WO2001046582A2 - Rotorblatt für windenergieanlagen - Google Patents

Rotorblatt für windenergieanlagen Download PDF

Info

Publication number
WO2001046582A2
WO2001046582A2 PCT/DE2000/004518 DE0004518W WO0146582A2 WO 2001046582 A2 WO2001046582 A2 WO 2001046582A2 DE 0004518 W DE0004518 W DE 0004518W WO 0146582 A2 WO0146582 A2 WO 0146582A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotor blade
segments
segment
joint
elements
Prior art date
Application number
PCT/DE2000/004518
Other languages
English (en)
French (fr)
Other versions
WO2001046582A3 (de
Inventor
Sönke Siegfriedsen
Original Assignee
Aerodyn Engineering Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerodyn Engineering Gmbh filed Critical Aerodyn Engineering Gmbh
Priority to AU31512/01A priority Critical patent/AU3151201A/en
Publication of WO2001046582A2 publication Critical patent/WO2001046582A2/de
Publication of WO2001046582A3 publication Critical patent/WO2001046582A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a rotor blade for wind turbines.
  • Rotor blades for wind turbines differ from hydrofoils manufactured in a similar design, for example from aircraft, essentially in that they are exposed to turbulent wind currents and, due to the vertical arrangement of the rotating plane, are subject to changing dead weight loads due to gravity and centrifugal forces.
  • the invention has therefore set itself the task of creating a rotor blade, the structure of which is already better adapted in concept to the changing dead weights that occur in wind turbines than is the case with conventional rotor blades similar to aircraft wings.
  • the profile lugs and / or flag structure of the rotor blade consist of individual radial separate segment elements is built. These segments are connected separately with a load-bearing spar box, which results in a shear-resistant connection in this area.
  • the connection between the flag elements themselves is made with a permanently elastic adhesive, which, due to its flexibility, transmits very little forces in the axial direction of the blade, which means that the load-bearing deformation of the load-bearing spar box can be traced almost without load by the flag elements.
  • the length of the flag elements is designed so that the adhesive bond between the flag elements is adapted to the load of the elastic adhesive and does not overload it.
  • this segment can be used to simply replace the segment of the area concerned, and the segments do not require any belt structures.
  • FIG. 1 is an exploded view of a rotor blade with a row of seven lug elements, which are arranged in front of a continuous spar box and which are followed by flag elements which follow in the direction of rotation and which narrow towards the rear edge,
  • Fig. 3 is a basic sectional view through such a rotor blade
  • Fig. 4a, 4b, 4c three alternative types of adhesive connection between the flag elements while leaving a flexible, material-filled joint area.
  • the rotor blade shown in FIGS. 1 and 2 consists of a central spar box 10 which extends from the blade connection to substantially the blade tip 14 and in which straps 12 are arranged for absorbing the longitudinal tensions.
  • the webs 22 (see also FIG. 3) of the spar box 10 transmit the shear stresses.
  • nose and flag elements 18, 16, and a separate part present on the outer side of the blade as a blade tip 14, which is connected to the end of the spar box 10, are provided to produce the required aerodynamic outer contour.
  • the carrying function is performed by a spar box 10 which runs essentially centrally in the rotor blade and which is formed longitudinally in the blade up to a final tip segment 14 and on which - in rotation - direction - nose elements 18 are attached to the front and flag elements 16 are attached to the rear.
  • FIG 3 is a schematic representation of a section through a rotor blade, in which the spar box is shown with its belts 12 and the two webs 22 and the connecting laminate 24, the attachment edges 26 for the substantially U-shaped cross-section Offers nose elements and the substantially V-shaped flag elements.
  • the transition area between two segments 16; 18 can be made partially flexible by gluing, but through the joints 28 transversely to the extension of the spar, movement for each individual segment with respect to the neighboring segment is already possible, so that it can itself be attached to the spar box in a comparatively rigid manner.
  • the connection between the flag and nose elements 16; 18 with the spar box 10 can be carried out by gluing, screwing, riveting or a combination thereof.
  • Fig. 4 the bond between the adjacent nose elements 18 or between the adjacent flag elements 16 is shown in the blade depth direction, the bonding taking place via a wide joint 28 which is filled with a highly elastic adhesive which transmits the forced deformation of the rotor blade by the segment elements opposed little resistance, so that no cracking will occur within this and also within the joint.
  • the joint 28 will advantageously be filled with highly elastic plastic, with a large-area bonding of the elastic material to the segments being made possible by the formation of overlapping structures.
  • the individual segments 16; In this case, in particular, 18 can be held together by a joint 28 with a width which exceeds the height of the lateral segment connection surfaces defined in the direction perpendicular to the rotor blade plane by a multiple.
  • the joint 28 can be covered in the edge area on the segment edge on the top and / or bottom by a fixed attachment surface 30 attached to the segment (see FIG. 4b), these sections of adjoining segments being able to overlap.
  • the elastic joint 28 can also be formed by an elastic rubber element, e.g. with vulcanized steel contact elements, which are used to attach to the other elements.

