuje axial para cada ángulo de equilibrio dotando al conjunto de un grado de libertad que evite los momentos de cabeceo derivados de las diferentes velocidades del viento incidente al pasar la pala a diferentes alturas del suelo. En nuestro diseño, la cruz se integra sobre el aro exterior de un rodamiento que aloja un tornillo sinfin cuya corona tallada la forma el aro interior de dicho rodamiento donde se embrida el buje del rotor.
El buje sirve de nexo de unión de la pala y contrapeso. En nuestro diseño, la pala se une al buje mediante brida eliptica y el contrapeso, generalmente de plomo fundido, se une mediante brida cilindrica de menor diámetro por tener el buje forma troncocónica . El buje se une por su parte central al aro móvil de la cruz, al que atraviesa mediante brida exterior. Contrapeso, buje y pala forman el rotor.
El control de potencia se realizará por cambio de paso de la pala, mediante un tornillo sinfin, que ubicado en la cruz, actúa sobre la corona tallada en el aro interior del rodamiento, al que se embrida el rotor. Su posición se controla por encóder. Este mecanismo servirá también como freno aerodinámico, poniendo la pala en bandera.
Otro efecto buscado en estos rotores rápidos es la eliminación de fatiga alternante en las palas. Mediante una velocidad de rotación adecuada y una correcta distribución de masas, que sitúa el centro de gravedad de la pala donde nos interese (próximo al 50% de su longitud) conseguiremos que para cualquier ángulo de rotación dominen las fuerzas centrifugas sobre las flectoras, de tal manera que el esfuerzo dominante sea la tracción, para asi eliminar el cambio de signo provocado por la componente flectora, contribuyendo asi, a que toda el área de la pala soporte el esfuerzo. El rotor monopala por ser más rápido, favorece este efecto.
Por tratarse de un monopala dispondremos de un bajo par de arranque en la turbina, por lo tanto, en el caso de tratarse de una aplicación en isla, se dispondrá de un conjunto de baterias para iniciar el arranque de la turbina. Y en caso de conectarse a red se provocará el arranque absorbiendo energía de la misma según una rampa de aceleración controlada.
La góndola de la turbina es un elemento claramente diferenciador con respecto a las clásicas turbina eólicas . Formada por dos semifondos directamente soldados, a modo de lenteja, tiene forma aerodinámica para minimizar el empuje del viento y que su estela no influya negativamente en el rendimiento del rotor. Dentro del espacio ocupado por los semifondos se alojan componentes hidráulicos, armarios de control y motorreductores encargados de orientar la turbina. A diferencia de todas las máquinas conocidas, en nuestro diseño, multiplicador, disco-freno y generador no están en el interior de la góndola. De la góndola, formando parte de la misma, arranca un brazo acodado en cuyo extremo sostiene una mangueta, atravesada por el eje lento, que alineará el rotor con el conjunto pendular que forma el tren de potencia, a través de dos rodamientos, uno será el rodamiento de rotor, situado a sotavento de la mangueta y otro rodamiento que sostiene el péndulo situado a barlovento de la mangueta.
Para la orientación con máquina parada, la turbina de la invención prevé disponer de un motorreductor-freno de ejecución reversible, que engranado a través de un piñón, sobre el aro interior del rodamiento que sostiene la góndola, gobierna la posición de ésta hasta que la máquina conecta a la red. Una vez que la máquina está conectada, se desbloquea el freno del motor, dejando libre el conjunto de la góndola, por tratarse de una turbina autotimonante. Este motorreductor-freno, sirve para desenrollar, cuando sea necesario, los cables que forman el bucle dentro de la torre, o para posicionar la góndola donde interese, por ejemplo en operaciones de mantenimiento.
Conseguir equilibrar estáticamente, con respecto al eje de timonación, el conjunto de la góndola es condición conveniente para lograr una correcta autotimonación de la máquina. La garantía de la autotimonación en marcha es total, ya que la fuerza timonante (el empuje axial) se aplica, en ejecución sotavento, a gran distancia del eje de timonación, por estar aplicado en la bisectriz del diedro que abarca el rotor, lo que garantiza la estabilidad en marcha.
En el diseño del conjunto pendular se ha buscado un multiplicador de ejes paralelos, de ejecución extralarga, para conseguir que el centro de gravedad del péndulo se distancie lo suficiente como para que en su desplazamiento angular y con las masas propias del generador y volante, pueda compensar el par motor a unos 55° y asi conseguir el efecto buscado. El singular diseño del multiplicador de ejes paralelos en ejecución extralarga parte de un diseño en dos etapas, la primera la del eje lento formada por un tren epicicloidal y la segunda la del eje rápido, con transmisión por cadena para conseguir la distancia entre ejes buscada. En el eje rápido del multiplicador y dentro del mismo se ubica un volante de inercia que además de contrapesar dotará al conjunto de una gran estabilidad en marcha y asi lograr que las inercias de las partes rotantes superen con creces la inercia del propio péndulo. El resto hasta los 90°, queda como reserva de seguridad ante frenadas de emergencia.
