WO2005064156A1 - Wind turbine comprising segmented blades - Google Patents

Wind turbine comprising segmented blades Download PDF

Info

Publication number
WO2005064156A1
WO2005064156A1 PCT/FR2004/050728 FR2004050728W WO2005064156A1 WO 2005064156 A1 WO2005064156 A1 WO 2005064156A1 FR 2004050728 W FR2004050728 W FR 2004050728W WO 2005064156 A1 WO2005064156 A1 WO 2005064156A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
wind turbine
segments
pivot
opt
Prior art date
Application number
PCT/FR2004/050728
Other languages
French (fr)
Inventor
Claude Bousquet
Marc Chabot
Original Assignee
Airbus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus filed Critical Airbus
Publication of WO2005064156A1 publication Critical patent/WO2005064156A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0236Adjusting aerodynamic properties of the blades by changing the active surface of the wind engaging parts, e.g. reefing or furling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind turbine whose twist of the blades can vary during its operation, and in particular, the means and methods for ensuring the control of this twist during its operation.
  • a wind turbine typically includes a mast whose base is fixed in solid foundations and whose top supports a nacelle.
  • the nacelle generally contains the essential means which allow the wind turbine to operate automatically: - at least one generator, - at least one braking system, - automated servo-control equipment.
  • the nacelle may also include a gearbox and servitudes such as a ventilation-cooling system and equipment dissipating thermal energy.
  • a propeller fixed to a hub and composed of one or more blades which can be crossed by an axis, is connected to the nacelle and to the instruments which it comprises, by means of a horizontal drive shaft. In order to capture enough energy, it is necessary to use large blades
  • this variable pitch mechanism allows the blades to be placed in a position where the lift is zero, the so-called “feathered” position, which stops the wind turbine and protects it from damage that could be caused by such winds.
  • This regulation mechanism is extremely expensive, but difficult to avoid if we want to improve the efficiency of the wind turbine, particularly at start-up and at high wind speeds.
  • the blades have a high mass. Thus, a 40 meter long blade has a mass of around 10 tonnes.
  • the rotary connection between the hub and the axis of the blade must therefore be strong and rigid enough to take account of the forces of inertial origin and aerodynamics to which the blade is subjected, which results in a significant increase in the mass and cost of the wind turbine.
  • an additional flap can also be installed on each blade. If a problem is detected (excessive speed for example), this flap, which functions as an airfoil of an airplane wing by increasing the drag of the blade, opens automatically or in a controlled manner which reduces the rotation speed of said blade.
  • current blades are generally manufactured in two half-shells assembled and delivered in one piece. The two half-shells are often made of composite materials based on glass fibers or carbon fibers.
  • a propeller As for a propeller, their shape is defined to take into account the speed vector of the aerodynamic flow at any point of the blade.
  • the setting of the aerodynamic profile varies as a function of the radius, to take account of the tangential speed due to the rotation, thus giving the blade a twist.
  • This twist is obtained during the manufacture of the part and determined so as to optimize the performance of said blade, at a very precise operating point, generally chosen as a function of the aerology characteristics of the area where the wind turbine is to be installed ( mean speed of the most frequently encountered winds).
  • a wind turbine blade is a flexible structure which deforms under the action of external forces (aerodynamic forces, inertial forces, ...) which are applied to it. It follows that the blade undergoes, during its operation, bending and twisting directly influencing its shape and in particular its twist, so that, even at said particular operating point, the twist which is specially associated with it, is not guaranteed. At other operating points, these parasitic flexions and twists, induced by the flexibility of the blade, make the twist even less adequate.
  • the method for giving, to each propeller blade of the wind turbine, the optimal twist at an operating point of said wind turbine is remarkable in that: - said blade is divided into at least three segments aerodynamically suitable form, each segment being distributed along the span of the blade and being capable of pivoting independently of each other about an axis r of articulation substantially parallel to a generatrix of said blade; and - said operating point control means integrated in one wind impose on each of said segments an angular position, about its axis of articulation r, such as to define an overall twist of the blade adapted to said operating point.
  • each angular position of said segments is associated with a specific twist of the blade, the characteristics of which will be established for each operating point of the wind turbine.
  • the control of the speed of rotation of the propeller and of the power is done by the control of the twist of the blades and not by the variation of the pitch of the blades.
  • the invention makes it possible to maximize the energy produced over a period of time, by starting the wind turbine even in light wind until a wind regime corresponding to the maximum power absorbable by the generator or the network to which it is connected.
  • a wind turbine of which each blade is divided into at least three segments of suitable aerodynamic shape, distributed according to the span of said blade and able to pivot independently of each other around a hinge axis substantially parallel to a generator of the blade, said wind turbine comprising actuation means capable of individually pivoting said segments around said axis, is remarkable in that control means are provided which, for at least certain operating points of said wind turbine , send a pivot order to said actuating means so that they impose on said segments a pivoted position capable of modifying the current twist of said blade into a twist adapted to the operating point concerned.
  • Said actuation means may include a damping device.
  • an active control of the twist of the blade is obtained, which makes it possible: - to optimize the characteristics of the blade, not only for the operating point of the wind turbine corresponding to the wind most frequently encountered but also for other operating conditions (starting, strong winds), - to increase the lift of each blade, therefore the propeller torque, especially at low speeds, - to dynamically correct the effects of overall deformations and differential deformations between the lower surface and upper surface of the blade.
  • the fragmentation into several segments of the blade, each segment thus being of size smaller than an equivalent monolithic blade allows much easier transport of said blades.
  • the reduced weight of each segment facilitates the mounting of the propeller on the nacelle and the erection of the wind turbine.
  • said articulation axis of said segments is at least substantially parallel to the longitudinal axis of the blade and passes through said segments in the zone where the profile of the segments is the thickest.
  • the central segment can be chosen from a catalog. This segment of variable length will allow to match the power of the generator, as recommended by the installer of the wind turbine.
  • the segments are in free rotation around their axis of articulation and comprise an additional flap on their trailing edge.
  • Said actuation means controlled by said control means, act directly on the position of said flaps, by modifying their angular setting relative to said segments. This modification of position imposes, on each segment, an angular position of equilibrium adapted to the operating point.
  • Said control means may comprise a table, established by calculation or by experimental means, capable of delivering a signal representative of an optimal pivoting angle - as regards the twisting of the blade - of said segments as a function of a plurality of operating parameters influencing the twist.
  • This table can be unique and be shaped to deliver a different signal, representative of the maximum pivot order, for each of the segments.
  • at least one sensor is provided near each propeller for each of said parameters. The measurements of said sensors are sent to said table, which delivers a signal representative of the optimal pivot angle. This signal is sent to said actuation means, which actuate said segments accordingly.
  • FIG. 1 shows a general view of a wind turbine according to the invention.
  • Figure 2 shows a close-up view of Figure 1.
  • Figure 3 shows a propeller blade according to one invention.
  • FIG. 4 describes a segment of a propeller blade according to the invention.
  • FIG. 5 is a block diagram of an embodiment of the means for controlling the rotation of the segments of FIGS. 2, 3 and 4.
  • FIG. 6 shows a segment of a propeller blade according to a particular embodiment.
  • the wind turbine 1 according to the invention and shown diagrammatically in FIGS. 1 and 2 comprises a mast 2, one of the ends of which is inserted into solid foundations and the l the opposite end supports a nacelle 4.
  • the nacelle 4 contains all the instruments which allow the wind turbine 1 to operate automatically such as a generator 6, a gearbox 8 (optionally), a braking system 10 and control means 12.
  • each blade 16 of the propeller 14 has been divided into three segments (16a, 16b, 16c) of appropriate aerodynamic shape, distributed according to the span of said blade 16, each of the three segments (16a , 16b, 16c) being able to pivot independently of each other about their axis of articulation 18 substantially parallel to a generatrix of the blade 16.
  • the axis of articulation 18 crosses said segments (16a, 16b, 16c) in the area where the profile is thickest.
  • the aerodynamic shape of the segments (16a, 16b, 16c) is determined according to conventional methods of designing a profile of a wind turbine blade.
  • the 16c is housed an actuating means 22, as described in FIG. 4.
  • a first end 22a of said means 22 is fixed to the articulation axis 18 of said segment.
  • the second end 22b is integral with the segment itself.
  • the nacelle comprises the control means 12 able to send said actuation means 22 a pivot order so that the latter impose on said segments (16a, 16b, 16c) a pivoted position capable of modifying the twist of the blade 16 into a twist. optimal aerodynamics for the operating point concerned.
  • the actuating means 22 can be of the actuator or electric motor type connected by a linkage 24 to said control means 12 so as to be able to pivot said segments (16a, 16b, 16c) about their articulation axis 18.
  • control means 12 capable of controlling the actuation means 22.
  • the means of command 12 comprise at least one table 26, established by calculation or experimentally, calculating the signals representative of the optimal values (0Cl op t, oc2 op t, 0c3 O pt) of the angle ⁇ of pivoting of the segments (16a, 16b, 16c ) as a function of a plurality of operating parameters, such as those mentioned above, namely: wind speed and direction, outside temperature, amplitude and frequency of gusts.
  • the wind turbine 1 comprises a plurality of sensors 28.1 to 28.n measuring the current value of each of the parameters used in table 26, the measurements of said sensors being addressed to the latter.
  • the table 26 delivers as many optimal values ( ⁇ l op t,. 0C2 opt ,.
  • each table 26 is then established to calculate a signal representative of a pivot angle ( ⁇ Xl op t, CC2 op t, 0c3 op t) for a single segment in particular.
  • the control means 12 can also have only one table 26 which is set up to take into account all the segments (16a, 16b, 16c) of the blade 16. This table could, for example, have as many outputs as there are segments.
  • This pivot movement has the effect of moving, for the segment into question, the result of the aerodynamic forces upstream of the articulation axis 18, towards the trailing edge 30 of said segment.
  • This pivoting can be achieved thanks, for example, to the extension of a jack, which will generate an incidence of said segment;
  • the control means 12 send to said actuation means 22, by means of the table 26, pivot orders such as the segments (16a , 16b, 16c) are put in aerodynamic equilibrium position according to their position on the radius of the propeller 14 and the speed of rotation of said propeller. In this position, the result of the aerodynamic forces x ⁇ passes through the articulation axis 18 of said segments (16a, 16b, 16c). Said segments then all have the same pivot angle and a different setting as a function of their position on the radius of the propeller 14. The wind turbine 1 is then controlled in maximum finesse until the maximum power of the generator 6 is reached;
  • the control means 12 send to said actuation means 22, via the table 26, a pivoting order aimed at reducing the angle of pivoting so that the power supplied by the propeller 14 remains within the limits of the generator 6.
  • This pivoting movement has the effect of displacing the resultant of the aerodynamic forces downstream of the articulation axis 18 of each segment, that is to say, towards their leading edge 31.
  • This pivoting can, for example, be obtained by the retraction of a jack, which generates a "stitching" moment of said segment.
  • Such a pivoting of the segments (16a, 16b, 16c) generates drag: the wind turbine 1 is then controlled in power; this operation is maintained until another dimensioning parameter is encountered, for example the structural strength of the mast 2 or of the blades 16.
  • the control means 12 send a suitable pivot order to cancel the lift of the segments (16a, 16b, 16c): the propeller 14 stops rotating and the segments are then in the safety position, in the so-called flag position.
  • the articulation axis 18 of said segments (16a, 16b, 16c) is at least substantially parallel to the longitudinal axis of the blade 16, which makes it possible to limit the difficulty of drawing up the table 26.
  • segments (16a, 16b) of standard foot and blade tip the adaptation of the blade 16 to its environment and the required power coming only from the central segment 16b, the shape and dimensions of which are appropriate.
  • the central segment 16b of variable length will then make it possible to match the power of the generator 6.
  • the segments (16a, 16b, 16c) are in free rotation around their axis of articulation 18. They comprise, on their trailing edge 30, an additional flap 32.
  • each segment is controlled by the flap associated with said segment.
  • the control means 12 depending on the aerology conditions encountered, send the actuation means 22 (not shown) a pivoting order (deflection). ) of the additional flap 32 adapted to the case of operation of the wind turbine 1.
  • the invention is not limited to the embodiments described in this document and in particular, regulation in "closed loop or the use of average orders pivot (oclopt, 0C2 opt , 0t3 op t) or sensor measurements 28.1 to