Abstract

Rotorblatt für eine Windenergieanlage, welches eine Mehrzahl von Segmentelementen (16, 18) aufweist, die an einem lastübertragenden Holmkasten (10) angesetzt sind und die zwischen sich elastische Fugen (28) besitzen, die eine Relativbewegung der Segmente zueinander zulassen, um die Spannungsbelastungen in dem Bereich des Rotorblattes, in dem die Segmente vorgesehen sind, zu minimieren.

Description

Rotorblatt für Windenergieanlagen
Die Erfindung betrifft ein Rotorblatt für Windenergieanlagen.
Rotorblätter für Windenergieanlagen unterscheiden sich von bisher in ähnlicher Bauweise gefertigten Tragflügeln, beispielsweise von Flugzeugen, im wesentlichen dadurch, daß sie turbulenten Windströmungen ausgesetzt sind und durch die vertikale Anordnung der Drehebene mit wechselnden Eigengewichtbelastungen durch die Gravitation und auch Fliehkräften unterliegen.
Durch die kubisch mit dem Durchmesser ansteigende Blatt- masse und die o.g. Belastungen nehmen die Probleme bei der Strukturauslegung der Blätter insbesondere bei großen Rotorblättern überproportional zu.
Bei bisheriger konventioneller Fertigung, beispielsweise aus zwei Hälften, die in Negativ-Formen vorgefertigt und anschließend in GFK-Bau-üblicher Weise miteinander verklebt werden, werden insbesondere in der Schwenkebene der Blätter hohe Spannungsamplituden in der Profilnase und der dünn auslaufenden Profilhinterkante im Betrieb auftreten.
Die durch die Spannungsamplituden hervorgerufenen Ermüdungsbelastungen führen insbesondere in der Profilhinterkante bei einigen der bisher bekannten Rotorblätter zu frühzeitiger Rißbildung, die sehr bedenklich ist, da sich die Risse durch die gesamte Struktur fortsetzen können und das Rotorblatt sogar völlig zerstören können.
Bisher begegnete man diesen Rissen dadurch, daß in der nachlaufenden Blatthälfte, der Profilfahne, und in der Profilnase zusätzliche Gurtstränge eingelegt wurden, die diese Lasten aufnehmen sollten. Zum einen ist dies kostenträchtig, zum anderen ist dies auch deswegen nachteilig, da dadurch hohe Kräfte in den Nasen- und Hinterkantenbereich eingebracht werden, die im Blattanschluß wieder in den zentralen Holmkasten eingeleitet werden müssen.
Zusätzlich muß eine Kraftumlenkung stattfinden, die zwangsläufig Zusatzkräfte in Blattquerrichtung erzeugt, die wiederum nur durch zusätzliche strukturelle Elemente aufgefangen werden können. Schließlich ist die Einbringung der Gurte in Nase und Hinterkante neben dem dadurch verursachten erheblichen Fertigungsaufwand auch eine Fehlerquelle für die Struktur, da der Verlauf dieser zusätzlichen Gurte ganz besonders genau eingehalten werden muß.
Die Erfindung hat sich daher zur Aufgabe gestellt, ein Rotorblatt zu schaffen, dessen Struktur bereits im Konzept an die wechselnden Eigengewichte, die bei Windkraftanlagen auftreten, besser angepaßt ist, als dies bei herkömmlichen, den Flugzeugtragflächen ähnelnden Rotorblättern der Fall ist.
Erfindungsgemäß wird dies durch eine Struktur mit den Merkmalen des Anspruches 1 erreicht. Die Unteransprüche geben vorteilhafte Ausführungsformen der Erfindung wieder.