En nuestro diseño, se ha prestado especial atención a la longitud de la mangueta ya que interesa, de una parte, separar la pala para minimizar el efecto sombra de la torre, y por otra interesa, de una parte, aproximar el centro de gravedad del péndulo al eje de timonación de la torre para evitar que en su movimiento se generen efectos giroscópicos destimonantes no deseados . En la opción con transmisión hidrostática, el generador seseparará del péndulo para montarse, en ejecución doble eje, sobre un gran volante de inercia, sito en la base de la torre, a nivel del suelo. En el lugar que ocupaba el generador, en el péndulo, se montará una central oleohidráulica que impulsará el aceite a presión hasta un motor de cilindrada variable servocontrolada, pasando sus conductos a través de un racor rotativo, sito en la góndola, que permitirá orientarse a la turbina, sin retorcer los conductos hidráulicos. El retorno del fluido hidráulico, volverá a la central atravesando un segundo paso de racor rotativo .
La flexibilidad que nos proporciona el servomotor oleohidráulico, permitirá ajustar, en todo momento, su cilindrada a la necesaria para aportar par variable a revoluciones constantes, condición exigida por la gran inercia del volante que se opondrá a variar su velocidad. Volante y rotor del generador girarán estables y solidarios, permitiendo al rotor de la turbina acelerarse y decelerarse para trabajar a λ (lambda) constante, lo que mejorará su rendimiento (el del rotor) . Por tratarse de generadores que pueden ser síncronos (fuentes) nos permitirá ajustar el cosφ al deseado generando la calidad de energía que interese.
En el caso de aplicaciones aisladas con generación a la demanda, la gran inercia acumulada en el volante nos permitirá ganar el tiempo necesario para ajustar el paso de la hélice (pitch) y captar más fácilmente la potencia demandada sin necesidad de emplear electrónica de potencia, ni resistencias disipadoras de la energía sobrante.
Al objeto de que el rotor de la turbina pueda arrancar con facilidad, se intercalará un acoplador hidráulico de par entre el eje del servomotor oleohidráulico y el eje del generador. Cuando se trate de bombear o desalar por osmosis inversa se instalará en el lugar del generador una bomba acoplada al volante provocando un flujo más uniforme que eludirá la formación de golpes de ariete. Si se tratase de bombear desde pozos profundos, la bomba iría sumergida en profundidad y su eje accionado a través del volante, mediante transmisión cardán. Para ello la torre se instalará directamente sobre el pozo.
La descrita turbina eólica de par motor compensado, representa, por consiguiente, una solución innovadora de características y funcionamiento desconocidos, hasta ahora para tal fin, razones que unidas a su utilidad práctica, la dotan de fundamento suficiente para obtener el privilegio de exclusividad que se solicita.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña a la presente memoria descriptiva, como parte integrante de la misma, de un juego de planos, en los que con carácter ilustrativo y no limitativo se ha representado lo siguiente: La Figura número 1.- Muestra una vista esquemática en alzado lateral, de la turbina eólica de parmotor compensado, objeto de la invención, en un ejemplo de realización preferida de ejecución monopala a sotavento, apreciándose en ella las principales partes y elementos de que consta.
La Figura número 2.- Muestra una vista esquemática en alzado lateral de una variante de realización de la turbina según la invención, en un ejemplo alternativo de ejecución con transmisión hidrostática, generador y gran volante de inercia en la base de la torre.
La Figura número 3.- Muestra una vista en alzado frontal de la turbina mostrada en la figura 1, en funcionamiento, pudiéndose apreciar en ella el sentido de rotación y el efecto compensador del péndulo. La Figura número 4.- Muestra sendas vistas esquemáticas, en sección lateral, de los elementos que conforman el conjunto pendular, en el caso de que este incorpore el generador, apreciándose en detalle la configuración y disposición de los mismos. La Figura número 5.- Muestra una vista en perspectiva de la turbina eólica pendular en ejecución monopala a sotavento, tal como la mostrada en la figura 1, en la que, en detalle ampliado, se muestran los elementos que constituyen el rotor y los que integran el accionamiento del paso de la hélice.
La Figura 6.- Muestra una vista ampliada en sección lateral donde se aprecia la disposición del conjunto pendular y del conjunto de rotor sobre la góndola y torre.
La Figura 7.- Muestra una vista ampliada en sección lateral donde se aprecia la disposición del kit de estabilización en la base de la torre.
La Figura 8. - Muestra una vista ampliada en sección lateral donde se aprecia el conjunto pendular con la central oleohidráulica y los conductos hasta el racor rotativo, sito en la góndola.
La Figura 9.- Muestra una vista, ampliada, en sección lateral donde se aprecia la disposición del kit de estabilización, en su versión para aplicación de bombeo, en la base de la torre.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de las mencionadas figuras, y de acuerdo con la numeración adoptada, se puede apreciar en ellas un ejemplo de realización preferida de la in- vención asi como una variante alternativa de la misma, las cuales comprenden las partes y elementos que se detallan y describen a continuación, habiéndose utilizado para designarlas en las figuras las siguientes referen- cias numéricas:
1. rotor
2. mangueta
3. eje lento
4. primer rodamiento (conjunto pendular)
5. multiplicador
6. generador