Abstract

The invention relates to a wind turbine comprising segmented blades. According to the invention, the blades (16) of the wind turbine (1) are divided into at least three segments (16a, 16b, 16c) which have a suitable aerodynamic shape, which are distributed along the span of the blade (16) and which can pivot independently of each other around a hinge axis (18) that is essentially parallel to a generatrix of the blade (16). The aforementioned segments (16a, 16b, 16c) are angularly positioned such as to define an aerodynamically-optimal overall blade (16) twist at all operating points.

Description

EOLIENNE AVEC PALES SEGMENTEES DESCRIPTION WIND TURBINE WITH SEGMENTED BLADES DESCRIPTION
Domaine technique La présente invention concerne une éolienne dont le vrillage des pales peut varier pendant son fonctionnement, et notamment, les moyens et procédés pour assurer le contrôle de ce vrillage lors du fonctionnement de celle-ci.Technical Field The present invention relates to a wind turbine whose twist of the blades can vary during its operation, and in particular, the means and methods for ensuring the control of this twist during its operation.
Etat de la technique La plupart des éoliennes modernes de puissance significative sont à axe horizontal. Typiquement, une telle éolienne comporte un mât dont la base est fixée dans de solides fondations et dont le sommet supporte une nacelle. La nacelle renferme généralement les moyens essentiels qui permettent à 1' éolienne de fonctionner automatiquement : - au moins un générateur, - au moins un système de freinage, - des équipements automatisés d'asservissement. La nacelle peut aussi comporter une boite de vitesses et des servitudes telle qu'un système de ventilation-refroidissement et des équipements dissipant de l'énergie thermique. Une hélice, fixée à un moyeu et composée d'une ou plusieurs pales pouvant être traversées par un axe, est reliée à la nacelle et aux instruments qu'elle comporte, au moyen d'un arbre de transmission horizontal. Afin de capter suffisamment d'énergie, il est nécessaire d'utiliser des pales de grandes dimensionsSTATE OF THE ART Most modern wind turbines with significant power have a horizontal axis. Typically, such a wind turbine includes a mast whose base is fixed in solid foundations and whose top supports a nacelle. The nacelle generally contains the essential means which allow the wind turbine to operate automatically: - at least one generator, - at least one braking system, - automated servo-control equipment. The nacelle may also include a gearbox and servitudes such as a ventilation-cooling system and equipment dissipating thermal energy. A propeller, fixed to a hub and composed of one or more blades which can be crossed by an axis, is connected to the nacelle and to the instruments which it comprises, by means of a horizontal drive shaft. In order to capture enough energy, it is necessary to use large blades
(certaines éoliennes ont des pales de plus de quarante mètres), ce qui permet d'augmenter la surface balayée par le disque de l'hélice, et, par voie de conséquence, la puissance obtenue. Compte tenu des variations possibles de la vitesse du vent et afin que l' éolienne reste dans des conditions de fonctionnement (vitesse de rotation et puissance) compatibles avec la résistance des éléments constitutifs et avec les exigences des générateurs, il est en général nécessaire de réguler le fonctionnement de l' éolienne ce qui peut être fait par la variation de l'angle de chaque pale autour de leur axe. Dans ce cas, la pale est fixée au moyeu au moyen d'une liaison ayant un degxé de liberté en rotation. En cas de vitesse de vent supérieure aux vitesses admissibles, ce mécanisme de pas variable permet de mettre les pales dans une position où la portance est nulle, position dite « en drapeau », ce qui arrête l' éolienne et la protège de dommages pouvant être provoqués par de tels vents. Ce mécanisme de régulation est extrêmement coûteux, mais difficilement évitable si l'on veut améliorer le rendement de l' éolienne en particulier au démarrage et dans les grandes vitesses de vent. Néanmoins, malgré l'utilisation de matériaux adaptés, les pales ont une masse élevée. Ainsi, une pale de 40 mètres de longueur a une masse d'environ 10 tonnes. La liaison rotative entre le moyeu et l'axe de la pale doit donc être suffisamment résistante et rigide pour prendre en compte les efforts d'origine inertielle et aérodynamique auxquels est soumise la pale, ce qui entraîne un augmentation significative de la masse et du coût de l' éolienne. Afin d'empêcher la pale d'accélérer, on peut aussi installer, sur chaque pale, un volet additionnel. Si un problème est décelé (vitesse excessive par exemple) , ce volet, qui fonctionne comme un aérofrein d'aile d'avion en augmentant la traînée de la pale, s'ouvre automatiquement ou de façon commandée ce qui réduit la vitesse de rotation de ladite pale. Structurellement, les pales actuelles sont généralement fabriquées en deux demi-coques assemblées et livrées en une seule pièce. Les deux demi-coques sont souvent réalisées en matériaux composites à base de fibres de verre ou de fibres de carbone. Comme pour une hélice de propulsion, leur forme est définie pour tenir compte du vecteur vitesse de l'écoulement aérodynamique en tout point de la pale. Ainsi, le calage du profil aérodynamique varie en fonction du rayon, pour tenir compte de la vitesse tangentielle due à la rotation, donnant ainsi un vrillage à la pale. Ce vrillage est obtenue à la fabrication de la pièce et déterminé de façon à optimiser les performances de ladite pale, en un point de fonctionnement bien précis, généralement choisi en fonction des caractéristiques d' aérologie de la zone où doit être implantée 1' éolienne (vitesse moyenne des vents les plus fréquemment rencontrés) . Puisque ce vrillage est optimisé pour un point de fonctionnement particulier, il en résulte a contrario qu'il ne peut pas être optimal pour les autres points de fonctionnement et que, plus on s'éloigne des caractéristiques de ce point de fonctionnement particulier, moins les performances de la pale sont bonnes et plus sa traînée est élevée. Malgré sa dimension et sa masse, une pale d'hélice d' éolienne est une structure souple qui se déforme sous l'action des forces extérieures (forces aérodynamiques, forces inertielles, ...) qui lui sont appliquées. Il en résulte que la pale subit, lors de son fonctionnement, des flexions et torsions influant directement sur sa forme et notamment son vrillage, de sorte que, même audit point de fonctionnement particulier, le vrillage qui lui est spécialement associé, n'est pas garanti. Aux autres points de fonctionnement, ces flexions et torsions parasites, induites par la souplesse de la pale, rendent le vrillage encore moins adéquat . Ces problèmes sont aussi compliqués par les contraintes environnementales thermiques, avec des effets de déformations globales (dilatation en bloc) et des effets de déformations différentielles entre l'intrados et l'extrados de la pale, à la manière d'un bilame . Il en résulte donc des flexions et des torsions influençant le vrillage de la pale. De ce qui précède, on comprendra aisément que la technique actuelle ne permet pas d'optimiser correctement le vrillage d'une pale d'hélice d' éolienne pour des conditions d' aérologie variables et, par conséquent, ne permet pas de bénéficier de toute la puissance qu'il est économiquement intéressant d'obtenir de l' éolienne. En outre, comme déjà mentionné auparavant, les pales de grande dimension sont lourdes, ce qui pose des problèmes de transport, de montage et d'entretien. Il est en effet délicat de transporter une pièce si encombrante. Par ailleurs, l'érection de l' éolienne est une opération complexe et coûteuse car les masses à déplacer à de grandes hauteurs sont importantes.(some wind turbines have blades of more than forty meters), which makes it possible to increase the surface swept by the disc of the propeller, and, consequently, the power obtained. Given the possible variations in wind speed and in order for the wind turbine to remain in operating conditions (rotation speed and power) compatible with the resistance of the constituent elements and with the requirements of the generators, it is generally necessary to regulate the operation of the wind turbine which can be done by varying the angle of each blade around their axis. In this case, the blade is fixed to the hub by means of a connection having a degree of freedom of rotation. If the wind speed exceeds the permissible speeds, this variable pitch mechanism allows the blades to be placed in a position where the lift is zero, the so-called "feathered" position, which stops the wind turbine and protects it from damage that could be caused by such winds. This regulation mechanism is extremely expensive, but difficult to avoid if we want to improve the efficiency of the wind turbine, particularly at start-up and at high wind speeds. However, despite the use of suitable materials, the blades have a high mass. Thus, a 40 meter long blade has a mass of around 10 tonnes. The rotary connection between the hub and the axis of the blade must therefore be strong and rigid enough to take account