Insbesondere ist vorteilhaft, daß die Profilnasen und/- oder Fahnenstruktur des Rotorblattes aus einzelnen radial getrennten Segmentelementen aufgebaut ist . Diese Segmente werden separat mit einem tragenden Holmkasten verbunden, wobei sich in diesem Bereich eine schubsteife Verbindung ergibt .
Die Verbindung zwischen den Fahnenelementen selbst wird mit einem dauerelastischen Klebstoff hergestellt, der aufgrund seiner Nachgiebigkeit sehr geringe Kräfte in axialer Blattrichtung überträgt, wodurch eine lastabhängige Deformation des tragenden Holmkastens nahezu lastlos von den Fahnenelementen nachvollzogen werden kann. Die Länge der Fahnenelemente wird dabei so ausgelegt, daß die Verklebung zwischen den Fahnenelementen, der Last des elastischen Klebers angepaßt, diesen nicht überlastet.
Durch diese Ausführung ist die Hinterkante den bisher auftretenden hohen Dehnungsbelastungen entzogen, so daß nunmehr keine Ausbildung gefährlicher Risse mehr zu befürchten ist. Durch die geringen Dehnungen im Bauteil kann zudem bei der Auslegung des Bauteils bereits an Material eingespart werden.
Das Rotorblatt wird durch diese Aufteilung erheblich einfacher zu fertigen sein, was insbesondere bei sehr großen Rotorblättern, deren Bauformen die gesamte Länge des Rotorblattes haben müssen, bisher mit erheblichen Nachteilen in der Fertigung verbunden war.
Weiter kann durch diese Ausbildung im Fall einer Strukturbeschädigung das Segment des betroffenen Bereiches einfach ausgetauscht werden, und die Segmente benötigen in sich keine GurtStrukturen.
Weitere Vorteile und Merkmale der Erfindung ergeben sich aus nachfolgender Beschreibung eines bevorzugten Ausführungsbeispiels. Dabei zeigt: Fig. 1 eine Explosionsdarstellung eines Rotorblattes mit einer Reihe von sieben Nasenelementen, die vor einem durchgehenden Holmkasten angeordnet sind und an die sich in Drehrichtung nachlaufende Fahnenelemente anschließen, die zur hinteren Kante her schmal auslaufen,
Fig. 2 das Rotorblatt der Fig. 1 im zusammengebauten Zustand,
Fig. 3 eine prinzipielle Schnittdarstellung durch ein derartiges Rotorblatt, und
Fig. 4a, 4b, 4c drei alternative Arten der Klebverbindung zwischen den Fahnenelementen unter Belassung eines mit flexiblen, materialgefüllten Fugenbereichs.
Das in der Fig. 1 und 2 dargestellte Rotorblatt besteht aus einem zentralen, vom Blattanschluß bis im wesentlichen zur Blattspitze 14 reichenden Holmkasten 10, in dem Gurte 12 zur Aufnahme der LängsSpannungen angeordnet sind. Die Stege 22 (siehe auch Fig. 3) des Holmkasten 10 übertragen die Schubspannungen. An dem Holmkasten 10 sind zur Herstellung der erforderlichen aerodynamischen Außenkontur Nasen- und Fahnenelemente 18, 16, sowie ein an der äußeren Seite des Blattes als Blattspitze 14 vorhandenes separates Teil, das mit dem Ende des Holmkastens 10 verbunden ist, vorgesehen.
Dabei wird die Tragfunktion von einem im wesentlichen zentral im Rotorblatt verlaufenden Holmkasten 10 wahrgenommen, der bis zu einem abschließendem Spitzensegment 14 längs im Blatt ausgebildet ist und an den - in Rotations- richtung - an der Vorderseite Nasenelemente 18 und an der Rückseite Fahnenelemente 16 angesetzt sind.
In der Fig. 3 ist anhand eines Schnittes durch ein Rotorblatt eine schematische Darstellung enthalten, in der der Holmkasten mit seinen Gurten 12 und den beiden Stegen 22 sowie dem Verbindungslaminat 24 dargestellt ist, der Ansatzkanten 26 für die im wesentlichen im Querschnitt U-förmig ausgebildeten Nasenelemente und die im wesentlichen V-förmig ausgebildeten Fahnenelemente bietet.
Der Übergangsbereich zwischen zwei Segmenten 16; 18 kann durch Verklebung teilflexibel ausgebildet sein, wobei jedoch durch die Fugen 28 quer zur Erstreckung des Holmes bereits für jedes einzelne Segment eine Bewegung gegenüber dem benachbarten möglich ist, so daß es selber vergleichsweise steif an dem Holmkasten angesetzt werden kann. Die Verbindung zwischen den Fahnen- und Nasenelementen 16; 18 mit dem Holmkasten 10 kann durch Verklebung, Verschraubung, Vernietung oder einer Kombination hiervon ausgeführt werden.
In der Fig. 4 ist in Blattiefenrichtung die Verklebung zwischen den benachbarten Nasenelementen 18 oder zwischen den benachbarten Fahnenelementen 16 dargestellt, wobei die Verklebung über eine breite Fuge 28 erfolgt, die mit einem hochelastischen Klebstoff ausgefüllt ist, der der Zwangsverformung des Rotorblatts übertragen durch die Segmentelemente wenig Widerstand entgegensetzt, so daß sich innerhalb dieser und auch innerhalb der Fuge keine Rißbildung einstellen wird.
Die Fuge 28 wird vorteilhafterweise mit hochelastischem Kunststoff gefüllt sein, wobei eine großflächige Verklebung des elastischen Materials an den Segmenten durch Ausbildung überlappender Strukturen ermöglicht wird. Die einzelnen Segmente 16; 18 können insbesondere in diesem Fall von einer Fuge 28 mit einer Breite, die die in Richtung senkrecht zur Rotorblattebene definierte Höhe der seitlichen Segmentanschlußflächen um ein Mehrfaches übersteigt, zusammengehalten werden.
Die Fuge 28 kann dabei im Randbereich an der Segmentkante an Ober- und/oder Unterseite jeweils von einem festen, am Segment angesetzten Ansatzfläche 30 (siehe Fig. 4b) überdeckt werden, wobei sich diese Abschnitte aneinander angrenzender Segmente überlappen können.
Es ist auch denkbar, daß die Fuge 28 durch von den beiden benachbarten Segmenten 16; 18 in den Zwischenraum hineinragende, U-förmige, mit den Segmenten einstückige Stegstrukturen 32 im Kantenbereich zu den Segmenten hin, an Blattober- und Blattunterseite wenigstens teilweise überdeckt wird.
Schließlich wird eine Ausführung vorgeschlagen, in der sich eine U-förmige Stegstruktur eines Segments und eine in diese einliegende Stegkante 34 eines angrenzenden Segmentes derart überdecken, daß die Klebefuge 28 im Schnitt quer zur Erstreckung der Fuge einen U-förmigen Verlauf aufweist .
Die elastische Fuge 28 kann jedoch auch durch ein elastisches Gummielement, z.B. mit anvulkanisierten Kontaktelementen aus Stahl, die zur Befestigung an den übrigen Elementen dienen, realisiert werden.

Claims

PATENTANSPRUCHE
1. Rotorblatt für eine Windenergieanlage, gekennzeichnet durch eine Mehrzahl von Segmentelementen (16, 18), die an einem lastübertragenden Holmkasten (10) angesetzt, zwischen sich elastische Fugen (28) besitzen, die eine Relativbewegung der Segmente zueinander zulassen, um die Spannungsbelastungen in dem Bereich des Rotorblattes, in dem die Segmente vorgesehen sind, zu minimieren.
2. Rotorblatt nach Anspruch 1, dadurch gekennzeichnet, daß die zwischen den einzelnen Elementen vorgesehenen Fugen (28) mit hochelastischem Kunststoff gefüllt sind.
3. Rotorblatt nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß ein im wesentlichen zentral im Rotorblatt verlaufender Holmkasten (10) bis zu einem abschließendem Spitzensegment ausgebildet ist und an der Vorderseite Nasenelemente (18) und an der Rückseite Fahnenelemente (16) an diesen angesetzt sind.
4. Rotorblatt nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Fugenbreite, die durch den Abstand der einzelnen Segmente (16, 18) gebildet ist, die in Richtung senkrecht zur Rotorblattebene definierte Höhe der seitlichen Segmentanschlußflächen um ein Mehrfaches übersteigt.
5. Rotorblatt nach Anspruch 4, dadurch gekennzeichnet, daß die Fuge (28) durch von beiden Segmenten (16; 18) in die Fuge hineinragende U-förmige, mit den Segmenten einstückige Stegstrukturen (32) im Kantenbereich zu den Segmenten hin an Ober- und Unterseite überdeckt wird.
6. Rotorblatt nach Anspruch 4, dadurch gekennzeichnet, daß die Fuge (28) im Randbereich an der Segmentkante an Ober- und/oder Unterseite des Rotorblatts jeweils von einem festen, am Segment angesetzten Ansatzfläche (30) überdeckt wird, wobei die Ansatzflächen (30) aneinander angrenzender Segmente (16; 18) sich überlappen.
7. Rotorblatt nach Anspruch 4, dadurch gekennzeichnet, daß sich eine U-förmige Stegstruktur eines Segments und eine in diese einliegende Stegkante (34) an einem danebenliegenden Segment sich derart überdecken, daß die Fuge (28) im Schnitt quer zur Erstreckung der Fuge einen U-förmigen Verlauf aufweist.
PCT/DE2000/004518 1999-12-22 2000-12-19 Rotorblatt für windenergieanlagen WO2001046582A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU31512/01A AU3151201A (en) 1999-12-22 2000-12-19 Rotor blade for wind power installations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19962454.2 1999-12-22
DE19962454A DE19962454A1 (de) 1999-12-22 1999-12-22 Rotorblatt für Windenergieanlagen

Publications (2)

Publication Number Publication Date
WO2001046582A2 true WO2001046582A2 (de) 2001-06-28
WO2001046582A3 WO2001046582A3 (de) 2001-12-27

Family

ID=7934126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/004518 WO2001046582A2 (de) 1999-12-22 2000-12-19 Rotorblatt für windenergieanlagen

Country Status (3)

Country Link
AU (1) AU3151201A (de)
DE (1) DE19962454A1 (de)
WO (1) WO2001046582A2 (de)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780407A2 (de) * 2005-10-29 2007-05-02 NORDEX ENERGY GmbH Rotorblatt für Windkraftanlagen
WO2007105174A1 (en) * 2006-03-14 2007-09-20 Tecsis Tecnologia E Sistemas Avançados Ltda Multi-element blade with aerodynamic profiles
WO2008052677A2 (en) * 2006-11-02 2008-05-08 Lignum Vitae Limited Wind rotor blade and wind turbine comprising such blade
WO2008092451A2 (en) * 2007-01-29 2008-08-07 Danmarks Tekniske Universitet Wind turbine blade
EP1965074A2 (de) 2007-02-28 2008-09-03 Gamesa Innovation And Technology, S.L. Aus mehreren Platten bestehendes Windturbinenblatt
ES2322423A1 (es) * 2007-06-21 2009-06-19 Manuel Torres Martinez Pala para aerogenerador de eje horizontal.
WO2009130467A2 (en) 2008-04-24 2009-10-29 Blade Dynamics Limited A wind turbine blade
GB2462308A (en) * 2008-08-01 2010-02-03 Vestas Wind Sys As Extension portion for wind turbine blade
ES2343712A1 (es) * 2007-05-03 2010-08-06 Manuel Torres Martinez Pala de aerogenerador dividida en tramos y proceso de fabricacion de la misma.
US7854594B2 (en) 2009-04-28 2010-12-21 General Electric Company Segmented wind turbine blade
DE102009033164A1 (de) * 2009-07-13 2011-01-27 Repower Systems Ag Rotorblatt einer Windenergieanlage sowie Verfahren zum Fertigen eines Rotorblattes einer Windenergieanlage
DE102009033165A1 (de) * 2009-07-13 2011-01-27 Repower Systems Ag Rotorblatt einer Windenergieanlage, Verfahren zum Fertigen eines Rotorblattes sowie Gurtpaar für ein Rotorblatt
US7922454B1 (en) 2010-10-29 2011-04-12 General Electric Company Joint design for rotor blade segments of a wind turbine
WO2011056121A1 (en) * 2009-10-02 2011-05-12 Ägir Konsult AB Wind turbine with turbine blades
CN102086846A (zh) * 2009-12-07 2011-06-08 再生动力系统股份公司 风能设备的风轮叶片的带
DE202010000323U1 (de) * 2010-03-05 2011-06-22 Lätzsch GmbH Kunststoffverarbeitung, 04567 Windflügel für eine Strömungsenergieanlage
US8043065B2 (en) 2009-05-01 2011-10-25 General Electric Company Wind turbine blade with prefabricated leading edge segments
CN102278271A (zh) * 2010-06-08 2011-12-14 通用电气公司 用于风力涡轮机转子叶片的后缘连结缘条
WO2012031976A1 (de) * 2010-09-10 2012-03-15 Wobben, Aloys Abnehmbare rotorblattspitze
US8192170B2 (en) 2006-05-11 2012-06-05 Aloys Wobben Rotor blade for a wind energy installation
EP2481914A1 (de) * 2011-01-31 2012-08-01 Vestas Wind Systems A/S Rotorblatt einer Windkraftanlage und Herstellungsmethode dafür
GB2488099A (en) * 2011-01-31 2012-08-22 Vestas Wind Sys As Modular wind turbine blade with both spar and foil sections forming aerodynamic profile
EP2492497A2 (de) 2011-02-24 2012-08-29 Gamesa Innovation & Technology, S.L. Verbesserte Windturbinenschaufel mit mehreren Platten
WO2012140058A2 (en) 2011-04-11 2012-10-18 Lm Wind Power A/S A wind turbine blade comprising resistive heating means
EP2518313A1 (de) * 2009-12-25 2012-10-31 Mitsubishi Heavy Industries, Ltd. Windmühlenschaufel und windmühle zur erzeugung von windenergie
EP2527128A2 (de) 2011-05-24 2012-11-28 Gamesa Innovation & Technology, S.L. Bondingverfahren für eine Windturbinenschaufel mit mehreren Blättern
US8393865B2 (en) 2008-08-01 2013-03-12 Vestas Wind Systems A/S Rotor blade extension portion having a skin located over a framework
WO2013041814A1 (fr) * 2011-09-23 2013-03-28 Fläkt Solyvent-Ventec Pale de machine tournante a structure modulaire renforcée
US8454318B2 (en) 2006-12-15 2013-06-04 Bladena Aps Reinforced aerodynamic profile
US8485786B2 (en) 2007-01-16 2013-07-16 Bladena Aps Reinforced blade for wind turbine
EP2666615A1 (de) 2012-05-23 2013-11-27 Nordex Energy GmbH Verfahren zur Herstellung einer Windenergieanlagenrotorblatthalbschale bzw. eines Windenergieanlagenrotorblatts und Herstellungsform zu diesem Zweck
US8632312B2 (en) 2007-01-25 2014-01-21 Bladena Aps Reinforced blade for wind turbine
US8777579B2 (en) 2008-06-20 2014-07-15 Vestas Wind Systems A/S Method of manufacturing a spar for a wind turbine from elements comprising different materials
US8777578B2 (en) 2008-06-20 2014-07-15 Vestas Wind Systems A/S Method of manufacturing a spar for a wind turbine from elements having geometrically well-defined joint surface portions