7 . rodamiento de timonación
8 . torre
9. góndola
10 . elastómeros
11 . volante de inercia
12. pala
13. disco de freno
14. motorreductor-freno
15. brazo acodado
16. horquilla
17. buje
18. contrapeso
19. cruz
20. sinfín
21. aro móvil
22. segundo volante de inercia
23. servomotor oleohidráulico
24. acoplador hidráulico
25. central oleodinámica
26. racor rotativo 27 . bomba
28. conjunto pendular
29. eje rápido
Asi, tal como se aprecia en dichas figuras la turbina eólica de par motor compensado, que se preconiza consiste un una turbina autotimonante con rotor (1) monopala, dispuesto preferentemente a sotavento de la torre (8) tal como el representado en la figura 1, pudiendo alternativamente estar situado a barlovento, mediante las adecuadas variaciones de sus estructura, por ejemplo mediante un diseño de la misma en forma de boomerang.
Dicho rotor (1) es oscilante, amortiguado por elastómeros (10) situados en la periferia de la horquilla (16), acoplada a un eje lento (3) que atraviesa una mangueta (2) la cual sostiene un multiplicador (5), un generador (6) y un disco de freno (13), a través de un primer rodamiento (4) que les permite pendular hasta compensar en su desplazamiento angular al par motor liberando de este esfuerzo a la góndola (9) .
El conjunto multiplicador (5), generador (6) y disco de freno (13) forman el péndulo o conjunto pendular (28) .
La góndola (9) formada por dos semifondos a modo de lenteja en cuyo interior se alojan los componentes hidráulicos, armarios de control y motorreductores (14) encargados de orientar la turbina, en la fase de arranque mediante engrane con el aro interior de otro rodamiento de timonación (7), embridado al extremo de la torre (8) .
De la góndola (9)Λ formando parte de la misma arranca un brazo acodado (15) , a cuyo extremo superior se amarra la mangueta (2) atravesada por el eje lento (3), que alinea el rotor (1) con el conjunto pendular (28) r a través de dos rodamientos, uno es el rodamiento de rotor (18), y el otro es el rodamiento (4) que sostiene al péndulo (28) .
Por su parte el rotor oscilante (1) lo forman la pala (12) unida al contrapeso (18), a través del buje (17), mediante bridas. A su vez el buje (17) se une por su parte central al aro móvil de la cruz (19), a la que atraviesa, mediante brida exterior.
En un ejemplo práctico de realización de la invención se toma como ejemplo una turbina de 28m de diámetro de rotor (1) en ejecución monopala capaz de captar 200 Kw. a 11 m/s, cuando gire a 64,8 rpm con un par motor de 2947 daNm. A partir de estos datos (par motor 2947 daNm) , se determina y dimensiona el conjunto pendular, que lo va a compensar buscando la adecuada disposición de masas (multiplicador (5), generador (6), y disco- freno (13)) de forma que situados a una distancia (brazo del péndulo) conveniente, se consiga equilibrar el par motor a un ángulo determinado.
A continuación generamos una tabla con pesos y distancias de los centros de gravedad con respecto al eje x-x del péndulo para cada componente y asi comprobar que para un brazo de 1,4 m y un ángulo próximo a 55° se consigue equilibrar el par motor de la turbina.
COMPONENTE MASA DIST CG BRAZO MOMENTO
Kg. m 55° EQUILIBRANTE m*kg MULTIPLICADOR 2.830 80 0,78 0,64 1.808 ,71
CARCASA DISCO FRENO 70,00 1,46 1,20 83,72
DISCO FRENO 106,55 1,40 1,15 122,20
GENERADOR 1 .300, 00 1,40 1,15 1 .490, 86
TOTAL 4 .307, 35 3 .505, 48
Vemos que el momento equilibrante (3.505,48 mKg) es ligeramente superior que el par motor (2.947 daNm) y que por lo tanto lo equilibrará para un desplazamiento angular inferior a 55°.
En la siguiente tabla comprobaremos que los momentos de inercia con respecto al eje de las partes rotantes que forman el conjunto pendular, superan en 5,93 veces a los del propio péndulo.
PARTES ROTANReducción TES MASA MOMENTO Relación Omega al eje
Kg. INERCIA al eje lento Kg. * m2 lento Rad./s I xx
Kg. * ni2
EJE LENTO MÜLTIP 279, 20 14 ,89 1,00 6, 59 14,89
EJE INTERMEDIO MULTIP 180, 80 4, 10 4,00 26, 36 65,60
EJE REENVIÓ MULTIP 204, 00 6, 76 4,00 26, 36 108,16
EJE RÁPIDO MULTIP 102, 40 0, 95 23,50 154 ,87 524,64
VOLANTE INERCIA INTERNO 649, 20 54 ,70 23,50 154 r87 30.208,08
DISCO FRENO 106, 55 7, 00 23,50 154 r87 3.865,75
ROTOR DEL GENERADOR 300, 00 3, 60 23,50 154 ,87 1.988,10
MASA TOTAL PARTES ROTANTES 1822,15
MOMENTO DE INERCIA REDUCIDO AL EJE LENTO
(Partes rotantes del péndulo) (A) 36.775,21 MOMENTO DE INERCIA DEL ROTOR DEL AEROGENERADOR 26.000,00
MOMENTO DE INERCIA TOTAL DE LAS PARTES ROTANTES DEL TREN DE POTENCIA 62.775,21
PÉNDULO MASA MOMENTO DISTANCIA Reducción
Figure imgf000026_0001
MASA TOTAL PÉNDULO
4.307,35
MOMENTO DE INERCIA DEL PÉNDULO CON RESPECTO AL EJE LENTO (B) 6. 196,71
RELACIÓN A / B = 5 , 93
El resultado obtenido garantiza que ante una ráfaga que provoque una variación del par motor reaccionará antes el de menor inercia (péndulo) sin casi afectar al rotor del generador. Condición, ésta, que garantiza generar energía más uniforme y por tanto de más calidad.
Para aclarar como el rotor (1) adapta el diedro en función de las ráfagas del viento, modificando asi su área barrida y amortiguando los empujes del viento sobre la turbina, se reproduce la ecuación que rige en equilibrio dinámico en la que para un rotor a revoluciones constantes y turbina enfrentada al viento se cumplirá:
Variación del momento cinético del rotor (1) según el w (momento equilibrante) = momento del empuje (trust) de la parte activa de la pala (12) (momento desequilibrante) .
HGw = ω 2 ( Iuz ( sen2 θ-cos2 θ) + ( Iuu-Izz ) sen θ* eos θ ) A su vez , HGw = Fm eos θ * trust ( zona activa )
De donde , Trh eos θ * trust = ω 2 ( IU2 ( sen2 θ-cos2 θ ) + ( Iuu-Izz) sen θ* eos θ ) Siendo :
u: eje normal al eje de oscilación pala (w) y normal al eje longitudinal de la pala (z)
Tth- el brazo de trust
θ: ángulo diedro con el plano de rotación
ω: velocidad angular de rotor (constante)
Iuz: el producto de inercia del plano u-z
Iuu: momento de inercia según eje u
Izz: momento de inercia según eje z (eje long.pala)
A partir de aqui se puede determinar el ángulo de equilibrio del diedro en función de la velocidad del viento y su correspondiente variación del área barrida.
Figure imgf000027_0001
En la tabla anterior vemos cómo afecta la velocidad del viento sobre la variación del diedro y del área barrida y por tanto su efecto amortiguador de ráfagas .
En resumen, la invención preconiza una turbina eólica de par motor compensado que presenta la particularidad de disponer los elementos que forman el tren de potencia, es decir, el multiplicador (5), el generador (6) y el disco-freno (13) de forma pendular, estando suspendidos de la mangueta (2), mediante un primer rodamiento (4) alineado con el eje (3) del rotor (1) de forma que les permite girar, compensando en su desplazamiento angular al par motor entregado por el rotor (1) hasta equilibrarlo, evitando que dicho par sea transmitido a góndola (9), torre (8) y zapata que quedan descargados.
Este conjunto pendular acumula energía potencial al elevarse en su desplazamiento angular y la cede al cesar la ráfaga y descender girando en sentido contrario al de rotación del rotor (1) de la turbina restituyendo vueltas al rotor del generador (6), sirviendo este efecto como regulador de potencia que tenderá a uniformizar la cantidad de energía entregada a la red, suavizando los picos y valles mediante sistemas mecánicos pasivos.
Ante cualquier perturbación del par motor, provocado por una ráfaga de viento, ésta afectará, en primer lugar, al conjunto pendular (28) que se adaptará automáticamente a su nueva posición de equilibrio, sin afectar sensiblemente a la uniformidad de giro del rotor del generador (6) , por ser las inercias de las partes rotantes de los componentes que forman el tren de potencia, superiores a las inercias de las masas del propio conjunto pendular (28), lo que se traducirá en generar energía más uniforme y de más calidad mediante sistemas mecánicos pasivos. Además, ante cualquier ráfaga de viento, que modifique el empuje axial sobre el rotor (1) , éste adaptará el ángulo diedro que genera la pala (12) , en su movimiento de rotación modificando su área barrida, al diedro de unos 155° en condiciones nominales y estar en equilibrio dinámico, de una parte el momento estabilizante creado por la desalineación de las masas de pala (12) y contrapeso (18), y de la otra, el momento desestabilizante creado por la resultante del empuje axial del viento. Esta adaptación del área barrida, inversamente proporcional a la velocidad del viento, supone el primer sistema pasivo de amortiguación de picos y valles de potencia y de empujes sobre la estructura de la turbina.
Para mejorar la uniformidad de giro del rotor del generador (6) la turbina cuenta con un volante de gran inercia (11) ubicadoen linea con el eje del generador (6) que puede estar situado tanto en el interior del multiplicador (5) como en el exterior del mismo, haciendo las veces de disco de freno (13) y en cualquier caso, siempre en el eje rápido (29) .
Por su parte la transmisión de potencia entre el rotor (1) y eje lento (3) se realiza mediante ligaduras oscilantes a través de horquillas (16) y cruz (19). La oscilación de la cruz está limitada a ±10°, mediante un conjunto de elastómeros (10) al eje de oscilación (w-w) del rotor (1) .
El conjunto horquilla (16) y cruz (19) , permite transmitir el par motor y el empuje axial para cada ángulo de equilibrio dotando al conjunto de un grado de libertad que evite la transmisión de momentos de cabeceo derivados de la diferencia de velocidades del viento incidente, al pasar la pala (12) a diferentes alturas del suelo en su movimiento de rotación. Cabe señalar que para controlar el paso de la hélice se contempla un mecanismo corona y tornillo sinfín, integrado en la cruz (19) , en el que la corona constituye el aro móvil (21) de un rodamiento de doble hilera de bolas o rodillos, tallado en su parte central y el tornillo sinfín (20) se integra en el aro exterior, fijo, del rodamiento que forma la cruz (19) , tal como se observa en la figura 4. Sobre el aro móvil (21) se embrida el buje
(17) del rotor (1) . Este mecanismo permite controlar el paso de la hélice para ajustar la potencia captada por la turbina cuando es accionado por un motor hidráulico o eléctrico.
El buje (17) sirve de nexo de unión entre pala (12) y contrapeso (18) . Estos tres elementos constituyen el rotor (1) . Cabe señalar también que, para la orientación con máquina parada, la turbina de la invención prevé disponer de un motorreductor-freno (14) de ejecución reversible, que engranado a través de un piñón, sobre el aro interior tallado de rodamiento (7) que sostiene la góndola (9), gobierna la posición de ésta hasta que la máquina conecta a la red. Una vez que la máquina está conectada, se desbloquea el freno del motor, dejando libre el conjunto de la góndola (9) . Este motorreductor-freno (14) sirve para desenrollar, cuando sea necesario, los cables que forman el bucle dentro de la torre (8), o para posicionar la góndola (9) donde interese, por ejemplo en operaciones de mantenimiento.
Finalmente debe mencionarse que el sistema descrito de turbina pendular de par motor compensado en el que los elementos que forman el tren de potencia (multiplicador (5), generador (6), freno (13)) están suspendidos mediante un rodamiento (4), alineado con el eje (3) del rotor (I), de forma que les permite pendular, compensando en su desplazamiento angular el par motor del rotor (1) hasta equilibrarlo, es igualmente aplicable, con las correspondientes modificaciones, a otras máquinas motrices monohélice, como pueden ser barcos y aviones, en los que el generador (5) se sustituya por un motor y el chasis, se sustituya por una mangueta.
En la variante de realización alternativa de la turbina con transmisión hidrostática se instalará una central oleohidráulica (25) sobre el multiplicador (5) , en el lugar que antes se instalaba el generador (6), quedando la central (25) formando parte, junto con el multiplicador (5), del conjunto pendular (28) en sustitución del generador (6) que se ubica en la base de la torre.
Por su parte el generador (6) se ubicará a pie de torre (8), donde formará parte del kit de estabilización compuesto por un segundo volante de inercia (22) solidario al eje pasante del generador (6), estando accionados ambos mediante servomotor oleohidráulico (23) de cilindrada variable, a través de un acoplador hidráulico (24) .
Este kit estabilizador, será opcional y se embridará entre la base de la zapata y la base de la torre (8), ambas bases con bridas de las mismas dimensiones proporcionando mayor altura al eje del rotor (1) . En esta aplicación la potencia mecánica a la salida del multiplicador (5) , se transformará en potencia oleohidráulica en forma de caudal x presión de aceite, en la bomba sita en la central oleohidráulica (25) transmitida hasta el servomotor oleohidráulico (23) mediante conductos a presión, que atravesando un racor rotativo (26), sito en la góndola (9), formarán un circuito cerrado.
La flexibilidad proporcionada por la variación de la cilindrada del servomotor (23) permitirá mantener revoluciones casi constantes en el conjunto generador (6) + volante (22) con independencia de las revoluciones del rotor (1) que trabajará λ (lambda) constante, mejorando el rendimiento del rotor. Esta aplicación será de interés cuando se trate de generar energía de forma más uniforme, en especial, en aplicaciones aisladas o cuando el generador (6) se conecte a redes débiles. Si la aplicación fuese el bombeo eólico o desalación por osmosis inversa, en este kit de estabilización se sustituirá el generador (6) por una bomba (27) que, solidaria al segundo volante (22), aspirará e impulsará el fluido provocando un flujo más uniforme. Bomba (27) y volante (22) serán accionados por el servomotor (23) a través de acoplador hidráulico (24) .
Además, en caso de bombeo desde pozo, la bomba (27) se ubicará en profundidad y su eje será accionado a través una transmisión cardan a partir del segundo volante de inercia (22).
Queremos destacar que el diseño del multiplicador (5) es vital para conseguir el objetivo buscado de compensación par motor y de amortiguación, almacenamiento y cesión de energia.
Para obtener el primer objetivo, la compensación del par motor se diseñará un multiplicador (5) de ejes paralelos distanciados que nos permitirán aumentar el brazo de palanca, para que las masas compensadoras (generador (6)+volante (H)) no sean excesivas . Para obtener el segundo objetivo
(amortiguación, almacenamiento y cesión de energia) se buscará que las inercias de las partes rotantes superen con creces la inercia del propio conjunto pendular, de ahi la ubicación de un volante de inercia (11) en el eje rápido (29) (más alejado) que además de actuar de contrapeso sirva para aumentar las inercias de las partes rotantes, de forma que ante una perturbación del par motor, ésta, lo afecte lo menos posible a la uniformidad de giro del rotor del generador.
Asi, pues, este multiplicador (5) (ver figura 4) sostenido desde un rodamiento concéntrico con el eje motor que le permite pendular compensando en su desplazamiento angular dicho par motor, se diseña con dos etapas de multiplicación, la primera compuesta por un multiplicador de diseño epicicloidal de tres o más satélites, idóneo para soportar los altos pares de entrada y una segunda etapa formada por una transmisión de cadena, adecuada para separar la distancia entre ejes.
Sobre el eje rápido (29) y dentro del propio multiplicador (5) , se colocará dicho volante de inercia
(11), que además de actuar de contrapeso, uniformizará la velocidad de giro del mismo y por tanto del eje del generador al que se acopla de forma directa. En el otro extremo del eje rápido (29) se sitúa el disco de freno (13) .
Descrita suficientemente la naturaleza de la presente invención, asi como la manera de ponerla en práctica, no se considera necesario hacer más extensa su explicación para que cualquier experto en la materia comprenda su alcance ylas ventajas que de ella se derivan, haciendo constar que, dentro de su esencialidad, podrá ser llevada a la práctica en otras formas de realización que difieran en detalle de la indicada a titulo de ejemplo, y a las cuales alcanzará igualmente la protección que se recaba siempre que no se altere, cambie o modifique su principio fundamental.

Claims

R E I V I N D I C A C I O N E S
1.- TURBINA EÓLICA DE PAR MOTOR COMPENSADO, del tipo constituido por un rotor (1) monopala contando con una única pala (12) acoplado a un eje lento (3) que atraviesa una mangueta (2) sostenida de una góndola (9), dispuesta sobre un rodamiento de timonación (7), situado en el extremo superior de la torre (8), fijada mediante la correspondiente zapata, caracterizada por el hecho de disponer los elementos que forman el tren de potencia, es decir, multiplicador (5), generador (6) y freno (13) suspendidos de la góndola (9) mediante un primer rodamiento (4) alineado con el eje lento (3) del rotor (1), formando un conjunto pendular (28) que les permite girar, compensando en su desplazamiento angular el par motor del rotor (1) , hasta equilibrarlo, evitando que dicho par sea transmitido a la góndola (9), a la torre (8) y a la zapata; en que dicho conjunto pendular (28) acumula energía potencial al elevarse en su desplazamiento angular y la cede al cesar la ráfaga y descender girando en sentido contrario al de rotación del rotor (1) de la turbina, restituyendo vueltas al rotor del generador (6), sirviendo este efecto como regulador de potencia que suaviza los picos y valles mediante sistemas mecánicos pasivos .
2.- TURBINA EÓLICA DE PAR MOTOR COMPENSADO, según la reivindicación 1, caracterizada por el hecho de que la estructura y configuración del conjunto pendular (28) es tal que las inercias de las partes rotantes de los componentes que forman el tren de potencia son muy superiores a las inercias de las masas del propio conjunto pendular (28) .
3.- TURBINA EÓLICA DE PAR MOTOR COMPENSADO, según las reivindicaciones 1 y 2, caracterizada por que el multiplicador (5) es de ejes paralelos de ejecución extralarga, formado por dos o más etapas de multiplicación, en el que la etapa lenta, es de diseño c epicicloidal, con tres o mas satélites, adecuada para transmitir el par motor y la ¿ etapa rápida es una transmisión por cadena adecuada para conseguir la ejecución extralarga, y porque sobre su eje rápido (29) se ubica un volante de inercia (11) que da estabilidad 10 de marcha y aumenta la inercia de las partes rotantes, para que ante una perturbación del par motor, ésta repercuta sobre el conjunto pendular (28) sin perturbar la uniformidad de marcha del eje del generador (6) .
15
4.- TURBINA EÓLICA DE PAR MOTOR COMPENSADO, según las reivindicaciones 1 a 3, caracterizada por el hecho de que el rotor (1) es un rotor monopala oscilante, amortiguado por elastómeros (10) , ubicados 0
entre horquilla (16) y cruz (19) , con diedro de 155° en condiciones nominales al estar en equilibrio dinámico, de una parte el momento estabilizante creado por la desalineación de las masas de la pala (12), contrapeso (18) y de la otra, el momento desestabilizante creado por la resultante del empuje axial del viento.
5.- TURBINA EÓLICA DE PAR MOTOR COMPENSADO, según reivindicaciones 1 a 4, caracterizadapor elQ hecho de que para controlar el paso de la hélice, se contempla la incorporaciónde un mecanismo corona y tornillo sinfin, integrado en la cruz (19) , en el que la corona constituye el aro móvil (21) de un rodamiento de doble hilera de bolas o rodillos, tallado en su parte central y el tornillo sinfin (20) se integra en el aro exterior, fijo, del rodamiento que forma la cruz (19) ; en que sobre dicho aro móvil (21) se embrida el buje (17) del rotor (1) .
6.- TURBINA EÓLICA DE PAR MOTOR COMPENSADO, según reivindicaciones 1 a 5, caracterizada por el hecho de que la góndola (9) es de sección elíptica, estando formada por dos semifondos soldados , a modo de lenteja, en cuyo interior aloja los sistemas hidráulicos, armarios eléctricos y motorreductores; y porque de la góndola (9) , formando parte de la misma, arranca a sotavento, un brazo acodado (15) que sostiene la mangueta (2) , el rotor (1) y el conjunto pendular (28) .
7.- TURBINA EÓLICA DE PAR MOTOR COMPENSADO, según la reivindicación 1, caracterizada por el hecho de que la disposición en que los elementos que forman el tren de potencia (multiplicador (5), generador (6) y volante (11) ) están suspendidos de la góndola (9) , mediante un rodamiento (4) alineado con el eje (3) del rotor (1) , de forma que les permite pendular, compensando en su desplazamiento angular el par motor del rotor (1) hasta equilibrarlo, es aplicable, con las correspondientes modificaciones, a otras máquinas motrices monohélice, como puedenser barcos y/o aviones, en los que el generador (6) se sustituye por un motor y el chasis se sustituye por una mangueta, o similar.
8.- TURBINA EÓLICA DE PAR MOTOR COMPENSADO según reivindicaciones 1,2,3,5 y 6 caracterizada porque en una variante de realización, con mayor uniformidad y calidad en el suministro de energía, se intercala una transmisión hidrostática entre el multiplicador (5) y el generador (6), de manera que el generador (6) en versión eje pasante, se ubica solidario a un segundo volante (22) , sitos ambos en la base de la torre (8) , siendo accionados por un servimotor oleohidráulico (23) de cilindrada variable a través• de un acoplador hidráulico (24) ; en que dicho conjunto forma un kit de estabilización; y en el que sobre el multiplicador (5) se monta una central oleohidráulica (25) formando, esta, parte del conjunto pendular (28) en sustitución del generador (6) que se ubica en la base de la torre.
9.- TURBINA EÓLICA DE PAR MOTOR COMPENSADO, según reivindicación 8, caracterizada por que cuando se aplica a bombeo eólico o desalación por osmosis inversa, dentro del kit de estabilización, el generador (6) se sustituye por una bomba (27) de eje pasante que proporciona un flujo energizado más estable; y porque, en caso de bombeo desde pozo, la bomba (27) se ubicará en profundidad y su eje será accionado a través una transmisión cardan a partir del segundo volante de inercia (22) .
PCT/ES2009/000348 2009-06-30 2009-06-30 Turbina eólica de par motor compensado WO2011000975A1 (es)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EA201101046A EA022481B1 (ru) 2009-06-30 2009-06-30 Ветряная турбина с компенсацией вращающего момента
CN200980160211.9A CN102803713B (zh) 2009-06-30 2009-06-30 补偿马达转矩风力涡轮机
EP09846732.7A EP2458199B1 (en) 2009-06-30 2009-06-30 Wind turbine with compensated motor torque
AU2009349161A AU2009349161B2 (en) 2009-06-30 2009-06-30 Wind turbine with compensated motor torque
ES09846732.7T ES2582785T3 (es) 2009-06-30 2009-06-30 Turbina eólica de par motor compensado
JP2012516804A JP5704464B2 (ja) 2009-06-30 2009-06-30 モータトルクが補償される風力タービン
US13/319,528 US8841794B2 (en) 2009-06-30 2009-06-30 Wind turbine with compensated motor torque
MX2012000008A MX353575B (es) 2009-06-30 2009-06-30 Turbina eólica de par motor compensado.
PCT/ES2009/000348 WO2011000975A1 (es) 2009-06-30 2009-06-30 Turbina eólica de par motor compensado
ZA2011/08736A ZA201108736B (en) 2009-06-30 2011-11-29 Wind turbine with compensated motor torque
CL2011003238A CL2011003238A1 (es) 2009-06-30 2011-12-21 Una turbina eolica de par motor compensado, constituido por un rotor con una unica pala acoplada a un eje que atraviesa una mangueta sostenida de una gondola, donde un multiplicador, generador y freno estan dispuestos suspendidos en la gondola mediante un primer rodamiento alineado con el eje, formando un conjunto pendular.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2009/000348 WO2011000975A1 (es) 2009-06-30 2009-06-30 Turbina eólica de par motor compensado

Publications (1)

Publication Number Publication Date
WO2011000975A1 true WO2011000975A1 (es) 2011-01-06

Family

ID=43410512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000348 WO2011000975A1 (es) 2009-06-30 2009-06-30 Turbina eólica de par motor compensado

Country Status (11)

Country Link
US (1) US8841794B2 (es)
EP (1) EP2458199B1 (es)
JP (1) JP5704464B2 (es)
CN (1) CN102803713B (es)
AU (1) AU2009349161B2 (es)
CL (1) CL2011003238A1 (es)
EA (1) EA022481B1 (es)
ES (1) ES2582785T3 (es)
MX (1) MX353575B (es)
WO (1) WO2011000975A1 (es)
ZA (1) ZA201108736B (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103291545A (zh) * 2012-02-22 2013-09-11 王梦川 可用于风电机的叶轮偏航系统
CN106870282A (zh) * 2017-03-30 2017-06-20 湘电风能有限公司 一种阵风下风电机组降载控制方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2949834B1 (fr) * 2009-09-10 2011-10-07 Conseil Et Tech Dispositif amortisseur
US8410627B2 (en) * 2009-10-30 2013-04-02 Stephen F. Cowap Self orienting vertical axis wind turbine
US9517388B2 (en) * 2009-12-07 2016-12-13 Uncharted Play, Inc. Energy storing device and method of using the same
WO2013155277A1 (en) * 2012-04-11 2013-10-17 Flodesign Wind Turbine Corp. Shrouded fluid turbine with active and passive yaw control
EP2674618B1 (en) * 2012-06-14 2016-05-04 Siemens Aktiengesellschaft Nacelle test apparatus
RU2502893C1 (ru) * 2012-08-31 2013-12-27 Борис Петрович Хозяинов Способ регулирования величины вращающего момента, угловой скорости вращения вертикально-осевой ветротурбины
RU2516732C2 (ru) * 2012-08-31 2014-05-20 Борис Петрович Хозяинов Способ регулирования угловой скорости вращения ветротурбины с вертикальной осью
US9691078B2 (en) 2012-09-21 2017-06-27 Uncharted Play, Inc. System for incentivizing charitable giving based on physical activity and a method of using the same
DE102012220502A1 (de) * 2012-11-09 2014-06-12 Wobben Properties Gmbh Windenergieanlage
CN104100463B (zh) * 2013-04-07 2016-02-10 沈元明 重力势能风力机
EP3001029B1 (en) * 2014-09-26 2018-12-12 GE Renewable Technologies Wind B.V. Counterweight systems for a wind turbine and methods
US10274048B2 (en) 2016-04-04 2019-04-30 Christopher Drew Gear system
RU2669722C2 (ru) * 2016-11-08 2018-10-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" Ветроэнергетическая установка
EP3705717A1 (en) * 2019-03-04 2020-09-09 Siemens Gamesa Renewable Energy A/S Foundation for a wind turbine and wind turbine
US10975732B2 (en) * 2019-04-04 2021-04-13 General Electric Company Rotor turning device for balancing a wind turbine rotor
KR102130094B1 (ko) 2019-04-09 2020-07-03 두산중공업 주식회사 풍력 발전기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0009767A2 (de) * 1978-10-11 1980-04-16 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Einblattrotor für Windturbinen und Verfahren zum Anfahren und Stillsetzen desselben
ES2179785A1 (es) * 2001-06-12 2003-01-16 Antoune Ivan Lahuerta Turbina eolica autotimonante.
WO2003019005A1 (en) * 2001-08-24 2003-03-06 William Currie A wind turbine and rotor assembly

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3204541A1 (de) * 1982-02-10 1983-08-25 Franz Xaver Prof. Dr.-Ing. 7030 Böblingen Wortmann Einblattwindturbine flair mit elastischen gliedern und mechanischen regel- und sicherheitseinrichtungen
CN1009020B (zh) * 1988-02-29 1990-08-01 达亚能源有限公司 风力涡轮桨距控制毂
US4863350A (en) * 1988-11-18 1989-09-05 Quarterman Edward A Air turbine
JP3029106U (ja) * 1996-03-18 1996-09-27 正孝 伊沢 風力発電機における風力回転装置
ES2163362B1 (es) * 1999-11-29 2003-04-01 Ecotecnia Societat Cooperativa Aerogenerador.
JP2001173549A (ja) * 1999-12-17 2001-06-26 Yamaha Motor Co Ltd 風力変換装置
DE10038602B4 (de) * 2000-08-08 2013-03-28 AEROGIE Verwaltungs GmbH Einblattvielpolwindkonverter
JP4159894B2 (ja) * 2003-02-06 2008-10-01 サクサ株式会社 発電設備及び発電設備における油圧装置
EP1706637B1 (en) * 2003-12-09 2014-02-12 New World Generation Inc. Wind turbine to produce electricity
JP2006077747A (ja) * 2004-09-01 2006-03-23 Iwata Kozo 複式一枚羽根風力発電装置
JP2006083839A (ja) * 2004-09-18 2006-03-30 Moriwaki Seisakusho:Kk 水平軸風車用トルクアーム発電装置及びその制御方法
JP2006249982A (ja) * 2005-03-09 2006-09-21 Mitsubishi Heavy Ind Ltd 風力発電装置
US7928593B2 (en) * 2007-11-28 2011-04-19 Vestas Wind Systems A/S Method for damping oscillations in a wind turbine
US8277184B2 (en) * 2010-04-22 2012-10-02 General Electric Company Tilt adjustment system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0009767A2 (de) * 1978-10-11 1980-04-16 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Einblattrotor für Windturbinen und Verfahren zum Anfahren und Stillsetzen desselben
ES2179785A1 (es) * 2001-06-12 2003-01-16 Antoune Ivan Lahuerta Turbina eolica autotimonante.
WO2003019005A1 (en) * 2001-08-24 2003-03-06 William Currie A wind turbine and rotor assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2458199A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103291545A (zh) * 2012-02-22 2013-09-11 王梦川 可用于风电机的叶轮偏航系统
CN106870282A (zh) * 2017-03-30 2017-06-20 湘电风能有限公司 一种阵风下风电机组降载控制方法
CN106870282B (zh) * 2017-03-30 2018-09-21 湘电风能有限公司 一种阵风下风电机组降载控制方法

Also Published As

Publication number Publication date
CN102803713A (zh) 2012-11-28
CN102803713B (zh) 2017-04-12
ZA201108736B (en) 2013-03-27
US20120133148A1 (en) 2012-05-31
AU2009349161A1 (en) 2012-01-19
ES2582785T3 (es) 2016-09-15
EP2458199A1 (en) 2012-05-30
MX353575B (es) 2018-01-19
AU2009349161B2 (en) 2015-07-16
US8841794B2 (en) 2014-09-23
JP5704464B2 (ja) 2015-04-22
JP2012531552A (ja) 2012-12-10
EP2458199B1 (en) 2016-04-13
EA022481B1 (ru) 2016-01-29
EA201101046A1 (ru) 2012-10-30
CL2011003238A1 (es) 2012-07-06
MX2012000008A (es) 2012-05-08
EP2458199A4 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
WO2011000975A1 (es) Turbina eólica de par motor compensado
CA2735345C (en) Vibration control apparatus of wind turbine generator and wind turbine generator
ES2179785B1 (es) Turbina eolica autotimonante.
US4710100A (en) Wind machine
KR101871529B1 (ko) 부체식 해상 풍력발전시설
EP0530315B1 (en) Free-yaw, free-pitch wind-driven electric generator apparatus
EP1677003A2 (en) Vibration load reduction system for a wind turbine
DK177730B1 (en) Partial pitch wind turbine with floating foundation
ES2952861T3 (es) Sistema de contrapeso para la instalación de palas de turbinas eólicas de buje equilibrado
ES2951389T3 (es) Dispositivo de amortiguación para turbinas eólicas en tierra y en alta mar
US9777707B2 (en) Windmill that generates exceptional amounts of electricity
WO2009050663A2 (es) Dispositivo generador de fuerza motriz
US20200355161A1 (en) Floating offshore wind power plant having a vertical rotor and modular wind farm comprising a plurality of such wind power plants
ES2370420T3 (es) Turbina eólica con revestimiento de soporte de carga.
US20110038726A1 (en) Independent variable blade pitch and geometry wind turbine
US9689379B2 (en) Potential energy translation to rotational acceleration mechanism
JPS61215464A (ja) 可変形状垂直軸風車
US20030015877A1 (en) Wind power plant
US20110156400A1 (en) Kinetic Energy Rotation System
ES2388628B2 (es) Aerogenerador de eje vertical.
RU2338922C2 (ru) Прецессирующий ветродвигатель с горизонтальным расположением вала
ES2315091B1 (es) Dispositivo para la generacion de energia electrica a partir de un fluido.
KR102063565B1 (ko) 벌룬에 의하여 공중에서 구동되는 풍력발전장치
JP2022167479A (ja) 垂直軸風力発電装置
KR20130009937A (ko) 날개각도 제어기능을 갖는 수직축 풍력발전시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160211.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846732

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 201101046

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: a201109332

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 2009846732

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012516804

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009349161

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/000008

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2009349161

Country of ref document: AU

Date of ref document: 20090630

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13319528

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0925304

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0925304

Country of ref document: BR

Free format text: IDENTIFIQUE O SIGNATARIO DA PETICAO NO 013110000478 DE 15/12/2011 E COMPROVE, CASO NECESSARIO, QUE TEM PODERES PARA ATUAR EM NOME DO DEPOSITANTE, UMA VEZ QUE BASEADO NO ARTIGO 216 DA LEI 9.279/1996 DE 14/05/1996 (LPI) "OS ATOS PREVISTOS NESTA LEI SERAO PRATICADOS PELAS PARTES OU POR SEUS PROCURADORES, DEVIDAMENTE QUALIFICADOS.".

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0925304

Country of ref document: BR

Free format text: PEDIDO RETIRADO EM RELACAO AO BRASIL POR NAO ATENDER AS DETERMINACOES REFERENTES A ENTRADA DO PEDIDO NA FASE NACIONAL E POR NAO CUMPRIMENTO DA EXIGENCIA FORMULADA NA RPI NO 2376 DE 19/07/2016.