of the forces of inertial origin and aerodynamics to which the blade is subjected, which results in a significant increase in the mass and cost of the wind turbine. To prevent the blade from accelerating, an additional flap can also be installed on each blade. If a problem is detected (excessive speed for example), this flap, which functions as an airfoil of an airplane wing by increasing the drag of the blade, opens automatically or in a controlled manner which reduces the rotation speed of said blade. Structurally, current blades are generally manufactured in two half-shells assembled and delivered in one piece. The two half-shells are often made of composite materials based on glass fibers or carbon fibers. As for a propeller, their shape is defined to take into account the speed vector of the aerodynamic flow at any point of the blade. Thus, the setting of the aerodynamic profile varies as a function of the radius, to take account of the tangential speed due to the rotation, thus giving the blade a twist. This twist is obtained during the manufacture of the part and determined so as to optimize the performance of said blade, at a very precise operating point, generally chosen as a function of the aerology characteristics of the area where the wind turbine is to be installed ( mean speed of the most frequently encountered winds). Since this twist is optimized for a particular operating point, it a contrario results that it cannot be optimal for the other operating points and that, the further one moves away from the characteristics of this particular operating point, the poorer the performance of the blade and the higher its drag. Despite its size and mass, a wind turbine blade is a flexible structure which deforms under the action of external forces (aerodynamic forces, inertial forces, ...) which are applied to it. It follows that the blade undergoes, during its operation, bending and twisting directly influencing its shape and in particular its twist, so that, even at said particular operating point, the twist which is specially associated with it, is not guaranteed. At other operating points, these parasitic flexions and twists, induced by the flexibility of the blade, make the twist even less adequate. These problems are also complicated by thermal environmental constraints, with global deformation effects (block expansion) and differential deformation effects between the lower surface and upper surface of the blade, like a bimetallic strip. This therefore results in bending and twisting influencing the twisting of the blade. From the foregoing, it will be readily understood that the current technique does not make it possible to correctly optimize the twisting of a wind turbine propeller blade for variable aerological conditions and, therefore, does not allow to benefit from all the power that it is economically interesting to obtain from the wind turbine. In addition, as already mentioned before, the large blades are heavy, which poses problems of transport, assembly and maintenance. It is indeed difficult to transport such a bulky piece. Furthermore, erecting the wind turbine is a complex and costly operation because the masses to be moved to great heights are significant.
Exposé de l'invention La présente invention permet de remédier à ces inconvénients. A cet effet, selon l'invention, le procédé pour conférer, à chaque pale d'hélice de l' éolienne, le vrillage optimal en un point de fonctionnement de ladite éolienne est remarquable en ce que : - on fractionne ladite pale en au moins trois segments de forme aérodynamique appropriée, chaque segment étant réparti selon l'envergure de la pale et étant apte à pivoter indépendamment les uns des autres autour d'un axe dr articulation sensiblement parallèle à une génératrice de ladite pale ; et - audit point de fonctionnement, des moyens de commande intégrés à l1 éolienne imposent à chacun desdits segments une position angulaire, autour de son axe dr articulation, telle qu'elle définit un vrillage global de la pale adapté audit point de fonctionnement . Ainsi, à chaque position angulaire desdits segments est associé un vrillage spécifique de la pale dont les caractéristiques seront établies pour chaque point de fonctionnement de l' éolienne. Contrairement à l' art antérieur, le contrôle de la vitesse de rotation de l'hélice et de la puissance se fait par le contrôle du vrillage des pales et non par la variation du pas des pales. Outre le meilleur rendement instantané, l'invention permet de maximiser l'énergie produite sur une période de temps, en faisant démarrer l' éolienne même par vent faible jusqu'à un régime de vent correspondant à la puissance maximale absorbable par le générateur ou le réseau auquel il est connecté. Dans un mode particulier de l'invention, il est possible, surtout par vent fort, de mettre en drapeau le ou les deux derniers segments de chaque pale les plus éloignés de l'arbre de transmission horizontal de l' éolienne et de réguler le fonctionnement de celle— ci avec le ou les segments les plus proches dudit arbre. En limitant ainsi l'envergure aérodynamiquement travaillante des pales, il est possible de continuer à faire fonctionner l' éolienne selon l'invention pour des vents où une éolienne conventionnelle serait mise à l'arrêt. Aussi, conformément à l'invention, une éolienne dont chaque pale est fractionnée en au moins trois segments de forme aérodynamique appropriée, répartis selon l'envergure de ladite pale et pouvant pivoter indépendamment les uns des autres autour d'un axe d'articulation sensiblement parallèle à une génératrice de la pale, ladite éolienne comportant des moyens d' actionnement aptes à faire pivoter individuellement lesdi s segments autour dudit axe, est remarquable en ce qu'il est prévu des moyens de commande qui, pour au moins certains points de fonctionnement de ladite éolienne, adressent un ordre de pivotement auxdits moyens d' actionnement pour que ceux-ci imposent auxdits segments une position pivotée apte à modifier le vrillage actuel de ladite pale en un vrillage adapté au point de fonctionnement concerné. Lesdits moyens d' actionnement pourront comporter un dispositif d'amortissement. Ainsi, grâce à la présente invention, on obtient un contrôle actif du vrillage de la pale, ce qui permet : - d'optimiser les caractéristiques de la pale, non seulement pour le point de fonctionnement de l' éolienne correspondant au vent le plus fréquemment rencontré mais aussi pour d' autres conditions de fonctionnement (démarrage, vents forts) , - d'augmenter la portance de chaque pale, donc le couple de l'hélice, notamment aux basses vitesses, - de corriger dynamiquement les effets de déformations globales et de déformations différentielles entre l'intrados et l'extrados de la pale. Par ailleurs, la fragmentation en plusieurs segments de la pale, chaque segment étant ainsi de taille inférieure à une pale monolithique équivalente, permet un transport beaucoup plus facile desdites pales. En outre, le poids réduit de chaque segment facilite le montage de l'hélice sur la nacelle et l'érection de l' éolienne. De préférence, ledit axe d'articulation desdits segments est au moins sensiblement parallèle à l'axe longitudinal de la pale et traverse lesdits segments dans la zone où le profil des segments est le plus épais. Afin de souscrire à un souci de réduction des coûts, on peut envisager de fabriquer des segments de pied et de bout de pale standard, l'adaptation de la pale à son environnement et à la puissance requise provenant du (ou des) segment (s) central (aux) de forme, de nombre et de dimensions appropriées. Le segment central pourra être choisi dans un catalogue. Ce segment de longueur variable permettra de s'accorder à la puissance du générateur, telle que préconisée par l'installateur de l' éolienne. Dans une variante de réalisation, les segments sont en rotation libre autour de leur axe d' articulation et comportent un volet additionnel sur leur bord de fuite. Lesdits moyens d' actionnement, commandés par lesdits moyens de commande, agissent directement sur la position desdits volets, en modifiant leur calage angulaire par rapport auxdits segments. Cette modification de position impose, à chaque segment, une position angulaire d'équilibre adaptée au point de fonctionnement. Ainsi, le pilotage du pivotement individuel de chaque segment est effectué par le volet associé audit segment. Lesdits moyens de commande peuvent comporter une table, établie par calcul ou par voie expérimentale, apte à délivrer un signal représentatif d'un angle de pivotement optimal — en ce qui concerne le vrillage de la pale — desdits segments en fonction d'une pluralité de paramètres de fonctionnement influant sur le vrillage. Parmi ces paramètres, on peut citer de manière non exhaustive : - répartition des vents locaux selon les lois de Weibull qui permettent de décrire les variations de vitesse du vent, - caractéristiques du générateur, - besoins du producteur (modalités de connexion au réseau) , - vitesse de démarrage (combinaison vent local/inertie de l' éolienne/ besoins du producteur) , - montée en puissance (capacité du profil de la pale à extraire le maximum d' énergie avec des segments à forte incidence) , - détection et réaction aux rafales (amplitudes et fréquences) , - vitesse maximale admissible de rotation de l'hélice, - vitesse maximale admissible du vent, - température extérieure pour tenir compte des effets de déformations globales et de déformations différentielles entre l'intrados et l'extrados de la pale. Cette table peut être unique et être conformée pour délivrer un signal différent, représentatif de l'ordre de pivotement maximal, à chacun des segments. D'autre part, il peut exister autant de tables que de segments de la pale, chaque table étant établie pour calculer un signal représentatif d'un angle de pivotement, ledit signal étant dédié à un seul segment en particulier. Dans le cas de l'utilisation d'une table, on prévoit à proximité de l'hélice au moins un capteur pour chacun desdits paramètres. Les mesures desdits capteurs sont adressées à ladite table, qui délivre un signal représentatif de l'angle de pivotement optimal. Ce signal est adressé auxdits moyens d' actionnement, qui actionnent en conséquence lesdits segments.Disclosure of the invention The present invention overcomes these drawbacks. To this end, according to the invention, the method for giving, to each propeller blade of the wind turbine, the optimal twist at an operating point of said wind turbine is remarkable in that: - said blade is divided into at least three segments aerodynamically suitable form, each segment being distributed along the span of the blade and being capable of pivoting independently of each other about an axis r of articulation substantially parallel to a generatrix of said blade; and - said operating point control means integrated in one wind impose on each of said segments an angular position, about its axis of articulation r, such as to define an overall twist of the blade adapted to said operating point. Thus, each angular position of said segments is associated with a specific twist of the blade, the characteristics of which will be established for each operating point of the wind turbine. Contrary to the prior art, the control of the speed of rotation of the propeller and of the power is done by the control of the twist of the blades and not by the variation of the pitch of the blades. In addition to the best instantaneous yield, the invention makes it possible to maximize the energy produced over a period of time, by starting the wind turbine even in light wind until a wind regime corresponding to the maximum power absorbable by the generator or the network to which it is connected. In a particular embodiment of the invention, it is possible, especially in strong winds, to feather the last two or more segments of each blade farthest from the horizontal drive shaft of the wind turbine and to regulate the operation of the latter with the segment or segments closest to said tree. By thus limiting the aerodynamically working span of the blades, it is possible to continue to operate the wind turbine according to the invention for winds where a conventional wind turbine would be shut down. Also, in accordance with the invention, a wind turbine of which each blade is divided into at least three segments of suitable aerodynamic shape, distributed according to the span of said blade and able to pivot independently of each other around a hinge axis substantially parallel to a generator of the blade, said wind turbine comprising actuation means capable of individually pivoting said segments around said axis, is remarkable in that control means are provided which, for at least certain operating points of said wind turbine , send a pivot order to said actuating means so that they impose on said segments a pivoted position capable of modifying the current twist of said blade into a twist adapted to the operating point concerned. Said actuation means may include a damping device. Thus, thanks to the present invention, an active control of the twist of the blade is obtained, which makes it possible: - to optimize the characteristics of the blade, not only for the operating point of the wind turbine corresponding to the wind most frequently encountered but also for other operating conditions (starting, strong winds), - to increase the lift of each blade, therefore the propeller torque, especially at low speeds, - to dynamically correct the effects of overall deformations and differential deformations between the lower surface and upper surface of the blade. Furthermore, the fragmentation into several segments of the blade, each segment thus being of size smaller than an equivalent monolithic blade, allows much easier transport of said blades. In addition, the reduced weight of each segment facilitates the mounting of the propeller on the nacelle and the erection of the wind turbine. Preferably, said articulation axis of said segments is at least substantially parallel to the longitudinal axis of the blade and passes through said segments in the zone where the profile of the segments is the thickest. In order to subscribe to a concern for cost reduction, we can consider manufacturing standard foot and blade tip segments, adapting the blade to its environment and to the required power from the segment (s) ) central (s) of appropriate shape, number and dimensions. The central segment can be chosen from a catalog. This segment of variable length will allow to match the power of the generator, as recommended by the installer of the wind turbine. In an alternative embodiment, the segments are in free rotation around their axis of articulation and comprise an additional flap on their trailing edge. Said actuation means, controlled by said control means, act directly on the position of said flaps, by modifying their angular setting relative to said segments. This modification of position imposes, on each segment, an angular position of equilibrium adapted to the operating point. Thus, the individual pivoting of each segment is controlled by the component associated with said segment. Said control means may comprise a table, established by calculation or by experimental means, capable of delivering a signal representative of an optimal pivoting angle - as regards the twisting of the blade - of said segments as a function of a plurality of operating parameters influencing the twist. Among these parameters, we can cite in a non-exhaustive manner: - distribution of local winds according to Weibull's laws which make it possible to describe variations in wind speed, - characteristics of the generator, - needs of the producer (terms of connection to the network), - starting speed (combination of local wind / inertia of the wind turbine / needs of the producer), - ramp - up (ability of the blade profile to extract the maximum energy with high incidence segments), - detection and reaction at gusts (amplitudes and frequencies), - maximum permissible speed of rotation of the propeller, - maximum permissible wind speed, - outside temperature to take into account the effects of global deformations and differential deformations between the lower and upper surfaces of the blade. This table can be unique and be shaped to deliver a different signal, representative of the maximum pivot order, for each of the segments. On the other hand, there can be as many tables as there are segments of the blade, each table being established to calculate a signal representative of a pivot angle, said signal being dedicated to a single segment in particular. In the case of the use of a table, at least one sensor is provided near each propeller for each of said parameters. The measurements of said sensors are sent to said table, which delivers a signal representative of the optimal pivot angle. This signal is sent to said actuation means, which actuate said segments accordingly.
Brève description des dessins Les figures du dessin annexé feront bien comprendre comment l'invention peut être réalisée. Sur ces figures, des références identiques désignent des éléments semblables. La figure 1 montre une vue générale d' une éolienne conforme à l'invention. La figure 2 représente une vue rapprochée de la figure 1. La figure 3 représente une pale d'hélice conforme à 1 ' invention . La figure 4 décrit un segment d'une pale d'hélice conforme à l'invention. La figure 5 est un schéma synoptique d'un mode de réalisation des moyens de commande en rotation des segments des figures 2, 3 et 4. La figure 6 présente un segment d' ne pale d'hélice selon un mode de réalisation particulier.Brief description of the drawings The figures of the appended drawing will make it easy to understand how the invention can be implemented. In these figures, identical references designate similar elements. Figure 1 shows a general view of a wind turbine according to the invention. Figure 2 shows a close-up view of Figure 1. Figure 3 shows a propeller blade according to one invention. FIG. 4 describes a segment of a propeller blade according to the invention. FIG. 5 is a block diagram of an embodiment of the means for controlling the rotation of the segments of FIGS. 2, 3 and 4. FIG. 6 shows a segment of a propeller blade according to a particular embodiment.
Description détaillée d'un mode de réalisation préféré de l'invention L' éolienne 1 conforme à l'invention et montrée schematiquement sur les figures 1 et 2 comporte un mât 2 dont l'une des extrémités est fichée dans de solides fondations et dont l'extrémité opposée supporte une nacelle 4. La nacelle 4 renferme tous les instruments qui permettent à l' éolienne 1 de fonctionner automatiquement tels qu'un générateur 6, une boite de vitesses 8 (de manière facultative) , un système de freinage 10 et des moyens de commande 12. Une hélice 14, composée d'une ou plusieurs pales 16 traversées par un axe d'articulation 18, est reliée à la nacelle 4 et aux instruments qu'elle comporte, au travers d'un arbre de transmission horizontal 20. Dans l'exemple décrit sur la figure 3, on a fractionné chaque pale 16 de l'hélice 14 en trois segments (16a, 16b, 16c) de forme aérodynamique appropriée, répartis selon l'envergure de ladite pale 16, chacun des trois segments (16a, 16b, 16c) pouvant pivoter indépendamment les uns des autres autour de leur axe d'articulation 18 sensiblement parallèle à une génératrice de la pale 16. De préférence, l'axe d'articulation 18 traverse lesdits segments (16a, 16b, 16c) dans la zone où le profil est le plus épais. La forme aérodynamique des segments (16a, 16b, 16c) est déterminée suivant les méthodes classiques de conception d'un profil de pale d' éolienne. A l'intérieur de chaque segment (16a, 16b,DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT OF THE INVENTION The wind turbine 1 according to the invention and shown diagrammatically in FIGS. 1 and 2 comprises a mast 2, one of the ends of which is inserted into solid foundations and the l the opposite end supports a nacelle 4. The nacelle 4 contains all the instruments which allow the wind turbine 1 to operate automatically such as a generator 6, a gearbox 8 (optionally), a braking system 10 and control means 12. A propeller 14, composed of one or more blades 16 crossed by a hinge pin 18, is connected to the nacelle 4 and to the instruments which it comprises, through a horizontal transmission shaft 20 In the example described in FIG. 3, each blade 16 of the propeller 14 has been divided into three segments (16a, 16b, 16c) of appropriate aerodynamic shape, distributed according to the span of said blade 16, each of the three segments (16a , 16b, 16c) being able to pivot independently of each other about their axis of articulation 18 substantially parallel to a generatrix of the blade 16. Preferably, the axis of articulation 18 crosses said segments (16a, 16b, 16c) in the area where the profile is thickest. The aerodynamic shape of the segments (16a, 16b, 16c) is determined according to conventional methods of designing a profile of a wind turbine blade. Within each segment (16a, 16b,
16c) est logé un moyen d' actionnement 22, comme décrit sur la figure 4. Une première extrémité 22a dudit moyen 22 est fixée sur l'axe d'articulation 18 dudit segment. La seconde extrémité 22b est solidaire du segment lui— même . La nacelle comporte les moyens de commande 12 aptes à adresser auxdits moyens d' actionnement 22 un ordre de pivotement pour que ces derniers imposent auxdits segments (16a, 16b, 16c) une position pivotée apte à modifier le vrillage de la pale 16 en un vrillage aérodynamique optimal pour le point de fonctionnement concerné. Les moyens d' actionnement 22 peuvent être du type vérin ou moteur électrique reliés par une tringlerie 24 auxdits moyens de commande 12 pour pouvoir faire pivoter lesdits segments (16a, 16b, 16c) autour de leur axe d'articulation 18. En cas de fortes rafales de vent, les segments, sous l'action desdites rafales, transmettent aux moyens d' actionnement 22, des mouvements intempestifs, rendus possibles par les différents jeux de montage, se traduisant par des à-coups ou des mouvements de translation au niveau desdits moyens 22. Dans ce cas, afin d'éviter une usure prématurée desdits moyens 22, on peut leur adjoindre un dispositif d'amortissement qui limitera l'impact des rafales de vent sur lesdits moyens d' actionnement 22. Sur la figure 5, on a représenté un exemple de réalisation de moyens de commande 12 aptes à commander les moyens d' actionnement 22. Les moyens de commande 12 comportent au moins une table 26, établie par calcul ou expérimentalement, calculant les signaux représentatifs des valeurs optimales (0Clopt, oc2opt, 0c3Opt) de l'angle α de pivotement des segments (16a, 16b, 16c) en fonction d'une pluralité de paramètres de fonctionnement, tels que ceux mentionnés ci—dessus, à savoir : vitesse et direction du vent, température extérieure, amplitude et fréquence des rafales. L' éolienne 1 comporte une pluralité de capteurs 28.1 à 28.n mesurant la valeur actuelle de chacun des paramètres utilisés dans la table 26, les mesures desdits capteurs étant adressées à cette dernière. Ainsi, à chaque instant, la table 26 délivre autant de valeurs optimales (αlopt, . 0C2opt, . 0C3opt) qu'il y a de segments, en correspondance avec le point de fonctionnement de l' éolienne 1. Ces valeurs (CClop r CC2opt, 0C3opt) sont adressées aux moyens d' actionnement 22 qui imposent à chaque segment (16a, 16b, 16c) de prendre une position pivotée dudit angle αiopt ui lui est destiné. On obtient ainsi un asservissement en boucle ouverte de la position des segments (16a, 16b, 16c) et donc du vrillage de la pale 16 en fonction du point de fonctionnement actuel de l' éolienne 1. La table 26 peut être établie pour un seul segment. En conséquence, il peut exister autant de tables 26 que de segments (16a, 16b, 16c) afin de tenir compte de la position desdits segments par rapport à l'axe d'articulation 18 et ainsi d'optimiser le vrillage de la pale 16 en fonction de la position desdits segments. Chaque table 26 est alors établie pour calculer un signal représentatif d'un angle de pivotement (<Xlopt, CC2opt, 0c3opt) pour un seul segment en particulier. Les moyens de commande 12 peuvent aussi ne comporter qu'une seule table 26 qui est établie pour prendre en compte tous les segments (16a, 16b, 16c) de la pale 16. Cette table pourra, par exemple, comporter autant de sorties qu'il existe de segments. L'enchaînement des actions à mener par les moyens de commande 12 va maintenant être précisé : - en l'absence de vent, 1** éolienne 1 est à l'arrêt, ses pales 16 étant en « drapeau » (sans prise au ^ent) ; - dès qu'un vent faible apparaît, les capteurs 28.1 à 28.n aptes à détecter cette information (anémomètre par exemple) adressent aux moyens de commande 12 (et plus particulièrement à la table 26) la mesure de la vitesse dudit vent. La table 26 délivre alors des signaux représentatifs des angles de pivotement optimal (Otlopt, 0t2opt, 0C3opt) desdits segments (16a, 16*b, 16c) pour faire sortir les pales 16 de leur position « drapeau ». Ce mouvement de pivot a pour effet de déplacer, pour le segment en question, la résultante des forces aérodynamiques vers l'amont de l'axe d'articulation 18, vers le bord de fuite 30 dudit segment. Ce pivotement peut être réalisé grâce, par exemple, à l'extension d'un vérin, ce qui engendrera une mise en incidence dudit segment ;16c) is housed an actuating means 22, as described in FIG. 4. A first end 22a of said means 22 is fixed to the articulation axis 18 of said segment. The second end 22b is integral with the segment itself. The nacelle comprises the control means 12 able to send said actuation means 22 a pivot order so that the latter impose on said segments (16a, 16b, 16c) a pivoted position capable of modifying the twist of the blade 16 into a twist. optimal aerodynamics for the operating point concerned. The actuating means 22 can be of the actuator or electric motor type connected by a linkage 24 to said control means 12 so as to be able to pivot said segments (16a, 16b, 16c) about their articulation axis 18. In the event of strong gusts of wind, the segments, under the action of said gusts, transmit to the actuating means 22, untimely movements, made possible by the various mounting games, resulting in jerks or translational movements at the level of said means 22. In this case, in order to avoid premature wear of said means 22, a device can be added to them damping which will limit the impact of wind gusts on said actuation means 22. In FIG. 5, an exemplary embodiment of control means 12 is shown capable of controlling the actuation means 22. The means of command 12 comprise at least one table 26, established by calculation or experimentally, calculating the signals representative of the optimal values (0Cl op t, oc2 op t, 0c3 O pt) of the angle α of pivoting of the segments (16a, 16b, 16c ) as a function of a plurality of operating parameters, such as those mentioned above, namely: wind speed and direction, outside temperature, amplitude and frequency of gusts. The wind turbine 1 comprises a plurality of sensors 28.1 to 28.n measuring the current value of each of the parameters used in table 26, the measurements of said sensors being addressed to the latter. Thus, at each instant, the table 26 delivers as many optimal values (αl op t,. 0C2 opt ,. 0C3 op t) as there are segments, corresponding to the operating point of the wind turbine 1. These values (CClop r CC2 opt , 0C3 op t) are addressed to the actuation means 22 which require each segment (16a, 16b, 16c) to take a pivoted position of said angle αi opt ui is intended for it. One thus obtains an open loop control of the position of the segments (16a, 16b, 16c) and therefore of the twist of the blade 16 according to the current operating point of the wind turbine 1. Table 26 can be established for a single segment. As a result, there may be as many tables 26 that of segments (16a, 16b, 16c) in order to take account of the position of said segments relative to the hinge axis 18 and thus to optimize the twist of the blade 16 as a function of the position of said segments. Each table 26 is then established to calculate a signal representative of a pivot angle (<Xl op t, CC2 op t, 0c3 op t) for a single segment in particular. The control means 12 can also have only one table 26 which is set up to take into account all the segments (16a, 16b, 16c) of the blade 16. This table could, for example, have as many outputs as there are segments. The sequence of actions to be carried out by the control means 12 will now be specified: - in the absence of wind, 1 * * wind turbine 1 is at a standstill, its blades 16 being in "flag" (without taking at the ^ ent); - As soon as a weak wind appears, the sensors 28.1 to 28.n capable of detecting this information (anemometer for example) send to the control means 12 (and more particularly to table 26) the measurement of the speed of said wind. Table 26 then delivers signals representative of the optimal pivot angles (Otl opt , 0t2 opt , 0C3 op t) of said segments (16a, 16 * b, 16c) to cause the blades 16 to come out of their "flag" position. This pivot movement has the effect of moving, for the segment into question, the result of the aerodynamic forces upstream of the articulation axis 18, towards the trailing edge 30 of said segment. This pivoting can be achieved thanks, for example, to the extension of a jack, which will generate an incidence of said segment;
- dès que l'hélice 14 de l' éolienne 1 tourne à une vitesse de fonctionnement prédéterminée, les moyens de commande 12 adressent auxdits moyens d' actionnement 22, au moyen de la table 26, des ordres de pivotement tels que les segments (16a, 16b, 16c) se mettent en position d'équilibre aérodynamique en fonction de leur position sur le rayon de l'hélice 14 et de la vitesse de rotation de ladite hélice. Dans cette position, la résultante des forces aérodynamiques x ι passe par l'axe d'articulation 18 desdits segments (16a, 16b, 16c) . Lesdits segments ont alors tous le même angle de pivotement et un calage différent en fonction de leur position sur le rayon de l'hélice 14. L' éolienne 1 est alors pilotée en finesse maximale jusqu' à ce que la puissance maximale du générateur 6 soit atteinte ;- as soon as the propeller 14 of the wind turbine 1 rotates at a predetermined operating speed, the control means 12 send to said actuation means 22, by means of the table 26, pivot orders such as the segments (16a , 16b, 16c) are put in aerodynamic equilibrium position according to their position on the radius of the propeller 14 and the speed of rotation of said propeller. In this position, the result of the aerodynamic forces x ι passes through the articulation axis 18 of said segments (16a, 16b, 16c). Said segments then all have the same pivot angle and a different setting as a function of their position on the radius of the propeller 14. The wind turbine 1 is then controlled in maximum finesse until the maximum power of the generator 6 is reached;
- dès que la puissance maximale du générateur 6 est atteinte, les moyens de commande 12 adressent auxdits moyens d' actionnement 22, par l'intermédiaire de la table 26, un ordre de pivotement visant à réduire l'angle de pivotement de manière à ce que la puissance fournie par l'hélice 14 reste dans les limites du générateur 6. Ce mouvement de pivot a pour effet de déplacer la résultante des forces aérodynamiques vers l'aval de l'axe d'articulation 18 de chaque segment, c'est-à-dire, vers leur bord d'attaque 31. Ce pivotement peut, par exemple, être obtenu par la rétractation d'un vérin, ce qui engendre un moment « piqueur » dudit segment. Un tel pivotement des segments (16a, 16b, 16c) engendre de la traînée : l' éolienne 1 est alors pilotée en puissance ; - ce fonctionnement est maintenu jusqu'à ce qu'un autre paramètre dimensionnant soit rencontré, par exemple la résistante structurale du mât 2 ou des pales 16. Lorsque ce cas de figure se présente, les moyens de commande 12 adressent un ordre de pivotement apte à annuler la portance des segments (16a, 16b, 16c) : l'hélice 14 s'arrête de tourner et les segments sont alors en position de sécurité, en position dite de drapeau. De préférence, l'axe d'articulation 18 desdits segments (16a, 16b, 16c) est au moins sensiblement parallèle à l'axe longitudinal de la pale 16, ce qui permet de limiter la difficulté d'élaboration de la table 26. De plus, on peut envisager d'utiliser des segments (16a, 16b) de pied et de bout de pale standards, l'adaptation de la pale 16 à son environnement et à la puissance requise provenant uniquement du segment central 16b dont la forme et les dimensions sont appropriées. Le segment central 16b de longueur variable permettra alors de s'accorder à la puissance du générateur 6. Dans une variante de réalisation présentée sur la figure 6, les segments (16a, 16b, 16c) sont en rotation libre autour de leur axe d'articulation 18. Ils comportent, sur leur bord de fuite 30, un volet additionnel 32. Lesdits moyens d' actionnement 22, commandés par lesdits moyens de commande 12, agissent directement sur la position desdits volets 32, en modifiant leur calage angulaire par rapport auxdits segments (16a, 16b, 16c) . Cette modification de position impose, à chaque segment, une position angulaire adaptée au point de fonctionnement. Ainsi, le pilotage du pivotement individuel de chaque segment est effectué par le volet associé audit segment Les moyens de commande 12, en fonction des conditions d' aérologie rencontrées, adressent aux moyens d' actionnement 22 (non représentés) un ordre de pivotement (braquage) du volet additionnel 32 adapté au cas de fonctionnement de l' éolienne 1. L'invention n'est pas limitée aux seuls exemples de réalisation décrit dans ce document et notamment, une régulation en "boucle fermée ou l'utilisation de moyenne des ordres de pivotement (oclopt, 0C2opt, 0t3opt) ou des mesures des capteurs 28.1 à- as soon as the maximum power of the generator 6 is reached, the control means 12 send to said actuation means 22, via the table 26, a pivoting order aimed at reducing the angle of pivoting so that the power supplied by the propeller 14 remains within the limits of the generator 6. This pivoting movement has the effect of displacing the resultant of the aerodynamic forces downstream of the articulation axis 18 of each segment, that is to say, towards their leading edge 31. This pivoting can, for example, be obtained by the retraction of a jack, which generates a "stitching" moment of said segment. Such a pivoting of the segments (16a, 16b, 16c) generates drag: the wind turbine 1 is then controlled in power; this operation is maintained until another dimensioning parameter is encountered, for example the structural strength of the mast 2 or of the blades 16. When this scenario occurs, the control means 12 send a suitable pivot order to cancel the lift of the segments (16a, 16b, 16c): the propeller 14 stops rotating and the segments are then in the safety position, in the so-called flag position. Preferably, the articulation axis 18 of said segments (16a, 16b, 16c) is at least substantially parallel to the longitudinal axis of the blade 16, which makes it possible to limit the difficulty of drawing up the table 26. From more, one can consider using segments (16a, 16b) of standard foot and blade tip, the adaptation of the blade 16 to its environment and the required power coming only from the central segment 16b, the shape and dimensions of which are appropriate. The central segment 16b of variable length will then make it possible to match the power of the generator 6. In an alternative embodiment presented in FIG. 6, the segments (16a, 16b, 16c) are in free rotation around their axis of articulation 18. They comprise, on their trailing edge 30, an additional flap 32. Said actuation means 22, controlled by said control means 12, act directly on the position of said flaps 32, by modifying their angular setting relative to said segments (16a, 16b, 16c). This modification of position imposes, on each segment, an angular position adapted to the operating point. Thus, the individual pivoting of each segment is controlled by the flap associated with said segment. The control means 12, depending on the aerology conditions encountered, send the actuation means 22 (not shown) a pivoting order (deflection). ) of the additional flap 32 adapted to the case of operation of the wind turbine 1. the invention is not limited to the embodiments described in this document and in particular, regulation in "closed loop or the use of average orders pivot (oclopt, 0C2 opt , 0t3 op t) or sensor measurements 28.1 to
28.n sont tout à fait envisageables sans sortir du cadre de l'invention. 28.n are entirely conceivable without departing from the scope of the invention.

Claims

REVENDICATIONS
1. Procédé pour conférer à une pale (16) d'hélice (14) d' éolienne (1) le vrillage aerodynamiquement optimal à un point de fonctionnement de ladite éolienne (1) caractérisé en ce que : - on fractionne ladite pale (16) en au moins trois segments (16a, 16b, 16c) de forme aérodynamique appropriée, chaque segment étant réparti selon l'envergure de ladite pale (16) et étant apte à pivoter indépendamment les uns des autres autour d'un axe d'articulation (18) sensiblement parallèle à une génératrice de la pale (16) ; et - audit point de fonctionnement, des moyens de commande (12) intégrés à l' éolienne imposent à chacun desdits segments (16a, 16b, 16c) une position angulaire, autour de son axe d'articulation (18), telle qu'elle définit un vrillage global de la pale (16) audit point de fonctionnement. 1. Method for giving a blade (16) of a propeller (14) of a wind turbine (1) the aerodynamically optimal twist at an operating point of said wind turbine (1) characterized in that: - said blade (16) is fractionated ) in at least three segments (16a, 16b, 16c) of suitable aerodynamic shape, each segment being distributed according to the span of said blade (16) and being able to pivot independently of each other about a hinge axis (18) substantially parallel to a generator of the blade (16); and - at said operating point, control means (12) integrated into the wind turbine impose on each of said segments (16a, 16b, 16c) an angular position, around its axis of articulation (18), such that it defines a global twist of the blade (16) at said operating point.
2. Eolienne (1) dont chaque pale (16) est fractionnée en au moins trois segments (16a, 16b, 16c) de forme aérodynamique appropriée, répartis selon l'envergure de ladite pale (16) et pouvant pivoter indépendamment l'un de l'autre autour d'un axe d'articulation (18) sensiblement parallèle à une génératrice de la pale (16) , ladite éolienne (1) comportant des moyens d' actionnement (22) aptes à faire pivoter individuellement lesdits segments (16a, 16b, 16c) autour dudit axe (18) , caractérisée en ce qu'il est prévu des moyens de commande (12) qui, pour au moins certains points de fonctionnement de ladite éolienne (1) , adressent un ordre de pivotement auxdits moyens d' actionnement (22) pour que ceux—ci imposent auxdits segments (16a, 16b, 16c) une position pivotée apte à modifier le vrillage actuel de ladite pale (16) en un vrillage aerodynamiquement optimal pour le point de fonctionnement concerné . 2. Wind turbine (1) each blade (16) of which is divided into at least three segments (16a, 16b, 16c) of appropriate aerodynamic shape, distributed according to the span of said blade (16) and which can pivot independently one of the other around an articulation axis (18) substantially parallel to a generator of the blade (16), said wind turbine (1) comprising actuation means (22) capable of making individually pivot said segments (16a, 16b, 16c) around said axis (18), characterized in that control means (12) are provided which, for at least certain operating points of said wind turbine (1), address a pivot order to said actuation means (22) so that these impose on said segments (16a, 16b, 16c) a pivoted position capable of modifying the current twist of said blade (16) into an aerodynamically optimal twist for the point concerned.
3. Eolienne (1) selon la revendication 2, caractérisée en ce que l'axe d'articulation (18) des segments (16a, 16b, 16c) est au moins sensiblement parallèle à l'axe longitudinal de la pale (16) et en ce que ledit axe traverse lesdits segments (16a, 16b, 16c) dans la zone où le profil des segments est le plus épais . 3. Wind turbine (1) according to claim 2, characterized in that the articulation axis (18) of the segments (16a, 16b, 16c) is at least substantially parallel to the longitudinal axis of the blade (16) and in that said axis crosses said segments (16a, 16b, 16c) in the area where the profile of the segments is the thickest.
4. Eolienne (1) selon la revendication 2 ou 3, caractérisée en ce que lesdits moyens d' actionnement (22) comportent un dispositif d'amortissement. 4. Wind turbine (1) according to claim 2 or 3, characterized in that said actuating means (22) comprise a damping device.
5. Eolienne (1) selon l'une des revendications 2 à 4, caractérisée en ce que les segments (16a, 16c) de pied et de bout de pale (16) sont standards et en ce que l'adaptation de la pale (16) à son environnement et à la puissance requise provient du segment central (16b) dont la forme et les dimensions sont appropriées. 5. Wind turbine (1) according to one of claims 2 to 4, characterized in that the segments (16a, 16c) of the foot and of the blade tip (16) are standard and in that the adaptation of the blade ( 16) to its environment and to the required power comes from the central segment (16b) whose shape and dimensions are appropriate.
6. Eolienne (1) selon la revendication 5, caractérisée en ce que le segment central (16b) est de longueur variable et permet de s'accorder à la puissance du générateur (6) . 6. Wind turbine (1) according to claim 5, characterized in that the central segment (16b) is of variable length and makes it possible to match the power of the generator (6).
7. Eolienne (1) selon la revendication 5, caractérisée en ce que l'adaptation de la pale (16) à son environnement et à la puissance requise provient de plusieurs segments indépendants les uns des autres. 7. Wind turbine (1) according to claim 5, characterized in that the adaptation of the blade (16) to its environment and to the required power comes from several segments independent of each other.
8. Eolienne (1) selon l'une des revendications 2 à 7, caractérisée en ce que en ce que lesdits segments (16a, 16b, 16c) comportent un volet additionnel (32) sur leur bord de fuite (30) . 8. Wind turbine (1) according to one of claims 2 to 7, characterized in that in said said segments (16a, 16b, 16c) have an additional flap (32) on their trailing edge (30).
9. Eolienne (1) selon l'une des revendications 2 à 8, caractérisée en ce que9. Wind turbine (1) according to one of claims 2 to 8, characterized in that
- lesdits moyens de commande (12) comportent une table (26) apte à délivrer un signal représentatif d'un angle de pivotement optimal ( lopt, 0C2opt, 0C3opt) r en ce qui concerne le vrillage de la pale (16) , desdits segments (16a, 16b, 16c) en fonction d'une pluralité de paramètres de onctionnement influant sur le vrillage ; et- Said control means (12) comprise a table (26) capable of delivering a signal representative of an optimal pivoting angle (l opt , 0C2 opt , 0C3 op t) r as regards the twisting of the blade (16 ), said segments (16a, 16b, 16c) as a function of a plurality of actuation parameters influencing the twist; and
- au moins un capteur (28.1 à 28.n) pour chacun desdits paramètres est prévu à proximité de l'hélice (14) , lesdits capteurs étant reliés aux entrées de ladite table (26) ; et- at least one sensor (28.1 to 28.n) for each of said parameters is provided near the propeller (14), said sensors being connected to the inputs of said table (26); and
- lesdits moyens d' actionnement (22) reçoivent, à titre d'ordre de pivotement, ledit signal (αlopt, cc2opt, α3opt) représentatif d'un angle de pivotement optimal délivré par lesdits moyens de commande (12) . - Said actuation means (22) receive, as a pivot order, said signal (αl opt , cc2 opt , α3 op t) representative of an optimal pivot angle delivered by said control means (12).
10. Eolienne (1) selon la revendication 9, caractérisée en ce que la table (26) est unique et est conformée pour délivrer un signal représentatif de l'ordre de pivotement maximal (oclopt, oc2opt, Cc3opt) à chaque segment (16a, 16b, 16c) . 10. Wind turbine (1) according to claim 9, characterized in that the table (26) is unique and is shaped to deliver a signal representative of the maximum pivot order (ocl opt , oc2 opt , Cc3 opt ) to each segment (16a, 16b, 16c).
11. Eolienne (1) selon les revendications 9 ou 10, caractérisée en ce qu'il existe autant de tables (26) que de segments (16a, 16b, 16c) de pale (16) , chaque table (26) étant établie pour calculer un signal représentatif d'un angle de pivotement pour un seul segment en particulier. 11. Wind turbine (1) according to claims 9 or 10, characterized in that there are as many tables (26) as segments (16a, 16b, 16c) of blade (16), each table (26) being established for calculate a signal representative of a pivot angle for a single segment in particular.
PCT/FR2004/050728 2003-12-22 2004-12-20 Wind turbine comprising segmented blades WO2005064156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0351169 2003-12-22
FR0351169A FR2864175B1 (en) 2003-12-22 2003-12-22 WIND TURBINE

Publications (1)

Publication Number Publication Date
WO2005064156A1 true WO2005064156A1 (en) 2005-07-14

Family

ID=34630620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/050728 WO2005064156A1 (en) 2003-12-22 2004-12-20 Wind turbine comprising segmented blades

Country Status (2)

Country Link
FR (1) FR2864175B1 (en)
WO (1) WO2005064156A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517198B2 (en) 2006-03-20 2009-04-14 Modular Wind Energy, Inc. Lightweight composite truss wind turbine blade
US7854594B2 (en) 2009-04-28 2010-12-21 General Electric Company Segmented wind turbine blade
US20110038728A1 (en) * 2009-08-14 2011-02-17 Elkin Benjamin T Independent variable blade pitch and geometry wind turbine
US20110038726A1 (en) * 2009-08-14 2011-02-17 Elkin Benjamin T Independent variable blade pitch and geometry wind turbine
US7922454B1 (en) 2010-10-29 2011-04-12 General Electric Company Joint design for rotor blade segments of a wind turbine
US20120051914A1 (en) * 2008-10-24 2012-03-01 Dehlsen James G P Cable-stayed rotor for wind and water turbines
US8382440B2 (en) 2008-12-05 2013-02-26 Modular Wind Energy, Inc. Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
KR101268466B1 (en) * 2012-11-12 2013-06-04 유병수 Slanted windmill
EP2716907A1 (en) 2012-10-05 2014-04-09 Alstom Wind, S.L.U. Wind turbine blade and methods of operating it
US20140322013A1 (en) * 2009-08-14 2014-10-30 Nikle Industries, LLC Independent variable blade pitch and geometry wind turbine control
US9297357B2 (en) 2013-04-04 2016-03-29 General Electric Company Blade insert for a wind turbine rotor blade
US9500179B2 (en) 2010-05-24 2016-11-22 Vestas Wind Systems A/S Segmented wind turbine blades with truss connection regions, and associated systems and methods
US9506452B2 (en) 2013-08-28 2016-11-29 General Electric Company Method for installing a shear web insert within a segmented rotor blade assembly
CN106704099A (en) * 2016-12-29 2017-05-24 北京金风科创风电设备有限公司 Method and device for controlling wind turbine
US9790919B2 (en) 2014-02-25 2017-10-17 General Electric Company Joint assembly for rotor blade segments of a wind turbine
WO2019120412A1 (en) 2017-12-20 2019-06-27 Vestas Wind Systems A/S Wind turbine blades and manufacturing systems and methods using segmented blade assembly
US10563636B2 (en) 2017-08-07 2020-02-18 General Electric Company Joint assembly for a wind turbine rotor blade
US10570879B2 (en) 2017-05-23 2020-02-25 General Electric Company Joint assembly for a wind turbine rotor blade with flanged bushings
US10961982B2 (en) 2017-11-07 2021-03-30 General Electric Company Method of joining blade sections using thermoplastics
DE102008055540B4 (en) 2007-12-21 2022-01-27 General Electric Co. Structure and method for self-aligning rotor blade joints
CN114474792A (en) * 2022-02-23 2022-05-13 上海电气风电集团股份有限公司 Manufacturing method of fan blade, fan blade and wind turbine generator
US11353002B2 (en) 2019-01-16 2022-06-07 Roller Bearing Company Of America, Inc. Multi segment wind turbine blade joint bushing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2324002B1 (en) * 2007-06-22 2010-05-13 GAMESA INNOVATION &amp; TECHNOLOGY, S.L. AIRLINER SHOVEL WITH DEFLECTABLE ALERONS.
WO2012122262A2 (en) * 2011-03-07 2012-09-13 Mcpherson Performance Blade Llc Wind turbine rotor blade with improved performance
WO2014006542A2 (en) * 2012-07-05 2014-01-09 Nelson Mandela Metropolitan University Turbine arrangement
GB2508813B (en) * 2012-12-03 2020-05-20 Malcolm Ian Bell Hugh Turbine blade with individually adjustable blade sections
EP2840256B1 (en) * 2013-08-19 2016-12-28 Alstom Renovables España, S.L. Wind turbine blade

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE479299A (en) *
US5269652A (en) * 1988-12-23 1993-12-14 Helge Petersen Aerodynamic brake on a wind rotor for a windmill
US5289041A (en) * 1991-09-19 1994-02-22 U.S. Windpower, Inc. Speed control system for a variable speed wind turbine
DE19730211A1 (en) * 1997-07-15 1997-12-04 Niederkrueger Wilhelm Wind engine or wind power generator/plant with one or more rotors
DE19833869C1 (en) * 1998-07-22 2000-03-30 Euros Entwicklungsgesellschaft Sectional mold for wind power rotor blade made of fiber-reinforced resin, produces blades of differing size and improved aerodynamic efficiency, avoiding cost of stocking one mold per blade
DE10021430A1 (en) * 2000-05-03 2002-01-17 Olaf Frommann Adaptive blade adjustment and adaptive rotor for wind energy rotors, has aerodynamic profile arranged along longitudinal axis of blade with torsion which can be varied depending on blade radius
US20030138315A1 (en) * 2002-01-18 2003-07-24 Brueckner Manfred K. Sky turbine-city

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE479299A (en) *
US5269652A (en) * 1988-12-23 1993-12-14 Helge Petersen Aerodynamic brake on a wind rotor for a windmill
US5289041A (en) * 1991-09-19 1994-02-22 U.S. Windpower, Inc. Speed control system for a variable speed wind turbine
DE19730211A1 (en) * 1997-07-15 1997-12-04 Niederkrueger Wilhelm Wind engine or wind power generator/plant with one or more rotors
DE19833869C1 (en) * 1998-07-22 2000-03-30 Euros Entwicklungsgesellschaft Sectional mold for wind power rotor blade made of fiber-reinforced resin, produces blades of differing size and improved aerodynamic efficiency, avoiding cost of stocking one mold per blade
DE10021430A1 (en) * 2000-05-03 2002-01-17 Olaf Frommann Adaptive blade adjustment and adaptive rotor for wind energy rotors, has aerodynamic profile arranged along longitudinal axis of blade with torsion which can be varied depending on blade radius
US20030138315A1 (en) * 2002-01-18 2003-07-24 Brueckner Manfred K. Sky turbine-city

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7891950B2 (en) 2006-03-20 2011-02-22 Modular Wind Energy, Inc. Lightweight composite truss wind turbine blade
US7517198B2 (en) 2006-03-20 2009-04-14 Modular Wind Energy, Inc. Lightweight composite truss wind turbine blade
US7891949B2 (en) 2006-03-20 2011-02-22 Modular Wind Energy, Inc. Lightweight composite truss wind turbine blade
US7891948B2 (en) 2006-03-20 2011-02-22 Modular Wind Energy, Inc. Lightweight composite truss wind turbine blade
DE102008055540B4 (en) 2007-12-21 2022-01-27 General Electric Co. Structure and method for self-aligning rotor blade joints
US20120051914A1 (en) * 2008-10-24 2012-03-01 Dehlsen James G P Cable-stayed rotor for wind and water turbines
US8500408B2 (en) 2008-12-05 2013-08-06 Modular Wind Energy, Inc. Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
US8506258B2 (en) 2008-12-05 2013-08-13 Modular Wind Energy, Inc. Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
US9518558B2 (en) 2008-12-05 2016-12-13 Vestas Wind Systems A/S Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
US8382440B2 (en) 2008-12-05 2013-02-26 Modular Wind Energy, Inc. Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
US8500409B2 (en) 2008-12-05 2013-08-06 Modular Wind Energy, Inc. Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
US8480370B2 (en) 2008-12-05 2013-07-09 Modular Wind Energy, Inc. Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
US8475133B2 (en) 2008-12-05 2013-07-02 Modular Wind Energy, Inc. Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
US7854594B2 (en) 2009-04-28 2010-12-21 General Electric Company Segmented wind turbine blade
US20110038728A1 (en) * 2009-08-14 2011-02-17 Elkin Benjamin T Independent variable blade pitch and geometry wind turbine
US8454313B2 (en) * 2009-08-14 2013-06-04 Benjamin T. Elkin Independent variable blade pitch and geometry wind turbine
US20140322013A1 (en) * 2009-08-14 2014-10-30 Nikle Industries, LLC Independent variable blade pitch and geometry wind turbine control
US20110038726A1 (en) * 2009-08-14 2011-02-17 Elkin Benjamin T Independent variable blade pitch and geometry wind turbine
US9500179B2 (en) 2010-05-24 2016-11-22 Vestas Wind Systems A/S Segmented wind turbine blades with truss connection regions, and associated systems and methods
US7922454B1 (en) 2010-10-29 2011-04-12 General Electric Company Joint design for rotor blade segments of a wind turbine
WO2014053611A1 (en) 2012-10-05 2014-04-10 Alstom Renovables España, S.L. Wind turbine blade and methods of operating it
EP2716907A1 (en) 2012-10-05 2014-04-09 Alstom Wind, S.L.U. Wind turbine blade and methods of operating it
US9790917B2 (en) 2012-10-05 2017-10-17 Alstom Renewable Technologies Wind turbine blade and methods of operating it
WO2014073738A1 (en) * 2012-11-12 2014-05-15 Ryu Byung-Sue Wind turbine with slant shaft
KR101268466B1 (en) * 2012-11-12 2013-06-04 유병수 Slanted windmill
US9297357B2 (en) 2013-04-04 2016-03-29 General Electric Company Blade insert for a wind turbine rotor blade
US9506452B2 (en) 2013-08-28 2016-11-29 General Electric Company Method for installing a shear web insert within a segmented rotor blade assembly
US9790919B2 (en) 2014-02-25 2017-10-17 General Electric Company Joint assembly for rotor blade segments of a wind turbine
CN106704099A (en) * 2016-12-29 2017-05-24 北京金风科创风电设备有限公司 Method and device for controlling wind turbine
US10570879B2 (en) 2017-05-23 2020-02-25 General Electric Company Joint assembly for a wind turbine rotor blade with flanged bushings
US10563636B2 (en) 2017-08-07 2020-02-18 General Electric Company Joint assembly for a wind turbine rotor blade
US10961982B2 (en) 2017-11-07 2021-03-30 General Electric Company Method of joining blade sections using thermoplastics
WO2019120412A1 (en) 2017-12-20 2019-06-27 Vestas Wind Systems A/S Wind turbine blades and manufacturing systems and methods using segmented blade assembly
US11499523B2 (en) 2017-12-20 2022-11-15 Vestas Wind Systems A/S Wind turbine blades and manufacturing systems and methods using segmented blade assembly
US11353002B2 (en) 2019-01-16 2022-06-07 Roller Bearing Company Of America, Inc. Multi segment wind turbine blade joint bushing
CN114474792A (en) * 2022-02-23 2022-05-13 上海电气风电集团股份有限公司 Manufacturing method of fan blade, fan blade and wind turbine generator

Also Published As

Publication number Publication date
FR2864175A1 (en) 2005-06-24
FR2864175B1 (en) 2008-03-28

Similar Documents

Publication Publication Date Title
WO2005064156A1 (en) Wind turbine comprising segmented blades
EP1115977B1 (en) Wind turbine with counter rotating rotors
DK2084400T3 (en) A WINDMILL AND A PROCEDURE FOR DUMPING EDGE SWING IN ONE OR MORE WINGS OF A WINDMILL BY CHANGING THE WINGE PITCH
US20100215502A1 (en) Multistage wind turbine with variable blade displacement
EP0086076B1 (en) A horizontal axis wind energy conversion system with aerodynamic blade pitch control
FR2889722A1 (en) METHOD FOR OPERATING A WIND TURBINE, AND A WIND TURBINE DESIGNED FOR THE APPLICATION OF THE PROCESS
EP2572100B1 (en) Turbogenerator with rotor having blades adapting to the apparent wind
WO2001071183A1 (en) Rotor pitch control method and apparatus for parking wind turbine
EP2273106B1 (en) Wind turbine aerodynamic separation control
US20130216378A1 (en) Passive Governor for Windpower Applications
EP2961653A2 (en) Variable-pitch blade assembly
AU2008222708B2 (en) Hubless windmill
WO2011039717A2 (en) A wind turbine
US10487799B2 (en) Pressure and vacuum assisted vertical axis wind turbines
EP1819926A1 (en) Vertical-axis wind turbine
JP2010255625A (en) Variable pitch device
CN112534132B (en) Noise reduction in wind turbines with hinged blades
WO2021129907A1 (en) A method for controlling tilt moment of a wind turbine with hinged wind turbine blades
FR2787522A1 (en) Obtaining maximum energy from aero-generator by imposing a rotor speed such that the air speed downstream of the rotor housing times root three equals the airspeed upstream of the rotor housing
EP3850212A1 (en) A hinged wind turbine blade defining an angle in a flap-wise direction
EP2657516B1 (en) Wind turbine including an electromagnetic retarder for slowing the blade rotation speed
JP4361063B2 (en) Wind power generator
US11846269B2 (en) Drag cum lift based wind turbine system having adjustable blades
DK2463523T3 (en) Speed adjustable rotor device for a wind turbine
FR3123093A1 (en) Thrust reversal method for aeronautical fan

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase