WO2003076802A1 - Blade and auxiliary member of wind power generator, and wind power generator - Google Patents

Blade and auxiliary member of wind power generator, and wind power generator Download PDF

Info

Publication number
WO2003076802A1
WO2003076802A1 PCT/JP2002/004211 JP0204211W WO03076802A1 WO 2003076802 A1 WO2003076802 A1 WO 2003076802A1 JP 0204211 W JP0204211 W JP 0204211W WO 03076802 A1 WO03076802 A1 WO 03076802A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
auxiliary member
wind
wind turbine
main body
Prior art date
Application number
PCT/JP2002/004211
Other languages
French (fr)
Japanese (ja)
Inventor
Kenzo Kanki
Hareyuki Nishida
Original Assignee
Kenzo Kanki
Hareyuki Nishida
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kenzo Kanki, Hareyuki Nishida filed Critical Kenzo Kanki
Priority to AU2002253611A priority Critical patent/AU2002253611A1/en
Publication of WO2003076802A1 publication Critical patent/WO2003076802A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a blade used for a wind turbine of a wind power generator, an auxiliary member of the blade, and a wind power generator.
  • the lift force is a force which is orthogonal to the direction of wind and the speed of the blade relative to the blade determined by the direction and speed of the wind and the direction of the wind. Is the force from the wind receiving side (front side) to the opposite side (back side).
  • pitch control the mounting angle (pitch angle) of the blade by a mechanical configuration.
  • the wind power generator 100 in the publication is a Dutch windmill, as shown in FIG.
  • a blade 93 is attached to a wind shaft 92 extending from a rotation shaft 91 of the wind turbine 90 of the power generator 100 in a direction orthogonal to the rotation shaft 91.
  • the blade 93 is located near the boundary with the wind shaft 92.
  • an elastic deformation portion 93a formed of a superelastic alloy material.
  • the gazette also shows a blade 93 entirely formed of a superelastic alloy material.
  • the elastic deformation portion 93a of the blade 93 is located near the boundary with the wind shaft 92, when the elastic deformation portion 93a deforms, the angle of the entire blade with respect to the wind changes. Therefore, when the wind speed is high, the power generation efficiency is significantly reduced. Also, since the elastically deformable portion 93a is formed integrally with the blade 93 and cannot be separated, the elastically deformable portion 93a cannot be applied to an existing blade, and the blade 93 must be newly formed. is there.
  • the entire blade is deformed, so that the power generation efficiency is significantly reduced.
  • the cost is high and the blade is heavy and difficult to rotate.
  • An object of the present invention is to improve the power generation efficiency at a relatively low wind speed, and at the same time, to secure the power generation efficiency at a relatively high wind speed while preventing the wind turbine from over-rotating, an auxiliary member, and An object of the present invention is to provide a wind power generator.
  • a blade body having a camber and rotatably attached to a rotation shaft of a wind turbine, and a rear end of the blade body in a rotation direction of the blade body.
  • the present invention provides a blade for use in a wind turbine of a wind power generator, including an auxiliary member provided to extend from a blade main body.
  • the auxiliary member has a first shape that increases the camper of the blade and increases the projected area of the blade on the rotating surface of the windmill.
  • the auxiliary member deforms from the first shape when the wind power increases, to a second shape that reduces the camper of the entire blade to the same degree as the camber of the blade body, and when the wind power decreases, the first shape
  • the blade body has a shape determined according to the size of the windmill, the stall wind speed, and the amount of power generation, and the auxiliary member is preferably detachable from the blade body.
  • the rear end of the blade body is preferably detachable from the blade body.
  • the rear end of the blade body and the auxiliary member are formed as a body.
  • the auxiliary member is attached to the rear end of the blade body so that the operation is smoothly continued.
  • the auxiliary member preferably has a slope that is continuous with the back surface of the blade body.
  • the rear end of the blade body has a step portion for attaching the auxiliary member, and the back surface of the auxiliary member is the blade body. It is preferable to be attached to the step so as to be flush with the back surface.
  • the auxiliary member is attached over the entire length of the blade body.
  • the length of the auxiliary member is shorter than the length of the blade main body, and the auxiliary member is provided at least on a radially outer portion of the blade main body when the blade main body is attached to the wind turbine.
  • the capture member is preferably one of a plurality of auxiliary members attached in the longitudinal direction of the blade body. Adjacent trapping members are preferably arranged at predetermined intervals. Preferably, the predetermined interval has a distance such that a change in airflow due to deformation of the radially outer auxiliary member of the blade does not interfere with the radially inner auxiliary member of the blade.
  • the auxiliary member preferably includes a plurality of materials each having a different coefficient of thermal expansion, and it is preferable that at least one of the plurality of materials be electrically conductive.
  • an extension amount of the auxiliary member extending rearward from the blade main body is not more than 20% of a width of the blade main body.
  • a blade body having a camber and rotatably attached to a rotating shaft of a wind turbine; An auxiliary member provided; PC Lan Hire 11
  • the auxiliary member is detachable from the blade main body, and flexibly deforms in response to wind force.
  • an auxiliary member which is used in a wind turbine of a wind turbine generator, is attached to a blade body having a camber, and forms a blade together with the blade body.
  • the auxiliary member increases the camber of the whole blade in a state where the auxiliary member extends from the blade main body to the rear end portion of the blade main body in the rotation direction of the blade main body, and further increases the camber of the blade to the rotation surface of the windmill. It has a first shape that increases the projected area.
  • the auxiliary member deforms from the first shape when the wind power increases, to a second shape that reduces the camper of the entire blade to the same degree as the camper on the blade body, and changes to the first shape when the wind power decreases Return.
  • an auxiliary member which is attached to a blade main body used in a wind turbine of a wind turbine generator and forms a blade together with the blade main body.
  • the auxiliary member is flexibly deformed in response to wind force when it is attached to the rear end of the blade body in the direction of rotation of the blade body so as to extend from the blade body.
  • a wind power generator including: a generator having a rotor shaft; and a windmill having a blade attached to the rotor shaft and rotating the rotor shaft by wind pressure.
  • the blade has a camber and is rotatably mounted on the rotor shaft.
  • An auxiliary member is provided at the rear end of the blade body in the direction of rotation of the blade body, extending from the blade body.
  • the auxiliary member has a first shape that increases the camber of the blade and increases the projected area of the blade on the rotating surface of the windmill. The auxiliary member deforms from the first shape when the wind power increases to a second shape that reduces the camber of the entire blade to the same degree as the camber of the blade body, and changes to the first shape when the wind power decreases Return.
  • FIG. 1 is a schematic perspective view of a conventional wind turbine generator.
  • FIG. 2 is a schematic perspective view of a wind turbine generator according to one embodiment of the present invention.
  • FIG. 3 is a schematic side view of a blade of the wind turbine generator of FIG.
  • FIG. 4 is a schematic explanatory diagram of the experimental apparatus.
  • Figure 5 is a graph showing the experimental results.
  • FIG. 6A is a schematic perspective view of another blade.
  • FIG. 6B is an exploded perspective view of the blade of FIG. 6A.
  • FIG. 7 is a schematic sectional view of another blade.
  • FIG. 8 is a schematic perspective view of another blade.
  • FIG. 2 is a schematic perspective view of a wind power generator 11 according to one embodiment of the present invention, and the wind power generator 11 has a propeller-type wind turbine.
  • FIG. 3 is a schematic side view of the blade 21.
  • the wind turbine generator 11 includes a fixed part 12 fixed to the ground, and a pillar 13 erected on the fixed part 12, which is a metal pipe.
  • a support case 14 rotatable with respect to the support 13 is arranged.
  • the generator 16 is attached to the upper part of the support case 14.
  • the generator 16 has a rotor shaft 18 extending horizontally.
  • a windmill 20 is attached to the rotor shaft 18, and the windmill 20 and the rotor shaft 18 rotate integrally.
  • the support case 14 is provided with tail fins 14a that rotate the support case 14 by wind and always direct the windmill 20 to the windward direction.
  • Three blades 21 are attached to the windmill 20 at intervals of 120 °.
  • the wind turbine 20 is formed so as to rotate in the counterclockwise direction (rotation direction R) in FIG.
  • the front of the blade 21 is on the rotation direction R side of the windmill 20, and the rear of the blade 21 is on the side opposite to the rotation direction R of the windmill 20.
  • the surface 2 2 b of the blade 21 receives wind.
  • the blade 21 includes a blade body 22 which is a propeller blade and an auxiliary member 23.
  • the auxiliary member 23 is attached to the rear end of the blade main body 22.
  • the blade main body 22 is formed to have a constant cross section over its longitudinal direction. Blade body 22 is attached to the windmill 20 so that its camber is convex on the back side.
  • the shape of the blade body 22 is suitably formed according to the size of the windmill, the stall wind speed, and the amount of power generation.
  • the blade body 22 is formed of fiber-reinforced plastic in the present embodiment.
  • the catching member 23 has a flat plate shape, and is attached to the blade main body 22 so as to extend rearward of the blade main body 22 along the back surface 22 a of the blade main body 22. At this time, the auxiliary member 23 has the first shape.
  • the auxiliary member 23 is attached to the blade body 22 by screwing the port 24 into a nut (not shown) arranged in a cavity in the blade body 22 (see FIG. 3).
  • the catching member 23 has a slope 2 connected to the back surface 2 2 a of the blade body 22 at its front end so that its back surface 23 a follows the sliding force with the back surface 22 a of the blade body 22. Has 3b.
  • the auxiliary member 23 has flexibility and is flexibly deformed according to wind pressure.
  • the auxiliary member 23 is formed of fiber reinforced plastic.
  • the fiber-reinforced plastic is, for example, a carbon fiber reinforced plastic or a Porone fiber reinforced plastic.
  • the support case 14 In the state where the wind is blowing, the support case 14 is rotated by the tail fins 14a, and the windmill 20 is directed to the windward direction.
  • the projected area of the blade 21 onto the rotation surface S (see FIG. 3) of the windmill 20 is increased by the auxiliary member 23 compared to the case where only the blade body 22 is used. Therefore, the windmill 20 is started at a lower wind speed than without the auxiliary member 23.
  • the center of the rotation surface S of the windmill 20 is the rotor shaft 18.
  • the portion r (the portion of the turning radius r) from the center of rotation of the rotor shaft 18 in the blade 21 is at a speed proportional to the turning radius r, and moves within the rotation plane S of the wind turbine 20. Rotate.
  • the speed component in the section of the rotation speed of the blade 21 at the rotation radius r is indicated by the moving speed U r.
  • a wind having a relative wind speed Vr is apparently blowing at a portion of the turning radius r of the blade 21.
  • Blade 2 1 Overall lift is lift Lr It is a sum. The blade 21 moves and the windmill 20 rotates due to the rotational direction component of the lift.
  • the entire camber of the blade 2 1 is the blade body without the auxiliary member 23
  • the auxiliary member 23 bends in the direction of the relative wind speed Vr as shown by the two-dot chain line in FIG. 3 (second shape). Even when the auxiliary member 23 is radiused, the projected area of the blade 21 on the rotation surface S of the windmill 20 hardly changes. By the force of the auxiliary member 23, the camber of the blade 21 is reduced to the same extent as that of the blade body 22 alone. Due to the reduced number of campers, the lift of the blade 21 is reduced to a level comparable to that of the blade body 22 alone. Therefore, over rotation of the windmill 20 is prevented.
  • the blade body 22 does not deform, the power generation efficiency of the generator 16 is ensured, and a significant decrease in power generation efficiency is prevented.
  • the radiused auxiliary member 23 returns to a state (first shape) extending along the rear surface 22 a again. Therefore, the campers of the blades 21 are regenerated and the lift is increased, and the power generation efficiency of the generator 16 is improved.
  • the wind tunnel device 31 is arranged in front of the wind power generation device 11.
  • the wind tunnel device 31 includes a cylindrical wind tunnel 32, and a blower 33 is provided at an opening on the upstream side.
  • the number of rotations per second of the blower 33 is synchronized with the frequency of the drive current.
  • the power supply device 34 has an inverter, and the frequency of the drive current is changed by the inverter.
  • the blower 33 generates, for example, a wind having a wind speed of 1.1 O m / s when the frequency of the drive current is 6 OH Z , and a wind speed of 5.5 m / s when the frequency is 3 OH z. Have.
  • a rectifier plate 35 is provided at the downstream opening of the wind tunnel 32.
  • a voltmeter 36 for measuring the generated voltage is connected to the generator 16.
  • the blade body 2 2 has an airfoil of NA CA 2 4 1 2 and a length of 15 O mm It has a width (chord) of 42 mm and a maximum thickness of 5 mm.
  • a radially inner end 22d of the blade body 22 is mounted at a position of 18 to 20 mm from the rotor shaft 18.
  • the auxiliary member 23 is made of brass, has a thickness of 0.01 mm, and has a length substantially equal to the length of the blade 21. The experiment was performed by changing the amount of the auxiliary member 23 extending rearward from the blade 21 as follows.
  • the power generation voltage could be improved more than in the case of [Example 1].
  • the generated voltage could be improved, but the rate of increase of the generated voltage was smaller than in other cases where the extension was larger.
  • the catching member 23 was bent at a wind speed lower by about 2 m / s than in the cases of [Example 4] to [Example 6].
  • the generation voltage improvement rate was the largest in [Example 5] and [Example 6].
  • the force-in wind speed (starting wind speed) was lower when the auxiliary member 23 was provided than in [Example 1], and it started at 3.30 mZs in [Example 5]. The following was confirmed by the experiment.
  • the flexible auxiliary member 23 having an appropriate amount of extension, the power generation efficiency can be improved, and the auxiliary member 23 bends at a relatively high wind speed. Rotation can be prevented.
  • the wind turbine generator 11 of the present embodiment has the following advantages.
  • the camber of the entire blade 21 increases at a relatively low wind speed, and the power generation efficiency improves.
  • the auxiliary member 23 increases the projected area of the blade 21 onto the rotating surface S of the windmill 20. Therefore, the windmill 20 starts at a relatively lower level and wind speed than when only the blade body 22 is used (cut-in). it can.
  • the catching member 23 is bent by the wind force, so that the camper of the blade 21 is reduced to about the same level as when the blade body 22 alone is used.
  • the auxiliary member 23 is bent, the blade body 22 is not deformed.
  • the windmill 20 is prevented from over-rotating while securing the desired power generation efficiency. That is, it is possible to improve the power generation performance at a wind speed lower than the stall wind speed while maintaining the stall wind speed as it is.
  • the auxiliary member 23 can be separated from the blade body 22. Therefore, the auxiliary member 23 can be retrofitted to an existing blade whose shape is determined in advance according to the size of the windmill, stall wind speed, power generation amount, and the like.
  • the camber of the entire blades can be increased at relatively low wind speeds to improve lift and improve power generation efficiency. Therefore, for example, even if a blade designed to correspond to a place where relatively high-speed wind blows constantly in Europe is used in a place where relatively low-speed wind blows such as Japan, the catching member 23 is attached to the blade. By attaching it, sufficient lift can be obtained and the desired power generation efficiency can be secured.
  • auxiliary member 23 Since the auxiliary member 23 is attached to the blade body 22 by the port 24, it can be easily attached. If the auxiliary member 23 is deformed due to long-term use, it can be easily removed and replaced.
  • the auxiliary member 23 has a slope 23b at the front end, and is attached to the blade body 22 such that the back surface 23a is continuous with the back surface 22a of the blade body 22. . Therefore, it is possible to smooth the air flow and prevent a decrease in lift. 02 04211
  • the auxiliary member 23 is attached over the entire length of the blade body 22. Therefore, the number of campers can be increased over the entire length of the blade body 22.
  • a step portion 41 may be formed at the rear end of the blade body 22.
  • the back surface 22a of the blade body 22 and the back surface 23a of the auxiliary member 23 may be flush.
  • an engaging protrusion 42 is formed on the side surface of the auxiliary member 23, and an engaging groove 43 corresponding to the blade body 22 is formed. You may.
  • the engaging protrusion 42 may be engaged with the engaging groove 43, and the auxiliary member 23 may be fixed to the blade body 22 with a screw 44 or a port 24.
  • the rear end 52 of the blade body may be formed to be removable, and the rear end 52 and the auxiliary member 23 may be integrally molded.
  • the integral molded part 54 is attached to the blade body with, for example, bolts.
  • the rear end portion 52 of the blade body is detachably formed, the rear end portion 52 and the auxiliary member 23 are formed separately without integral molding, and the auxiliary member 23 is bolted with bolts 24 or the like. It may be attached to the rear end 52. In this case, since the rear end portion 52 can be removed from the wind turbine generator 11 and the auxiliary member 23 can be replaced, the trapping member 23 can be easily replaced.
  • a plurality of auxiliary members may be attached in the longitudinal direction of the blade body 22 as shown in, for example, an auxiliary member 55 shown in FIG. Since the radially outer end 2 2c of the blade body 22 attached to the windmill 20 has a larger turning radius than the radially inner end 2 2d of the blade body 22, the radially inner end 2 2c The moving speed is faster than 2d, and the relative wind speed Vr is faster. Therefore, the auxiliary member 55 at the radially outer end 22c bends before the auxiliary member 55 at the radially inner end 22d. In this case, corresponding to the difference in relative wind speed due to the difference in turning radius, the radial inner end 22 P leak 2/04211
  • the auxiliary member 55 in FIG. 8 may be partially attached to the blade body 22 in the longitudinal direction.
  • the auxiliary member 55 is preferably attached to at least the radially outer end 22 c of the blade body 22.
  • the radially outer end 22c has the largest turning radius and the largest relative wind speed on the blade 21 and contributes most to the generation of lift. Therefore, the power generation efficiency can be effectively improved by attaching the auxiliary member 55 to at least the radially outer end 22c.
  • the auxiliary member 55 may be attached to another part of the blade main body 22 without attaching the auxiliary member 55 to the radially outer end 22 c.
  • the auxiliary member may be formed of a plurality of materials, each having a different coefficient of thermal expansion, and at least one of the plurality of materials may be formed to be conductive.
  • a bimetal 56 may be attached to the auxiliary member 55 so as to be able to conduct electricity.
  • An electric wire 57 that gives heat to the bimetal 56 is wired inside the blade body 22.
  • the power generation efficiency can be adjusted by adjusting the extension direction of the auxiliary member 55 by thermally expanding the bimetal 56 by energization by the electric wire 57.
  • the rear end of the catching member 23 may be bent to the windward side to make the camper of the entire blade 21 larger.
  • the rear end of the auxiliary member 23 may be slightly bent to the leeward side within a range where the camper of the entire blade 21 is larger than that of the blade body 22 alone.
  • the front end of the auxiliary member 23 may not be formed in a slope, and there may be some steps at the connection between the back surface 2 2 a of the blade body 22 and the back surface 23 a of the auxiliary member 23. . Connections should be smooth so that airflow is smooth and unnecessary lift is prevented.
  • the outer edge 22c of the blade body 22 in the radial direction may be formed to be narrower than the inner side in the radial direction, and the auxiliary member 23 may be formed so as to conform to the shape of the blade body 22. 02 04211
  • the blade body 22 may be formed of metal, wood, or the like. In this case, it is desirable that the blade body 22 be made of fiber reinforced plastic which is lighter than metal and has the same strength as metal.
  • the fiber of the fiber reinforced plastic forming the trapping member 23 and the blade body 22 is glass fiber / polyamide fiber, and the resin of the fiber reinforced plastic may be nylon or polyester.
  • the auxiliary member 23 may be formed by processing rubber so that it is not deteriorated even by rain, or may be formed by a superelastic alloy ⁇ morphous metal.
  • the auxiliary member does not have to have flexibility.
  • a plate formed so as not to bend may be attached to the rear end of the blade 21 with an elastic member such as a spring.
  • an elastic member such as a spring.
  • the lift increases due to the increase in the projected area and the camber, and the power generation efficiency is improved at a relatively low wind speed.
  • the elastic member radiuses and the entire plate extends in the direction of the relative wind speed, reducing the camber to about the same as the blade body 22. Therefore, it is possible to prevent the windmill from over-rotating while securing the desired power generation efficiency.
  • the blade body 22 is not limited to a propeller blade, and may be, for example, a flat plate of a Dutch windmill.
  • An auxiliary member may be attached to the rear end of the flat blade body.
  • the auxiliary member 23 may be formed integrally with the blade body 22.
  • the number of windmill blades is not limited to three. It will be apparent to one skilled in the art that the present invention may be embodied in other alternatives without departing from the spirit and scope of the invention.

Abstract

A blade used for the windmill of a wind power generator capable of increasing a power generating efficiency at a rather low wind velocity and preventing excessive rotation of the windmill while assuring the power generating efficiency at a rather high wind velocity, comprising a blade body (22) having a camber and rotatably fitted to the rotating shaft of the windmill and an auxiliary member (23) installed at the rear end of the blade body in the rotating direction of the blade body so as to be extended therefrom, wherein the auxiliary member is formed in a first shape capable of increasing the camber of the blade and the projected area of the blade on the rotating surface of the windmill and, when a wind force is increased, deforms from the first shape to a second shape capable of reducing the camber of the entire blade to the same level as the camber of the blade body and, when the wind force is decreased, returns to the first shape.

Description

明細書  Specification
風力発電装置のブレード、 補助部材、 及び風力発電装置  Wind turbine generator blade, auxiliary member, and wind turbine generator
[技術分野] [Technical field]
本発明は、 風力発電装置の風車に使用されるブレード、 ブレードの補助部材及 ぴに風力発電装置に関するものである。  The present invention relates to a blade used for a wind turbine of a wind power generator, an auxiliary member of the blade, and a wind power generator.
[背景技術]  [Background technology]
風力発電装置のブレードは種々研究されており、 プロペラ形風車のいわゆる厚 翼型のブレードがよく使用されている。 ブレードの適切な形状は、 目的の発電量 、 ス トール風速、 風車のサイズ等に従って、 計算により求められる。 風速がス ト ール風速以上に増加すると、 ブレードの形状がもたらす空気特性により失速現象 が起こる。 そのため、 回転速度が低下して風車の過回転が防止される。  Various blades of wind turbines have been studied, and so-called thick-wing blades of propeller type wind turbines are often used. The appropriate shape of the blade can be obtained by calculation according to the desired amount of power generation, stall wind speed, windmill size, and the like. When the wind speed increases beyond the stall wind speed, the stall phenomenon occurs due to the air characteristics provided by the blade shape. As a result, the rotation speed is reduced, and the overturn of the wind turbine is prevented.
ブレードは、 そのキャンバーがある範囲で大きいほど揚力が増加し、 回転速度 が増加して発電効率が向上する。 ブレードは風車の回転面への投影面積が大きい ほど、 より低速の風速で風車を起動 (カットイン) できる。 ここで揚力とは、 ブ レードが風から受ける力のうち、 ブレードの進行方向及び進行速度と、 風を受け る方向及び風速とにより決まるブレードに対する相対的な風の方向に対して直交 し、 ブレードにおいて風を受ける側 (表側) からその反対側 (裏側) へ向かう力 のことである。 しかし、 風速が高速になると、 ブレードのキャンバーが大きいほ ど風車が過回転になりやすく、 発電機の能力を超えて回転したり、 ブレードが破 損する虞がある。 そこで、 機械的構成によって、 ブレードの取付角 (ピッチ角) をアクティブに制御 (ピッチ制御) するものがある。  The greater the camber in a certain area, the greater the lift, the higher the rotation speed and the higher the power generation efficiency. The larger the projected area of the blade on the rotating surface of the wind turbine, the more the wind turbine can start (cut in) at a lower wind speed. Here, the lift force is a force which is orthogonal to the direction of wind and the speed of the blade relative to the blade determined by the direction and speed of the wind and the direction of the wind. Is the force from the wind receiving side (front side) to the opposite side (back side). However, as the wind speed increases, the larger the blade camber, the more likely the windmill will over-rotate, rotating beyond the capacity of the generator and possibly damaging the blade. Therefore, there is one that actively controls (pitch control) the mounting angle (pitch angle) of the blade by a mechanical configuration.
ところが、 機械的にブレードのピッチ角を変化させるものは構成が複雑になる という問題がある。  However, mechanically changing the pitch angle of the blade has a problem in that the configuration is complicated.
風力により可変するブレードを有する風力発電装置が、 例えば実用新案登録第 Wind power generators with blades that can be changed by wind power
3 0 7 1 8 8 0号公報に開示されている。 公報の風力発電装置 1 0 0は、 図 1に 示すように、 オランダ形風車である。 発電装置 1 0 0の風車 9 0の回転軸 9 1か ら、 回転軸 9 1と直交する方向に延びるウィンドシャフト 9 2にブレード 9 3が 取り付けられている。 プレード 9 3は、 ウィンドシャフト 9 2との境界付近にお いて、 超弾性合金材料によって形成された弾性変形部 9 3 aを含む。 風速が増加すると、 増加した風力によって弾性変形部 9 3 aが変形して風車 9 0の過回転が防止される。 公報には、 また、 全体が超弾性合金材料によって形成 されたプレード 9 3が示されている。 No. 3,071,880 discloses this. The wind power generator 100 in the publication is a Dutch windmill, as shown in FIG. A blade 93 is attached to a wind shaft 92 extending from a rotation shaft 91 of the wind turbine 90 of the power generator 100 in a direction orthogonal to the rotation shaft 91. The blade 93 is located near the boundary with the wind shaft 92. And an elastic deformation portion 93a formed of a superelastic alloy material. When the wind speed increases, the elastically deforming portion 93a is deformed by the increased wind force, thereby preventing the windmill 90 from over-rotating. The gazette also shows a blade 93 entirely formed of a superelastic alloy material.
しかしながら、 ブレード 9 3は、 弾性変形部 9 3 aがウィンドシャフト 9 2と の境界付近に位置しているため、 弾性変形部 9 3 aが変形すると、 風に対するブ レード全体の角度が変化する。 そのため、 風速が高速の場合、 発電効率が著しく 低下する。 また、 弾性変形部 9 3 aがプレード 9 3と一体に形成されて分離でき ないため、 弾性変形部 9 3 aは既存のブレードには適用できず、 ブレード 9 3は 新たに形成される必要がある。  However, since the elastic deformation portion 93a of the blade 93 is located near the boundary with the wind shaft 92, when the elastic deformation portion 93a deforms, the angle of the entire blade with respect to the wind changes. Therefore, when the wind speed is high, the power generation efficiency is significantly reduced. Also, since the elastically deformable portion 93a is formed integrally with the blade 93 and cannot be separated, the elastically deformable portion 93a cannot be applied to an existing blade, and the blade 93 must be newly formed. is there.
全体が超弾性合金材料によって形成されたブレード 9 3においては、 風速が高 速の場合、 ブレード全体が変形するため、 発電効率が著レく低下する。 また、 ブ レード全体が超弾性合金材料で形成されているため、 コストが高くなるとともに 、 重くて回転しにくレ、。  In the blade 93 formed entirely of a superelastic alloy material, when the wind speed is high, the entire blade is deformed, so that the power generation efficiency is significantly reduced. In addition, since the entire blade is formed of a superelastic alloy material, the cost is high and the blade is heavy and difficult to rotate.
[発明の開示]  [Disclosure of the Invention]
本発明の目的は、 比較的低い風速での発電効率を向上するとともに、 比較的高 い風速での発電効率を確保しつつ風車の過回転を防止する風力発電装置のブレー ド、 補助部材、 及び風力発電装置を提供することにある。  An object of the present invention is to improve the power generation efficiency at a relatively low wind speed, and at the same time, to secure the power generation efficiency at a relatively high wind speed while preventing the wind turbine from over-rotating, an auxiliary member, and An object of the present invention is to provide a wind power generator.
上記目的を達成するために、 本発明の第 1の態様では、 キャンバーを有しか つ風車の回転軸に回転可能に取り付けられたブレード本体と、 ブレード本体の回 転方向においてそのブレード本体の後端部にブレード本体から延出して設けられ た補助部材とを含む風力発電装置の風車に使用されるブレードが提供される。 補 助部材は、 ブレードのキャンパーを増加させ、 且つ、 風車の回転面へのブレード の投影面積を増加させる第 1の形状を有する。 補助部材は、 風力が増加した時、 第 1の形状から、 ブレード全体のキャンパーを前記ブレード本体のキャンバーと 同程度まで減少させる第 2の形状に変形し、 風力が低下した時、 第 1の形状に戻 る。  In order to achieve the above object, according to a first aspect of the present invention, there is provided a blade body having a camber and rotatably attached to a rotation shaft of a wind turbine, and a rear end of the blade body in a rotation direction of the blade body. The present invention provides a blade for use in a wind turbine of a wind power generator, including an auxiliary member provided to extend from a blade main body. The auxiliary member has a first shape that increases the camper of the blade and increases the projected area of the blade on the rotating surface of the windmill. The auxiliary member deforms from the first shape when the wind power increases, to a second shape that reduces the camper of the entire blade to the same degree as the camber of the blade body, and when the wind power decreases, the first shape Return to
ブレード本体は、 風車のサイズ、 ストール風速、 発電量に従って決定された形 状を有し、 補助部材は、 ブレード本体に対して着脱可能であることが好ましい。 ブレード本体の後端部は、 ブレード本体に対して着脱可能であることが好まし い。 The blade body has a shape determined according to the size of the windmill, the stall wind speed, and the amount of power generation, and the auxiliary member is preferably detachable from the blade body. The rear end of the blade body is preferably detachable from the blade body.
ブレード本体の後端部及び前記補助部材がー体成型されていることが好ましい 補助部材の風を受ける前面とは反対側の裏面と、 ブレード本体の風を受ける前 面とは反対側の裏面とが滑らかに続くように、 補助部材がブレード本体の後端部 に取り付けられることが好ましい。  It is preferable that the rear end of the blade body and the auxiliary member are formed as a body. The back surface of the auxiliary member opposite to the front surface receiving the wind, and the back surface opposite to the front surface of the blade body receiving the wind. It is preferable that the auxiliary member is attached to the rear end of the blade body so that the operation is smoothly continued.
前記補助部材は、 ブレード本体の裏面と連続する斜面を有することが好ましい ブレード本体の後端部は、 前記補助部材を取り付けるための段部を有し、 補助 部材は、 その裏面が前記ブレード本体の裏面と面一になるように、 段部に取り付 けられていることが好ましい。  The auxiliary member preferably has a slope that is continuous with the back surface of the blade body. The rear end of the blade body has a step portion for attaching the auxiliary member, and the back surface of the auxiliary member is the blade body. It is preferable to be attached to the step so as to be flush with the back surface.
補助部材が、 プレード本体の長手方向全体に渡って取り付けられていることが 好ましい。  Preferably, the auxiliary member is attached over the entire length of the blade body.
補助部材の長さが前記ブレード本体の長さより短く、 補助部材は、 ブレード本 体が風車に取り付けられた状態において、 少なくともブレード本体の径方向外側 ^部に備えられていることが好ましい。  It is preferable that the length of the auxiliary member is shorter than the length of the blade main body, and the auxiliary member is provided at least on a radially outer portion of the blade main body when the blade main body is attached to the wind turbine.
捕助部材は、 ブレード本体の長手方向に取り付けられた複数の補助部材の 1つ であることが好ましい。 隣り合う捕助部材は所定の間隔で配置されていることが 好ましい。 所定の間隔は、 ブレードの径方向外側の補助部材の変形による空気流 れの変化がブレードの径方向内側の補助部材に干渉しない距離を有することが好 ましい。  The capture member is preferably one of a plurality of auxiliary members attached in the longitudinal direction of the blade body. Adjacent trapping members are preferably arranged at predetermined intervals. Preferably, the predetermined interval has a distance such that a change in airflow due to deformation of the radially outer auxiliary member of the blade does not interfere with the radially inner auxiliary member of the blade.
補助部材は、 各々が異なる熱膨張率を有する複数の材料を含み、 複数の材料の 少なくとも 1つは通電可能であることが好ましい。  The auxiliary member preferably includes a plurality of materials each having a different coefficient of thermal expansion, and it is preferable that at least one of the plurality of materials be electrically conductive.
補助部材が前記ブレード本体より後方に延出する延出量は、 前記ブレード本体 の幅の 2 0 %以下であることを特徴とする風力発電装置のブレード。  The blade of the wind power generator, wherein an extension amount of the auxiliary member extending rearward from the blade main body is not more than 20% of a width of the blade main body.
本発明の第 2の態様では、 キャンバーを有し、 かつ風車の回転軸に回転可能に 取り付けられたブレード本体と、 プレード本体の回転方向においてそのプレード 本体の後端部にプレード本体から延出して設けられた補助部材と、 を含む風力発 PC蘭雇 11 According to a second aspect of the present invention, there is provided a blade body having a camber and rotatably attached to a rotating shaft of a wind turbine; An auxiliary member provided; PC Lan Hire 11
4 電装置の風車に使用されるプレードが提供される。 補助部材は、 ブレード本体に 対して着脱可能であり且つ、 風力に応じて可撓的に変形する。  Provided is a blade for use in wind turbines of electrical equipment. The auxiliary member is detachable from the blade main body, and flexibly deforms in response to wind force.
本発明の第 3の態様では、 風力発電装置の風車に使用されキャンバーを有する ブレード本体に取り付けられ、 ブレード本体とともにブレードを形成する補助部 材が提供される。 補助部材は、 プレード本体の回転方向においてそのブレード本 体の後端部にプレード本体から延出して取り付けられた状態において、 ブレード 全体のキャンバーを増加させ、 且つ、 前記風車の回転面へのブレードの投影面積 を増加させる第 1の形状を有する。 補助部材は、 風力が増加した時、 第 1の形状 から、 ブレード全体のキャンパーをブレード本体のキャンパーと同程度まで減少 させる第 2の形状に変形し、 風力が低下した時、 第 1の形状に戻る。  According to a third aspect of the present invention, there is provided an auxiliary member which is used in a wind turbine of a wind turbine generator, is attached to a blade body having a camber, and forms a blade together with the blade body. The auxiliary member increases the camber of the whole blade in a state where the auxiliary member extends from the blade main body to the rear end portion of the blade main body in the rotation direction of the blade main body, and further increases the camber of the blade to the rotation surface of the windmill. It has a first shape that increases the projected area. The auxiliary member deforms from the first shape when the wind power increases, to a second shape that reduces the camper of the entire blade to the same degree as the camper on the blade body, and changes to the first shape when the wind power decreases Return.
本発明の第 4の態様では、 風力発電装置の風車に使用されるブレード本体に取 り付けられ、 ブレード本体とともにブレードを形成する補助部材が提供される。 補助部材は、 ブレード本体の回転方向においてそのブレード本体の後端部にブレ 一ド本体から延出して取り付けられた状態において、 風力に応じて可撓的に変形 する。  According to a fourth aspect of the present invention, there is provided an auxiliary member which is attached to a blade main body used in a wind turbine of a wind turbine generator and forms a blade together with the blade main body. The auxiliary member is flexibly deformed in response to wind force when it is attached to the rear end of the blade body in the direction of rotation of the blade body so as to extend from the blade body.
本発明の第 5の態様では、 ロータ軸を有する発電機と、 ロータ軸に取り付けら れ風圧によりロータ軸を回転させるブレードを有する風車と、 を含む風力発電装 置が提供される。 ブレードは、 キャンバーを有し、 かつロータ軸に回転可能に取 り付けられたブレード本体と、 ブレード本体の回転方向においてそのプレード本 体の後端部にブレード本体から延出して設けられた補助部材とを含む。 補助部材 は、 ブレードのキャンバーを増加させ、 且つ、 風車の回転面へのブレードの投影 面積を増加させる第 1の形状を有する。 補助部材は、 風力が増加した時、 第 1の 形状から、 ブレード全体のキャンバーをブレード本体のキャンバーと同程度まで 減少させる第 2の形状に変形し、 風力が低下した時、 第 1の形状に戻る。  According to a fifth aspect of the present invention, there is provided a wind power generator including: a generator having a rotor shaft; and a windmill having a blade attached to the rotor shaft and rotating the rotor shaft by wind pressure. The blade has a camber and is rotatably mounted on the rotor shaft. An auxiliary member is provided at the rear end of the blade body in the direction of rotation of the blade body, extending from the blade body. And The auxiliary member has a first shape that increases the camber of the blade and increases the projected area of the blade on the rotating surface of the windmill. The auxiliary member deforms from the first shape when the wind power increases to a second shape that reduces the camber of the entire blade to the same degree as the camber of the blade body, and changes to the first shape when the wind power decreases Return.
[図面の簡単な説明] [Brief description of drawings]
本発明を、 本発明の目的及ぴ特徴とともにより良く理解するため、 添付図面と ともに以下の代表的な実施の形態の記載を参照する。  For a better understanding of the present invention, together with the objects and features of the present invention, reference is made to the following description of exemplary embodiments in conjunction with the accompanying drawings.
図 1は、 従来の風力発電装置の概略的な斜視図である。 図 2は、 本発明の一実施形態に従う風力発電装置の概略的な斜視図である。 図 3は、 図 2の風力発電装置のプレードの概略的な側面図である。 FIG. 1 is a schematic perspective view of a conventional wind turbine generator. FIG. 2 is a schematic perspective view of a wind turbine generator according to one embodiment of the present invention. FIG. 3 is a schematic side view of a blade of the wind turbine generator of FIG.
図 4は、 実験装置の模式的な説明図である。  FIG. 4 is a schematic explanatory diagram of the experimental apparatus.
図 5は、 実験結果を示すグラフである。  Figure 5 is a graph showing the experimental results.
図 6 Aは、 別のブレードの概略的な斜視図である。  FIG. 6A is a schematic perspective view of another blade.
図 6 Bは、 図 6 Aのブレードの分解斜視図である。  FIG. 6B is an exploded perspective view of the blade of FIG. 6A.
図 7は、 別のブレードの概略的な断面図である。  FIG. 7 is a schematic sectional view of another blade.
図 8は、 別のプレードの概略的な斜視図である。  FIG. 8 is a schematic perspective view of another blade.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
図 2は本発明の一実施の形態に従う風力発電装置 1 1の概略的な斜視図であり 、 風力発電装置 1 1はプロペラ形風車を有する。 図 3はブレード 2 1の概略的な 側面図である。  FIG. 2 is a schematic perspective view of a wind power generator 11 according to one embodiment of the present invention, and the wind power generator 11 has a propeller-type wind turbine. FIG. 3 is a schematic side view of the blade 21.
図 2に示すように、 風力発電装置 1 1は、 地面に固定された固定部 1 2と、 固 定部 1 2に立設され、 金属製パイプである支柱 1 3を含む。 支柱 1 3の上端には 、 支柱 1 3に対して回動可能な支持ケース 1 4が配置されている。 支持ケース 1 4の上部には発電機 1 6が取り付けられている。 発電機 1 6にはロータ軸 1 8が 水平に延設されている。 ロータ軸 1 8には、 風車 2 0が取り付けられ、 風車 2 0 とロータ軸 1 8は一体に回転する。 支持ケース 1 4には、 風によって支持ケース 1 4を回動して風車 2 0を常に風上方向に向けるテールフィン 1 4 aが設けられ ている。  As shown in FIG. 2, the wind turbine generator 11 includes a fixed part 12 fixed to the ground, and a pillar 13 erected on the fixed part 12, which is a metal pipe. At the upper end of the support 13, a support case 14 rotatable with respect to the support 13 is arranged. The generator 16 is attached to the upper part of the support case 14. The generator 16 has a rotor shaft 18 extending horizontally. A windmill 20 is attached to the rotor shaft 18, and the windmill 20 and the rotor shaft 18 rotate integrally. The support case 14 is provided with tail fins 14a that rotate the support case 14 by wind and always direct the windmill 20 to the windward direction.
風車 2 0には、 3個のブレード 2 1が 1 2 0 ° 間隔で取り付けられている。 風 車 2 0は、 本実施形態では、 図 2において反時計方向 (回転方向 R) に回転する ように形成されている。  Three blades 21 are attached to the windmill 20 at intervals of 120 °. In this embodiment, the wind turbine 20 is formed so as to rotate in the counterclockwise direction (rotation direction R) in FIG.
ブレード 2 1の前部は、 風車 2 0の回転方向 R側であり、 ブレード 2 1の後部 は、 風車 2 0の回転方向 Rと反対側である。 ブレード 2 1の表面 2 2 bは風を受 ける。 ブレード 2 1は、 プロペラ翼であるブレード本体 2 2と補助部材 2 3とを 含む。 補助部材 2 3はプレード本体 2 2の後端部に取り付けられている。 ブレー ド本体 2 2は、 その長手方向に渡って一定断面に形成されている。 プレード本体 2 2は、 そのキャンバーが裏側に凸になるように、 風車 2 0に取り付けられてい る。 ブレード本体 2 2の形状は、 風車のサイズ、 ス トール風速、 発電量に従って 、 好適に形成されている。 ブレード本体 2 2は、 本実施形態では繊維強化プラス チックによって形成されている。 The front of the blade 21 is on the rotation direction R side of the windmill 20, and the rear of the blade 21 is on the side opposite to the rotation direction R of the windmill 20. The surface 2 2 b of the blade 21 receives wind. The blade 21 includes a blade body 22 which is a propeller blade and an auxiliary member 23. The auxiliary member 23 is attached to the rear end of the blade main body 22. The blade main body 22 is formed to have a constant cross section over its longitudinal direction. Blade body 22 is attached to the windmill 20 so that its camber is convex on the back side. The shape of the blade body 22 is suitably formed according to the size of the windmill, the stall wind speed, and the amount of power generation. The blade body 22 is formed of fiber-reinforced plastic in the present embodiment.
捕助部材 2 3は平板状であって、 ブレード本体 2 2の裏面 2 2 aに沿ってブレ ード本体 2 2の後方に延出するように、 ブレード本体 2 2に取り付けられている 。 このとき、 補助部材 2 3は第 1の形状を有する。 ポルト 2 4がプレード本体 2 2内の空洞に配置された図示しないナツトに螺合されることによって、 補助部材 2 3はブレード本体 2 2に取り付けられている (図 3参照) 。 捕助部材 2 3は、 その裏面 2 3 aがブレード本体 2 2の裏面 2 2 aと滑ら力に続くように、 その前 端部に、 ブレード本体 2 2の裏面 2 2 aに連続する斜面 2 3 bを有する。 補助部 材 2 3は可撓性を有し、 風圧に応じて可撓的に変形する。 本実施の形態では、 補 助部材 2 3は繊維強化プラスチックによって形成されている。 繊維強化プラスチ ックは、 例えば力一ボン繊維強化プラスチックやポロン繊維強化プラスチックで あ 。  The catching member 23 has a flat plate shape, and is attached to the blade main body 22 so as to extend rearward of the blade main body 22 along the back surface 22 a of the blade main body 22. At this time, the auxiliary member 23 has the first shape. The auxiliary member 23 is attached to the blade body 22 by screwing the port 24 into a nut (not shown) arranged in a cavity in the blade body 22 (see FIG. 3). The catching member 23 has a slope 2 connected to the back surface 2 2 a of the blade body 22 at its front end so that its back surface 23 a follows the sliding force with the back surface 22 a of the blade body 22. Has 3b. The auxiliary member 23 has flexibility and is flexibly deformed according to wind pressure. In the present embodiment, the auxiliary member 23 is formed of fiber reinforced plastic. The fiber-reinforced plastic is, for example, a carbon fiber reinforced plastic or a Porone fiber reinforced plastic.
次に、 風力発電装置 1 1の作用について説明する。  Next, the operation of the wind power generator 11 will be described.
風が吹いている状態では、 テールフィン 1 4 aによって支持ケース 1 4が回動 され、 風車 2 0は風上方向に向けられる。 ブレード 2 1の風車 2 0の回転面 S ( 図 3参照) へ投影面積は、 補助部材 2 3によって、 プレード本体 2 2だけの場合 より増加される。 よって、 風車 2 0は、 補助部材 2 3なしの場合より低い風速で 起動される。 風車 2 0の回転面 Sの中心は、 ロータ軸 1 8である。  In the state where the wind is blowing, the support case 14 is rotated by the tail fins 14a, and the windmill 20 is directed to the windward direction. The projected area of the blade 21 onto the rotation surface S (see FIG. 3) of the windmill 20 is increased by the auxiliary member 23 compared to the case where only the blade body 22 is used. Therefore, the windmill 20 is started at a lower wind speed than without the auxiliary member 23. The center of the rotation surface S of the windmill 20 is the rotor shaft 18.
図 2に示すように、 プレード 2 1においてロータ軸 1 8の回転中心から rの部 分 (回転半径 rの部分) は、 回転半径 rに比例する速度で、 風車 2 0の回転面 S 内を回転する。 図 3において、 ブレード 2 1の回転速度の、 回転半径 rでの断面 内の速度成分を移動速度 U rで示す。 風速 Wと移動速度 U rとにより、 ブレード 2 1の回転半径 rの部分には、 見かけ上、 相対的な風速 V rを有する風が吹いて いることになる。 相対的な風速 V rにより、 ブレード 2 1の回転半径 rの部分に は、 相対的な風速 V rに対して直交し、 プレード 2 1の表面 2 2 bから裏面 2 2 aへ向かう力 (揚力) L rが発生する。 ブレード 2 1全体の揚力は、 揚力 L rの 総和である。 揚力の回転方向成分により、 ブレード 2 1が移動して風車 2 0が回 転する。 As shown in FIG. 2, the portion r (the portion of the turning radius r) from the center of rotation of the rotor shaft 18 in the blade 21 is at a speed proportional to the turning radius r, and moves within the rotation plane S of the wind turbine 20. Rotate. In FIG. 3, the speed component in the section of the rotation speed of the blade 21 at the rotation radius r is indicated by the moving speed U r. Based on the wind speed W and the moving speed Ur, a wind having a relative wind speed Vr is apparently blowing at a portion of the turning radius r of the blade 21. Due to the relative wind speed V r, the portion of the turning radius r of the blade 21 is orthogonal to the relative wind speed V r, and the force (lift force) from the front surface 22 b of the blade 21 to the back surface 22 b Lr occurs. Blade 2 1 Overall lift is lift Lr It is a sum. The blade 21 moves and the windmill 20 rotates due to the rotational direction component of the lift.
ブレード 2 1全体のキャンバーは、 補助部材 2 3をつけていないブレード本体 The entire camber of the blade 2 1 is the blade body without the auxiliary member 23
2 2だけの場合より大きい。 従って、 ブレード 2 1の揚力は、 ブレード本体 2 2 だけの場合に比べて増加する。 揚力の増加により、 風車 2 0の回転速度が増加し 、 発電機 1 6の発電効率が向上される。 2 Greater than just 2 Therefore, the lift of the blade 21 is increased as compared with the case of the blade body 22 alone. Due to the increase in lift, the rotation speed of the windmill 20 increases, and the power generation efficiency of the generator 16 is improved.
風速の増加に伴う相対的な風速 V rの増加によって、 補助部材 2 3は、 図 3の 二点鎖線で示すように、 相対的な風速 V rの方向に撓む (第 2の形状) 。 補助部 材 2 3が橈んでも、 風車 2 0の回転面 Sへのブレード 2 1の投影面積はほとんど 変化しない。 し力 し、 補助部材 2 3の橈みにより、 ブレード 2 1のキャンバーは 、 ブレード本体 2 2だけのそれと同程度にまで減少する。 キャンパーの減少によ つて、 プレード 2 1の揚力はブレード本体 2 2だけのそれと同程度にまで低減す る。 そのため、 風車 2 0の過回転が防止される。 プレード本体 2 2は変形しない ため、 発電機 1 6の発電効率が確保され、 発電効率の著しい低下が防止される。 橈んだ補助部材 2 3は、 風速が下がると再び裏面 2 2 aに沿って延びる状態 ( 第 1の形状) に苠る。 そのため、 ブレード 2 1のキャンパーが再ぴ増加されて揚 力が増加され、 発電機 1 6の発電効率が向上される。  Due to an increase in the relative wind speed Vr with an increase in the wind speed, the auxiliary member 23 bends in the direction of the relative wind speed Vr as shown by the two-dot chain line in FIG. 3 (second shape). Even when the auxiliary member 23 is radiused, the projected area of the blade 21 on the rotation surface S of the windmill 20 hardly changes. By the force of the auxiliary member 23, the camber of the blade 21 is reduced to the same extent as that of the blade body 22 alone. Due to the reduced number of campers, the lift of the blade 21 is reduced to a level comparable to that of the blade body 22 alone. Therefore, over rotation of the windmill 20 is prevented. Since the blade body 22 does not deform, the power generation efficiency of the generator 16 is ensured, and a significant decrease in power generation efficiency is prevented. When the wind speed decreases, the radiused auxiliary member 23 returns to a state (first shape) extending along the rear surface 22 a again. Therefore, the campers of the blades 21 are regenerated and the lift is increased, and the power generation efficiency of the generator 16 is improved.
次に、 本実施の形態の実験例について説明するが、 本発明はこれに限定される ものではない。  Next, experimental examples of the present embodiment will be described, but the present invention is not limited thereto.
図 4に示すように、 風力発電装置 1 1の前方に風洞装置 3 1を配置する。 風洞 装置 3 1は、 円筒形の風洞 3 2を備え、 その上流側の開口部には送風機 3 3が配 設されている。 送風機 3 3の 1秒当たりの回転数は、 駆動電流の周波数に同期す る。 電源装置 3 4はインバータを備え、 インバータによって駆動電流の周波数を 変化させる。 送風機 3 3は、 例えば、 駆動電流の周波数が 6 O H Zのとき、 風速 1 1 . O m/ sを有する風を生成し、 周波数が 3 O H zのとき、 風速 5 . 5 0 m / sを有する。 風洞 3 2の下流側の開口部には、 整流板 3 5が設けられ、 整流板As shown in FIG. 4, the wind tunnel device 31 is arranged in front of the wind power generation device 11. The wind tunnel device 31 includes a cylindrical wind tunnel 32, and a blower 33 is provided at an opening on the upstream side. The number of rotations per second of the blower 33 is synchronized with the frequency of the drive current. The power supply device 34 has an inverter, and the frequency of the drive current is changed by the inverter. The blower 33 generates, for example, a wind having a wind speed of 1.1 O m / s when the frequency of the drive current is 6 OH Z , and a wind speed of 5.5 m / s when the frequency is 3 OH z. Have. At the downstream opening of the wind tunnel 32, a rectifier plate 35 is provided.
3 5は送り出す空気の流れを整流する。 発電機 1 6には、 発電電圧を計測する電 圧計 3 6が接続されている。 3 5 rectifies the air flow to be sent out. A voltmeter 36 for measuring the generated voltage is connected to the generator 16.
プレード本体 2 2は、 その翼型が NA C A 2 4 1 2であり、 1 5 O mmの長さ が、 42 mmの幅 (翼弦) 、 5 mmの最大厚みを有する。 The blade body 2 2 has an airfoil of NA CA 2 4 1 2 and a length of 15 O mm It has a width (chord) of 42 mm and a maximum thickness of 5 mm.
ブレード本体 22の径方向内側端部 22 dは、 ロータ軸 1 8から 20 mmの位 置に取り付けられている。 補助部材 23は真鍮製で、 厚みが 0. 01mmに形成 され、 その長さがプレード 21の長さとほぼ同じ長さに形成されている。 補助部 材 23は、 ブレード 21より後方に延出する延出量を以下のように変化させて実 験を行った。  A radially inner end 22d of the blade body 22 is mounted at a position of 18 to 20 mm from the rotor shaft 18. The auxiliary member 23 is made of brass, has a thickness of 0.01 mm, and has a length substantially equal to the length of the blade 21. The experiment was performed by changing the amount of the auxiliary member 23 extending rearward from the blade 21 as follows.
[例 1 ] Omm ; 補助部材 23がな 、場合  [Example 1] Omm; When there is no auxiliary member 23
[例 2] 4 mm  [Example 2] 4 mm
[例 3] 5 mm  [Example 3] 5 mm
[例 4] 6 mm  [Example 4] 6 mm
[例 5] 7mm  [Example 5] 7mm
[例 6 ] 8 mm  [Example 6] 8 mm
[例 7] 10 mm  [Example 7] 10 mm
実験例 1〜実験例 7のそれぞれにおいて、 停止状態の風車 20に、 風洞装置 3 1により送風して風車を起動 (カットイン) させた。 次いで、 電源装置 34の周 波数を 1 Hzずつ上昇させて風速を上げ、 各風速に対する発電機 16の発電電圧 (V) を電圧計 36で計測した。 表 1に実験結果を示し、 図 5に実験結果のダラ フを示す。  In each of Experimental Examples 1 to 7, the wind turbine 20 was started (cut in) by blowing air to the stopped wind turbine 20 by the wind tunnel device 31. Next, the wind speed was increased by increasing the frequency of the power supply unit 34 by 1 Hz, and the generated voltage (V) of the generator 16 for each wind speed was measured by the voltmeter 36. Table 1 shows the experimental results, and Fig. 5 shows the experimental results.
[例 5] と [例 6] の場合は、 グラフの形が似ていたため、 [例 5 ;延出量 = 7mm] の場合だけをグラフに図示した。 表 2には、 [例 1 ;補助部材 23なし ] の場合に対して補助部材 23を取り付けた場合の発電電圧の向上率 (%) を表 1に対応させて示した。 風速 3. 85mZs以下では、 [例 1] ではまだ風車が 起動されていないため、 [例 2] 〜 [例 7] の発電電圧 (V) をそのまま示した 【表 1】 風速 補助部 4itm 5mm 6mm 7mm 8國 10議 (m/s) 材なし In the case of [Example 5] and [Example 6], the shape of the graph was similar, so only the case of [Example 5; extension = 7mm] is shown in the graph. Table 2 shows the improvement rate (%) of the power generation voltage when the auxiliary member 23 is attached to the case of [Example 1; no auxiliary member 23], corresponding to Table 1. At wind speeds of 3.85 mZs or less, the power generation voltage (V) of [Example 2] to [Example 7] is shown as it is because the wind turbine has not yet been started in [Example 1]. [Table 1] Wind speed auxiliary part 4itm 5mm 6mm 7mm 8 countries 10 discussions (m / s) No material
2.93 0 0 0 0 0 0 0 2.93 0 0 0 0 0 0 0
3.12 0 0 0 0 0 0 03.12 0 0 0 0 0 0 0
3.30 0 0 0 0 2.32 0 03.30 0 0 0 0 2.32 0 0
3.48 0 0 0 0 2.54 2.54 03.48 0 0 0 0 2.54 2.54 0
3.67 0 2.57 2.62 2.68 2.70 2.71 2.663.67 0 2.57 2.62 2.68 2.70 2.71 2.66
3.85 0 2.77 2.88 2.90 2.92 2.94 2.903.85 0 2.77 2.88 2.90 2.92 2.94 2.90
2.85 3.00 3.05 3.10 3.16 3.14 3.082.85 3.00 3.05 3.10 3.16 3.14 3.08
A 00 3.00 3.12 3.25 3.30 3.32 3.30 3.25A 00 3.00 3.12 3.25 3.30 3.32 3.30 3.25
A AC) 3.15 3.28 3.43 3.44 3.46 3.49 3.44(A AC) 3.15 3.28 3.43 3.44 3.46 3.49 3.44
A 5ft 3.33 3.45 3.60 3.65 3.66 3.67 3.61A 5ft 3.33 3.45 3.60 3.65 3.66 3.67 3.61
A 77 3 5^ 3.67 3.82 3.83 3.86 3.86 3.84A 77 3 5 ^ 3.67 3.82 3.83 3.86 3.86 3.84
4 or; 3, 70 3.83 4.00 4.00 4.00 4.05 4.004 or; 3, 70 3.83 4.00 4.00 4.00 4.05 4.00
3· 86 4.00 4.20 4.18 4.17 4.22 4.123 86 4.00 4.20 4.18 4.17 4.22 4.12
4 03 4 20 4.33 4.38 4.35 4.40 4.304 03 4 20 4.33 4.38 4.35 4.40 4.30
4· 20 4.38 4.53 4.52 4.50 4.56 4.424 ・ 20 4.38 4.53 4.52 4.50 4.56 4.42
4.38 4.58 4.70 4.70 4.70 4.70 4.50 ς Q7 4.56 4.80 4.85 4.86 4.82 4.85 4.624.38 4.58 4.70 4.70 4.70 4.70 4.50 ς Q7 4.56 4.80 4.85 4.86 4.82 4.85 4.62
4.73 4.90 4.99 5.00 5.00 5.00 4.65 β 23 4.88 5.07 5.20 5.16 5.20 5.13 4.754.73 4.90 4.99 5.00 5.00 5.00 4.65 β 23 4.88 5.07 5.20 5.16 5.20 5.13 4.75
6-42 5.00 5.20 5.35 5.30 5.30 5.25 4.766-42 5.00 5.20 5.35 5.30 5.30 5.25 4.76
6.60 5.25 5.44 5.48 5.50 5.45 5.45 4.806.60 5.25 5.44 5.48 5.50 5.45 5.45 4.80
6.78 5.40 5.60 5.60 5.60 5.52 5.52 6.78 5.40 5.60 5.60 5.60 5.52 5.52
6.97 5.60 5.79 5.80 5.80 5.73 5.71 6.97 5.60 5.79 5.80 5.80 5.73 5.71
7.15 5.77 6.00 5.90 5.95 5.82 5 88 7.15 5.77 6.00 5.90 5.95 5.82 5 88
7.33 5.90 6.12 6.10 6.10 5.50 5.50  7.33 5.90 6.12 6.10 6.10 5.50 5.50
7.52 6.10 6.27 6.28 5.65 5.50 5.50  7.52 6.10 6.27 6.28 5.65 5.50 5.50
7.70 6.22 6.40 6.40 5.65  7.70 6.22 6.40 6.40 5.65
7.88 6.35 6.55 6.53  7.88 6.35 6.55 6.53
8.07 6.50 6.70 6.70  8.07 6.50 6.70 6.70
8.25 6.60 6.80 6.80  8.25 6.60 6.80 6.80
8.43 6.75 6.85 6.85 8.43 6.75 6.85 6.85
【表 2】 [Table 2]
Figure imgf000012_0001
Figure imgf000012_0001
表 1、 表 2及び図 5に示すように、 補助部材 23を取り付けることにより、 [ 例 1] の場合より発電電圧を向上できた。 [例 2] の場合では、 発電電圧を向上 できたものの、 延出量がより大きな他の場合より発電電圧の向上率が小さかった 。 [例 7] の場合では、 [例 4] 〜 [例 6] の場合より 2 m/ s程度低い風速で 捕助部材 23が撓んだ。 発電電圧の向上率は、 [例 5] 及び [例 6] の場合に最 も大きかった。  As shown in Table 1, Table 2, and FIG. 5, by attaching the auxiliary member 23, the power generation voltage could be improved more than in the case of [Example 1]. In the case of [Example 2], the generated voltage could be improved, but the rate of increase of the generated voltage was smaller than in other cases where the extension was larger. In the case of [Example 7], the catching member 23 was bent at a wind speed lower by about 2 m / s than in the cases of [Example 4] to [Example 6]. The generation voltage improvement rate was the largest in [Example 5] and [Example 6].
力ットイン風速 (起動風速) は、 [例 1 ] の場合より、 補助部材 23を設けた 場合の方がより低速になり、 [例 5] の場合、 3. 30mZsで起動した。 実験により以下のことが確認できた。 適切な延出量を有する可撓性補助部材 2 3を取り付けることによって、 発電効率を向上できるとともに、 比較的高い風速 において補助部材 2 3が撓み、 発電効率を確保した状態で風車 2 0の過回転を防 止できる。 The force-in wind speed (starting wind speed) was lower when the auxiliary member 23 was provided than in [Example 1], and it started at 3.30 mZs in [Example 5]. The following was confirmed by the experiment. By attaching the flexible auxiliary member 23 having an appropriate amount of extension, the power generation efficiency can be improved, and the auxiliary member 23 bends at a relatively high wind speed. Rotation can be prevented.
本実施形態の風力発電装置 1 1は、 以下の利点を有する。  The wind turbine generator 11 of the present embodiment has the following advantages.
( 1 ) ブレード本体 2 2の後端部に捕助部材 2 3を取り付けることにより、 ブレード 2 1全体のキャンバーが比較的低い風速において増加し、 発電効率が向 上する。 補助部材 2 3により、 ブレード 2 1の風車 2 0の回転面 Sへの投影面積 が增加するため、 ブレード本体 2 2だけの場合より比較的低レ、風速で風車 2 0が 起動 (カットイン) できる。 比較的高い風速においては、 捕助部材 2 3が風力に よって撓むため、 ブレード 2 1のキャンパーがブレード本体 2 2だけの場合と同 程度まで減る。 補助部材 2 3が橈むものの、 ブレード本体 2 2は変形しない。 そ のため、 風速が比較的高い時、 所望の発電効率を確保しつつ、 風車 2 0の過回転 が防止される。 すなわち、 ス トール風速をそのまま維持して、 ス トール風速以下 の風速での発電性能を向上できる。  (1) By attaching the catching member 23 to the rear end of the blade body 22, the camber of the entire blade 21 increases at a relatively low wind speed, and the power generation efficiency improves. The auxiliary member 23 increases the projected area of the blade 21 onto the rotating surface S of the windmill 20. Therefore, the windmill 20 starts at a relatively lower level and wind speed than when only the blade body 22 is used (cut-in). it can. At a relatively high wind speed, the catching member 23 is bent by the wind force, so that the camper of the blade 21 is reduced to about the same level as when the blade body 22 alone is used. Although the auxiliary member 23 is bent, the blade body 22 is not deformed. Therefore, when the wind speed is relatively high, the windmill 20 is prevented from over-rotating while securing the desired power generation efficiency. That is, it is possible to improve the power generation performance at a wind speed lower than the stall wind speed while maintaining the stall wind speed as it is.
( 2 ) 補助部材 2 3はプレード本体 2 2と分離可能である。 そのため、 風車 のサイズ、 ストール風速、 発電量などによって形状が予め決まっている既存のブ レードに補助部材 2 3を後付けすることができる。 既存のブレードを利用して、 ブレード全体のキャンバーを比較的低い風速において増加させて揚力を向上し、 発電効率を向上できる。 従って、 例えばヨーロッパの比較的高速の風が常時吹く 場所に対応するように設計されたブレードを日本等の比較的低速の風が吹く場所 で使用する場合でも、 そのブレードに捕助部材 2 3を取り付けることにより充分 な揚力を得て、 所望の発電効率を確保できる。  (2) The auxiliary member 23 can be separated from the blade body 22. Therefore, the auxiliary member 23 can be retrofitted to an existing blade whose shape is determined in advance according to the size of the windmill, stall wind speed, power generation amount, and the like. Using existing blades, the camber of the entire blades can be increased at relatively low wind speeds to improve lift and improve power generation efficiency. Therefore, for example, even if a blade designed to correspond to a place where relatively high-speed wind blows constantly in Europe is used in a place where relatively low-speed wind blows such as Japan, the catching member 23 is attached to the blade. By attaching it, sufficient lift can be obtained and the desired power generation efficiency can be secured.
( 3 ) 補助部材 2 3は、 ポルト 2 4によってプレード本体 2 2に取り付けら れているため、 簡単に取り付けできる。 長期間の使用によって補助部材 2 3が変 形した場合等には、 簡単に取り外して交換できる。  (3) Since the auxiliary member 23 is attached to the blade body 22 by the port 24, it can be easily attached. If the auxiliary member 23 is deformed due to long-term use, it can be easily removed and replaced.
( 4 ) 補助部材 2 3は前端部に斜面 2 3 bを有し、 その裏面 2 3 aがブレー ド本体 2 2の裏面 2 2 aに連続するように、 ブレード本体 2 2に取り付けられて いる。 よって、 空気流れを滑らかにして、 揚力低下を防止できる。 02 04211 (4) The auxiliary member 23 has a slope 23b at the front end, and is attached to the blade body 22 such that the back surface 23a is continuous with the back surface 22a of the blade body 22. . Therefore, it is possible to smooth the air flow and prevent a decrease in lift. 02 04211
1 2  1 2
( 5 ) 補助部材 2 3は、 ブレード本体 2 2の長手方向全体に渡って取り付け られている。 よって、 ブレード本体 2 2の長手方向全体に渡ってキャンパーを増 加できる。 (5) The auxiliary member 23 is attached over the entire length of the blade body 22. Therefore, the number of campers can be increased over the entire length of the blade body 22.
本実施形態は、 次のように変更して具体化することも可能である。  This embodiment can be embodied with the following modifications.
-図 6 Aに示すように、 ブレード本体 2 2の後端に段部 4 1を形成してもよい 。 その段部 4 1に補助部材 2 3の前端を収容することにより、 ブレード本体 2 2 の裏面 2 2 aと、 補助部材 2 3の裏面 2 3 aとを面一にしてもよレ、。  -As shown in FIG. 6A, a step portion 41 may be formed at the rear end of the blade body 22. By accommodating the front end of the auxiliary member 23 in the step portion 41, the back surface 22a of the blade body 22 and the back surface 23a of the auxiliary member 23 may be flush.
段部 4 1を形成する場合、 図 6 Bに示すように、 補助部材 2 3の側面に係合凸 部 4 2を形成するとともに、 ブレード本体 2 2に対応する係合溝 4 3を形成して もよい。 係合凸部 4 2を係合溝 4 3に係合し、 ねじ 4 4やポルト 2 4で補助部材 2 3をブレード本体 2 2に固定してもよい。  When forming the step portion 41, as shown in FIG. 6B, an engaging protrusion 42 is formed on the side surface of the auxiliary member 23, and an engaging groove 43 corresponding to the blade body 22 is formed. You may. The engaging protrusion 42 may be engaged with the engaging groove 43, and the auxiliary member 23 may be fixed to the blade body 22 with a screw 44 or a port 24.
•図 7に示すように、 ブレード本体の後端部 5 2を取り外し可能に形成し、 後 端部 5 2と、 補助部材 2 3とを一体成型してもよい。 一体成型部 5 4を、 例えば ボルトでブレード本体に取り付ける。 補助部材 2 3が長期間の使用により変形し たり破損して交換する際に、 風力発電装置 1 1からブレード 2 1全体を取り外さ ずに、 一体成型部 5 4だけを交換することにより、 補助部材 2 3を交換できるた め、 補助部材 2 3を交換しやすい。 補助部材 2 3が後端部 5 2と一体であるため 、 補助部材 2 3の交換の際にかかる時間を短くできる。  • As shown in FIG. 7, the rear end 52 of the blade body may be formed to be removable, and the rear end 52 and the auxiliary member 23 may be integrally molded. The integral molded part 54 is attached to the blade body with, for example, bolts. When replacing the auxiliary member 23 due to deformation or breakage due to long-term use, the auxiliary member can be replaced by replacing only the integrally molded part 54 without removing the entire blade 21 from the wind power generator 11. Since the 23 can be replaced, the auxiliary member 23 can be easily replaced. Since the auxiliary member 23 is integral with the rear end portion 52, the time required for replacing the auxiliary member 23 can be reduced.
•ブレード本体の後端部 5 2を取り外し可能に形成する場合、 後端部 5 2と補 助部材 2 3とを一体成型せずに別々に形成し、 補助部材 2 3をボルト 2 4等で後 端部 5 2に取り付けてもよい。 この場合、 後端部 5 2を風力発電装置 1 1から取 り外して補助部材 2 3を交換できるため、 捕助部材 2 3を交換しやすい。  • When the rear end portion 52 of the blade body is detachably formed, the rear end portion 52 and the auxiliary member 23 are formed separately without integral molding, and the auxiliary member 23 is bolted with bolts 24 or the like. It may be attached to the rear end 52. In this case, since the rear end portion 52 can be removed from the wind turbine generator 11 and the auxiliary member 23 can be replaced, the trapping member 23 can be easily replaced.
•補助部材を、 例えば図 8に示す補助部材 5 5のように、 ブレード本体 2 2の 長手方向に複数取り付けてもよい。 風車 2 0に取り付けられたブレード本体 2 2 の径方向外側端部 2 2 cは、 ブレード本体 2 2の径方向内側端部 2 2 dより大き い回転半径を有するため、 径方向内側端部 2 2 dより移動速度が速く、 相対的な 風速 V rも速い。 よって、 径方向外側端部 2 2 cの補助部材 5 5の方が、 径方向 内側端部 2 2 dの補助部材 5 5より先に撓む。 この場合、 回転半径の違いによる 相対的な風速の違いに対応して、 回転半径が小さい径方向内側端部 2 2 d側の補 P 漏 2/04211 • A plurality of auxiliary members may be attached in the longitudinal direction of the blade body 22 as shown in, for example, an auxiliary member 55 shown in FIG. Since the radially outer end 2 2c of the blade body 22 attached to the windmill 20 has a larger turning radius than the radially inner end 2 2d of the blade body 22, the radially inner end 2 2c The moving speed is faster than 2d, and the relative wind speed Vr is faster. Therefore, the auxiliary member 55 at the radially outer end 22c bends before the auxiliary member 55 at the radially inner end 22d. In this case, corresponding to the difference in relative wind speed due to the difference in turning radius, the radial inner end 22 P leak 2/04211
1 3 助部材 5 5の変形を遅らせて、 発電効率を向上できる。  1 3 Auxiliary member 55 Deformation of 5 can be delayed to improve power generation efficiency.
•図 8の隣り合う補助部材 5 5間の間隔は、 径方向外側の補助部材 5 5が先に 変形した場合でも、 その変形による空気流れの変化等が径方向内側の補助部材 5 5に干渉しないような間隔を確保してあれば、 なるべく狭くするのが好ましい。 • The spacing between adjacent auxiliary members 55 in Fig. 8 is such that even if the radially outer auxiliary members 55 are deformed first, changes in air flow due to the deformation interfere with the radially inner auxiliary members 55. If an interval that does not occur is secured, it is preferable to make it as narrow as possible.
•図 8の補助部材 5 5は、 ブレード本体 2 2の長手方向に対して部分的に取り 付けてもよい。 この場合、 補助部材 5 5は、 少なくともブレード本体 2 2の径方 向外側端部 2 2 cに取り付けるのが好ましい。 径方向外側端部 2 2 cは、 ブレー ド 2 1において最も大きな回転半径及ぴ最も大きな相対的な風速を有し、 揚力の 発生に最も寄与する。 よって、 少なくとも径方向外側端部 2 2 cに補助部材 5 5 を取り付けることにより、 効果的に発電効率を向上できる。 径方向外側端部 2 2 cに補助部材 5 5を取り付けず、 プレード本体 2 2の他の部分に補助部材 5 5を 取り付けてもよい。 The auxiliary member 55 in FIG. 8 may be partially attached to the blade body 22 in the longitudinal direction. In this case, the auxiliary member 55 is preferably attached to at least the radially outer end 22 c of the blade body 22. The radially outer end 22c has the largest turning radius and the largest relative wind speed on the blade 21 and contributes most to the generation of lift. Therefore, the power generation efficiency can be effectively improved by attaching the auxiliary member 55 to at least the radially outer end 22c. The auxiliary member 55 may be attached to another part of the blade main body 22 without attaching the auxiliary member 55 to the radially outer end 22 c.
•補助部材を、 各々が異なる熱膨張率を有する複数の材料によって形成し、 複 数の材料の少なくとも 1つを通電可能に形成してもよい。 例えば、 図 8に示すよ うに、 補助部材 5 5に、 例えばバイメタル 5 6を通電可能に取り付けてもよい。 バイメタル 5 6に熱を与える電線 5 7はブレード本体 2 2内に配線する。 この場 合、 電線 5 7による通電によってバイメタル 5 6を熱膨張させることにより補助 部材 5 5の延出方向を調整して、 発電効率を調整できる。  • The auxiliary member may be formed of a plurality of materials, each having a different coefficient of thermal expansion, and at least one of the plurality of materials may be formed to be conductive. For example, as shown in FIG. 8, a bimetal 56 may be attached to the auxiliary member 55 so as to be able to conduct electricity. An electric wire 57 that gives heat to the bimetal 56 is wired inside the blade body 22. In this case, the power generation efficiency can be adjusted by adjusting the extension direction of the auxiliary member 55 by thermally expanding the bimetal 56 by energization by the electric wire 57.
•捕助部材 2 3の後端部を風上側に曲げて、 ブレード 2 1全体のキャンパーを より大きくしてもよレヽ。  • The rear end of the catching member 23 may be bent to the windward side to make the camper of the entire blade 21 larger.
•補助部材 2 3の後端部を、 プレード本体 2 2だけの場合よりブレード 2 1全 体のキャンパーを大きくする範囲内で、 風下側に多少曲げてもよい。  • The rear end of the auxiliary member 23 may be slightly bent to the leeward side within a range where the camper of the entire blade 21 is larger than that of the blade body 22 alone.
•補助部材 2 3の前端部を斜面状に形成せず、 ブレード本体 2 2の裏面 2 2 a と、 補助部材 2 3の裏面 2 3 aとの接続部に多少の段があっても構わない。 空気 流れを滑らかにして、 余計な揚力低下を防止するように、 接続部は滑らかにする のが望ましい。  The front end of the auxiliary member 23 may not be formed in a slope, and there may be some steps at the connection between the back surface 2 2 a of the blade body 22 and the back surface 23 a of the auxiliary member 23. . Connections should be smooth so that airflow is smooth and unnecessary lift is prevented.
•ブレード本体 2 2の径方向外側端部 2 2 cが径方向内側より幅が狭くなるよ うに形成し、 補助部材 2 3もブレード本体 2 2の形状に合うように形成してもよ い。 02 04211 • The outer edge 22c of the blade body 22 in the radial direction may be formed to be narrower than the inner side in the radial direction, and the auxiliary member 23 may be formed so as to conform to the shape of the blade body 22. 02 04211
1 4  14
•ブレード本体 2 2を金属や木材等で形成してもよい。 この場合、 ブレード本 体 2 2を金属より軽く、 金属と同等の強度を有する繊維強化プラスチックで形成 することが望ましい。 • The blade body 22 may be formed of metal, wood, or the like. In this case, it is desirable that the blade body 22 be made of fiber reinforced plastic which is lighter than metal and has the same strength as metal.
•捕助部材 2 3やブレード本体 2 2を形成する繊維強化プラスチックの繊維は 、 ガラス繊維ゃポリアミ ド繊維であり、 繊維強化プラスチックの樹脂はナイ口ン やポリエステルであってもよい。 補助部材 2 3を、 ゴムを雨等でも劣化しないよ うに処理したもので形成したり、 超弾性合金ゃァモルファス金属で形成してもよ レ、。  • The fiber of the fiber reinforced plastic forming the trapping member 23 and the blade body 22 is glass fiber / polyamide fiber, and the resin of the fiber reinforced plastic may be nylon or polyester. The auxiliary member 23 may be formed by processing rubber so that it is not deteriorated even by rain, or may be formed by a superelastic alloy ゃ morphous metal.
•補助部材は、 可撓性を有しなくてもよい。 例えば、 橈まないように形成され た板を、 ばね等の弾性部材でブレード 2 1の後端部に取り付けてもよい。 この場 合でも、 投影面積の増加及ぴキャンバーの増加によって揚力が増加して、 発電効 率が比較的低い風速において向上される。 比較的高い風速において、 弾性部材が 橈んで板全体が相対的な風速の方向に延び、 キャンバーがブレード本体 2 2と同 程度まで減少する。 そのため、 所望の発電効率を確保しつつ、 風車の過回転を防 止できる。  • The auxiliary member does not have to have flexibility. For example, a plate formed so as not to bend may be attached to the rear end of the blade 21 with an elastic member such as a spring. Even in this case, the lift increases due to the increase in the projected area and the camber, and the power generation efficiency is improved at a relatively low wind speed. At relatively high wind speeds, the elastic member radiuses and the entire plate extends in the direction of the relative wind speed, reducing the camber to about the same as the blade body 22. Therefore, it is possible to prevent the windmill from over-rotating while securing the desired power generation efficiency.
•ブレード本体 2 2は、 プロペラ翼に限られず、 例えばオランダ形風車の平板 状であってもよい。 平板状のブレード本体の後端部に補助部材を取り付けてもよ い。  • The blade body 22 is not limited to a propeller blade, and may be, for example, a flat plate of a Dutch windmill. An auxiliary member may be attached to the rear end of the flat blade body.
'補助部材 2 3をブレード本体 2 2と一体に形成してもよい。  'The auxiliary member 23 may be formed integrally with the blade body 22.
•風車のブレード数は 3枚に限られない。 本発明の精神及び範囲から逸脱することなく、 本発明が他の代替例に具体化さ れ得ることは当業者にとって明らかである。  • The number of windmill blades is not limited to three. It will be apparent to one skilled in the art that the present invention may be embodied in other alternatives without departing from the spirit and scope of the invention.

Claims

請求の範囲 The scope of the claims
1 . 風力発電装置の風車に使用されるプレードは、 1. The blade used for the wind turbine of the wind turbine is
キャンバーを有し、 かつ風車の回転軸に回転可能に取り付けられたブレード本 体 (2 2 ) と、  A blade body (22) having a camber and rotatably mounted on a rotating shaft of a windmill;
前記ブレード本体の回転方向においてそのブレード本体の後端部に前記ブレー ド本体から延出して設けられた補助部材 (2 3 ) と、 を備え、  An auxiliary member (23) provided at the rear end of the blade body in the rotation direction of the blade body so as to extend from the blade body.
前記補助部材は、 ブレードのキャンパーを増加させ、 且つ、 前記風車の回転面 へのブレードの投影面積を増加させる第 1の形状を有し、 前記補助部材は、 風力 が増加した時、 前記第 1の形状から、 前記ブレード全体のキャンバーを前記プレ 一ド本体のキャンパーと同程度まで減少させる第 2の形状に変形し、 風力が低下 した時、 前記第 1の形状に戻ることを特徴とする風力発電装置のブレード。  The auxiliary member has a first shape that increases a camper of a blade and increases a projection area of the blade on a rotation surface of the windmill. The auxiliary member has a first shape when a wind power increases. From the shape described above, the camber of the entire blade is deformed to a second shape that reduces the camber to the same degree as the camper of the blade body, and when the wind power decreases, the wind returns to the first shape. Power generator blades.
2 . 請求の範囲第 1項に記載の風力発電装置のブレードにおいて、 2. The blade of the wind turbine generator according to claim 1,
前記ブレード本体は、 風車のサイズ、 ス トール風速、 発電量に従って決定され た形状を有し、 前記補助部材は、 前記ブレード本体に対して着脱可能であること を特徴とする風力発電装置のブレード。  The blade of the wind power generator, wherein the blade body has a shape determined according to a size of a windmill, a stall wind speed, and a power generation amount, and the auxiliary member is detachable from the blade body.
3 . 請求の範囲第 1項に記載の風力発電装置のブレードにおいて、 3. The blade of the wind turbine generator according to claim 1,
前記ブレード本体の後端部 (5 2 ) は、 前記ブレード本体に対して着脱可能で あることを特徴とする風力発電装置のブレード。  The blade of the wind power generator, wherein a rear end portion (52) of the blade main body is detachable from the blade main body.
4 . 請求の範囲第 3項に記載の風力発電装置のプレードにおいて、 4. In the blade of the wind turbine generator according to claim 3,
前記プレード本体の後端部及ぴ前記補助部材がー体成型されていることを特徴 とする風力発電装置のブレード。  A blade of a wind power generator, wherein a rear end of the blade main body and the auxiliary member are molded.
5 . 請求の範囲第 1項〜 4項のいずれか一項に記載の風力発電装置のブレー ドにおいて、 5. The blade of the wind power generator according to any one of claims 1 to 4,
前記補助部材の風を受ける前面とは反対側の裏面 (2 3 a ) と、 前記ブレード 本体の風を受ける前面とは反対側の裏面 (2 2 a ) とが滑らかに続くように、 前 記補助部材が前記プレード本体の後端部に取り付けられることを特徴とする風力 発電装置のブレード。 A back surface (23a) opposite to the front surface of the auxiliary member that receives the wind, and the blade The auxiliary member is attached to the rear end of the blade main body so that the back surface (22a) opposite to the front surface of the main body that receives the wind smoothly continues. .
6 . 請求の範囲第 5項に記載の風力発電装置のブレードにおいて、 6. The blade of the wind turbine generator according to claim 5,
前記補助部材は、 前記ブレード本体の裏面と連続する斜面 (2 3 b ) を有する ことを特徴とする風力発電装置のブレード。  The blade of the wind turbine generator, wherein the auxiliary member has a slope (23b) continuous with a back surface of the blade body.
7 . 請求の範囲第 5項に記載の風力発電装置のプレードにおいて、 7. In the blade of the wind turbine according to claim 5,
前記ブレード本体の後端部は、 前記補助部材を取り付けるための段部 (4 1 ) を有し、 前記補助部材は、 その裏面が前記ブレード本体の裏面と面一になるよう に、 前記段部に取り付けられていることを特徴とする風力発電装置のブレード。  The rear end portion of the blade body has a step (41) for attaching the auxiliary member, and the auxiliary member has a stepped portion such that a back surface thereof is flush with a back surface of the blade body. A blade for a wind turbine generator, the blade being attached to a wind turbine generator.
8 . 請求の範囲第 1項〜 7項のいずれか一項に記載の風力発電装置のブレー ドにおいて、 8. The blade of the wind power generator according to any one of claims 1 to 7,
前記補助部材が、 前記ブレード本体の長手方向全体に渡って取り付けられてい ることを特徴とする風力発電装置のブレード。  The blade of the wind power generator, wherein the auxiliary member is attached over the entire length of the blade main body.
9 . 請求の範囲第 1項〜 7項のいずれか一項に記載の風力発電装置のブレー ドにおいて、 9. The blade of the wind turbine generator according to any one of claims 1 to 7,
前記補助部材の長さが前記ブレード本体の長さより短く、 前記補助部材は、 前 記ブレード本体が風車に取り付けられた状態において、 少なくとも前記ブレード 本体の径方向外側端部 (2 2 c ) に備えられていることを特徴とする風力発電装 置のプレード。  The length of the auxiliary member is shorter than the length of the blade main body, and the auxiliary member is provided at least at a radially outer end (22c) of the blade main body in a state where the blade main body is attached to a windmill. A blade of a wind turbine generator that is characterized by being installed.
1 0 . 請求の範囲第 1項〜 7項のいずれか一項に記載の風力発電装置のブレ ードにおいて、 10. The blade of the wind turbine generator according to any one of claims 1 to 7,
前記補助部材 (5 5 ) は、 前記プレード本体の長手方向に取り付けられた複数 の捕助部材 (5 5 ) の 1つであることを特徴とする風力発電装置のブレード。 The blade of the wind turbine generator, wherein the auxiliary member (55) is one of a plurality of trapping members (55) attached in a longitudinal direction of the blade main body.
1 1 . 請求の範囲第 1 0項に記載の風力発電装置のブレードにおいて、 隣り合う前記補助部材は所定の間隔で配置されていることを特徴とする風力発 電装置のブレード。 11. The blade of the wind power generator according to claim 10, wherein the adjacent auxiliary members are arranged at a predetermined interval.
1 2 . 請求の範囲第 1 1項に記載の風力発電装置のプレードにおいて、 前記所定の間隔は、 ブレードの径方向外側の補助部材の変形による空気流れの 変化がブレードの径方向内側の補助部材に干渉しない距離を有することを特徴と する風力発電装置のブレード。 12. The blade of the wind turbine generator according to claim 11, wherein the predetermined interval is such that a change in air flow due to deformation of the auxiliary member on the radially outer side of the blade is the auxiliary member on the radially inner side of the blade. A blade of a wind turbine generator having a distance that does not interfere with the wind turbine.
1 3 . 請求の範囲第 1項〜 1 2項のいずれか一項に記載の風力発電装置のプ レードにおいて、 13. The wind power generator blade according to any one of claims 1 to 12,
前記補助部材は、 各々が異なる熱膨張率を有する複数の材料を含み、 前記複数の材料の少なくとも 1つは通電可能であることを特徴とする風力発電 装置のブレード。  The auxiliary member includes a plurality of materials, each having a different coefficient of thermal expansion, and at least one of the plurality of materials is electrically conductive.
1 4 . 請求の範囲第 1項〜 1 3項のいずれか一項に記載の風力発電装置のプ レードにおいて、 14. The wind power generator blade according to any one of claims 1 to 13,
前記補助部材が前記ブレード本体より後方に延出する延出量は、 前記ブレード 本体の幅の 2 0 %以下であることを特徴とする風力発電装置のブレード。  The blade of the wind turbine generator, wherein an extension amount of the auxiliary member extending rearward from the blade main body is 20% or less of a width of the blade main body.
1 5 . 風力発電装置の風車に使用されるブレードは、 1 5. The blades used in the wind turbine of the wind turbine
キャンバーを有し、 かつ風車の回転軸に回転可能に取り付けられたブレード本 体 (2 2 ) と、  A blade body (22) having a camber and rotatably mounted on a rotating shaft of a windmill;
前記ブレード本体の回転方向においてそのブレード本体の後端部に前記ブレー ド本体から延出して設けられた捕助部材 (2 3 ) と、 を備え、  A catching member (23) extending from the blade body at the rear end of the blade body in the direction of rotation of the blade body;
前記補助部材は、 前記ブレード本体に対して着脱可能であり且つ、 風力に応じ て可撓的に変形することを特徴とする風力発電装置のブレード。 The blade of the wind power generator, wherein the auxiliary member is detachable from the blade main body and is flexibly deformed in response to wind power.
1 6 . 請求の範囲第 1 5項に記載の風力発電装置のブレードにおいて、 前記補助部材が、 前記ブレード本体より延出する延出量は、 前記ブレード本体 の幅の 2 0 %以下であることを特徴とする風力発電装置のブレード。 16. The blade of the wind turbine generator according to claim 15, wherein an extension amount of the auxiliary member extending from the blade body is equal to or less than 20% of a width of the blade body. A blade of a wind turbine generator.
1 7 . 風力発電装置の風車に使用されキャンバーを有するプレード本体 (2 2 ) に取り付けられ、 前記ブレード本体とともにブレード (2 1 ) を形成する補 助部材であって、 17. An auxiliary member which is used for a wind turbine of a wind power generator and is attached to a blade main body (2 2) having a camber and forms a blade (21) together with the blade main body,
前記プレード本体の回転方向においてそのブレード本体の後端部に前記ブレー ド本体から延出して取り付けられた状態において、 ブレード全体のキャンバーを 増加させ、 且つ、 前記風車の回転面へのブレードの投影面積を増加させる第 1の 形状を有し、 該補助部材は、 風力が増加した時、 前記第 1の形状から、 前記ブレ 一ド全体のキャンバーを前記ブレード本体のキャンパーと同程度まで減少させる 第 2の形状に変形し、 風力が低下した時、 前記第 1の形状に戻ることを特徴とす る補助部材。  In a state where the blade body is attached to the rear end of the blade body in the rotation direction of the blade body so as to extend from the blade body, the camber of the entire blade is increased, and the projected area of the blade on the rotating surface of the wind turbine The auxiliary member is configured to reduce the camber of the entire blade from the first shape to the same degree as the camper of the blade body when the wind power increases. An auxiliary member, wherein the auxiliary member returns to the first shape when the wind power decreases.
1 8 . 風力発電装置の風車に使用されるブレード本体 (2 2 ) に取り付けら れ、 前記ブレード本体とともにブレード (2 1 ) を形成する補助部材であって、 前記ブレード本体の回転方向においてそのブレード本体の後端部に前記ブレー ド本体から延出して取り付けられた状態において、 風力に応じて可撓的に変形す ることを特徴とする捕助部材。 18. An auxiliary member that is attached to a blade body (2 2) used for a wind turbine of a wind power generator and forms a blade (2 1) together with the blade body, and the blade is arranged in the rotation direction of the blade body. A catching member, which is flexibly deformed in response to wind force when attached to a rear end of the main body so as to extend from the blade main body.
1 9 . 風力発電装置は、 1 9. Wind power generator
ロータ軸 (1 8 ) を有する発電機 (6 ) と、  A generator (6) having a rotor shaft (18);
前記ロータ軸に取り付けられ風圧により前記ロータ軸を回転させるプレード ( 2 1 ) を有する風車 (2 0 ) と、 を備え、  A wind turbine (20) having a blade (21) attached to the rotor shaft and rotating the rotor shaft by wind pressure;
前記ブレードは、  The blade is
キャンバーを有し、 かつ前記ロータ軸に回転可能に取り付けられたブレー ド本体 (2 2 ) と、  A blade body (22) having a camber and rotatably attached to the rotor shaft;
前記ブレード本体の回転方向においてそのブレード本体の後端部に前記ブ レード本体から延出して設けられた補助部材 (2 3 ) とを含み、 前記補助部材は、 プレードのキャンバーを増加させ、 且つ、 前記風車の 回転面へのブレードの投影面積を増加させる第 1の形状を有し、 前記補助 部材は、 風力が増加した時、 前記第 1の形状から、 前記ブレード全体のキ ヤンバーを前記ブレード本体のキャンバーと同程度まで減少させる第 2の 形状に変形し、 風力が低下した時、 前記第 1の形状に戻る、 The blade is attached to the rear end of the blade body in the rotation direction of the blade body. An auxiliary member (23) provided to extend from the blade main body, wherein the auxiliary member increases a camber of the blade and increases a projection area of the blade on a rotating surface of the windmill. The auxiliary member has a shape, and when the wind power increases, the auxiliary member deforms from the first shape to a second shape that reduces the camber of the entire blade to the same degree as the camber of the blade main body. Returns to the first shape when
ことを特徴とする風力発電装置。  A wind power generator, characterized in that:
2 0 . 風力発電装置は、 20. The wind power generator
ロータ軸 (1 8 ) を有する発電機 (6 ) と、  A generator (6) having a rotor shaft (18);
前記ロータ軸に取り付けられ風圧により前記ロータ軸を回転させるブレード ( 2 1 ) を有する風車 (2 0 ) と、 を備え、  A wind turbine (20) having a blade (21) attached to the rotor shaft and rotating the rotor shaft by wind pressure;
前記ブレードは、  The blade is
キャンバーを有し、 かつ前記ロータ軸に回転可能に取り付けられたブレー ド本体 (2 2 ) と、  A blade body (22) having a camber and rotatably attached to the rotor shaft;
前記ブレード本体の回転方向においてそのブレード本体の後端部に前記ブ レード本体から延出して設けられた補助部材 ( 2 3 ) とを含み、  An auxiliary member (23) provided at the rear end of the blade body in the rotation direction of the blade body so as to extend from the blade body.
前記補助部材は、 前記プレード本体に対して着脱可能であり且つ、 風力 に応じて可撓的に変形する、  The auxiliary member is detachable from the blade main body, and flexibly deforms according to wind force.
ことを特徴とする風力発電装置。  A wind power generator, characterized in that:
PCT/JP2002/004211 2002-03-13 2002-04-26 Blade and auxiliary member of wind power generator, and wind power generator WO2003076802A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002253611A AU2002253611A1 (en) 2002-03-13 2002-04-26 Blade and auxiliary member of wind power generator, and wind power generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002068599A JP2003269320A (en) 2002-03-13 2002-03-13 Blade of wind force power generating device and assisting member
JP2002-68599 2002-03-13

Publications (1)

Publication Number Publication Date
WO2003076802A1 true WO2003076802A1 (en) 2003-09-18

Family

ID=27800302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004211 WO2003076802A1 (en) 2002-03-13 2002-04-26 Blade and auxiliary member of wind power generator, and wind power generator

Country Status (3)

Country Link
JP (1) JP2003269320A (en)
AU (1) AU2002253611A1 (en)
WO (1) WO2003076802A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105174A1 (en) 2006-03-14 2007-09-20 Tecsis Tecnologia E Sistemas Avançados Ltda Multi-element blade with aerodynamic profiles
US9366222B2 (en) 2010-08-10 2016-06-14 Siemens Aktiengesellschaft Rotor blade element and method for improving the efficiency of a wind turbine rotor blade

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099575A (en) * 2008-07-17 2011-06-15 诺亚株式会社 Power-generating wind turbine and its manufacturing method
JP5365959B2 (en) * 2009-05-11 2013-12-11 正憲 麻生 Flat-blade cantilever support type with fan angle adjustment (round fan type) multi-blade propeller type windmill
KR101068443B1 (en) 2009-12-24 2011-09-28 황지선 Wind power rotors
KR101089129B1 (en) 2010-03-29 2011-12-02 박완규 A windpower generator which is possessed of the expande dwings
JP4796196B1 (en) * 2010-06-05 2011-10-19 秀行 飯島 Wind turbine generator and blade of wind turbine generator
DK2479423T3 (en) 2011-01-24 2018-05-28 Siemens Ag Wind turbine rotor blade element
CN102900632A (en) * 2012-11-08 2013-01-30 浙江风光新能源科技有限公司 Wind driven generator blade device with wind scooper
CN104005915A (en) * 2013-02-27 2014-08-27 苏州工业园区欧霸动力设备有限公司 Small-sized wind power generation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501242A (en) * 1973-05-14 1975-01-08
JPS5775177U (en) * 1980-10-27 1982-05-10
JPS59136581A (en) * 1983-01-27 1984-08-06 Mitsubishi Heavy Ind Ltd Propeller type windmill
US5616963A (en) * 1994-11-02 1997-04-01 Kikuchi; Naomi Wind power generator with automatic regulation of blade pitch in response to wind speed by means of spring mounted blades
JP3071880U (en) * 2000-03-21 2000-09-22 茂信 五島 Wind turbine rotation stabilization mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501242A (en) * 1973-05-14 1975-01-08
JPS5775177U (en) * 1980-10-27 1982-05-10
JPS59136581A (en) * 1983-01-27 1984-08-06 Mitsubishi Heavy Ind Ltd Propeller type windmill
US5616963A (en) * 1994-11-02 1997-04-01 Kikuchi; Naomi Wind power generator with automatic regulation of blade pitch in response to wind speed by means of spring mounted blades
JP3071880U (en) * 2000-03-21 2000-09-22 茂信 五島 Wind turbine rotation stabilization mechanism

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105174A1 (en) 2006-03-14 2007-09-20 Tecsis Tecnologia E Sistemas Avançados Ltda Multi-element blade with aerodynamic profiles
US8647063B2 (en) 2006-03-14 2014-02-11 Tecsis Tecnologia Sistemas Avançados S.A. Multi-element blade with aerodynamic profiles
US9366222B2 (en) 2010-08-10 2016-06-14 Siemens Aktiengesellschaft Rotor blade element and method for improving the efficiency of a wind turbine rotor blade
EP2572102B1 (en) * 2010-08-10 2016-12-14 Siemens Aktiengesellschaft Rotor blade element and method for improving the efficiency of a wind turbine rotor blade

Also Published As

Publication number Publication date
JP2003269320A (en) 2003-09-25
AU2002253611A1 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
EP1337758B1 (en) High-efficiency, inflow-adapted, axial-flow fan
CA2918917C (en) Vortex generator for a rotor blade
JP3451085B1 (en) Windmill for wind power generation
US8047801B2 (en) Wind turbine blades with aerodynamic vortex elements
TWI353411B (en)
EP1767780A1 (en) Wind turbine rotor assembly and blade having acoustic flap
KR100978594B1 (en) Automotive fan assembly with flared shroud and fan with conforming blade tips
JP6656788B2 (en) Wind turbine rotor blades
WO2003076802A1 (en) Blade and auxiliary member of wind power generator, and wind power generator
MXPA98000703A (en) High efficiency axial fan assembly and under ru
WO1999035404A1 (en) Air supplying device
JP2011503407A (en) Wind turbine with two consecutive propellers
US20120014793A1 (en) Wind turbine with variable blade pitch for wind power electrical generator
CN106837871B (en) Axial flow wind wheel, axial flow fan and air conditioner
JP2009074447A (en) Vertical shaft type windmill
JP2006046306A (en) Windmill for wind power generation, and power generator driving method
US9260975B2 (en) Apparatus and methods for electricity generation from exhaust of condenser of HVAC system
JP3935804B2 (en) Wing and wind power generator provided with the same
CN111379746A (en) Fan and hairdryer
EP3553307B1 (en) Serrated noise reducer for a wind turbine rotor blade
JP5372526B2 (en) Wind power generator
JP6639335B2 (en) Wind power generation system
JP4117289B2 (en) Windmill blade, wind turbine generator and blower
JP3806513B2 (en) Propeller fan
CN206221363U (en) A kind of motor blower fan

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase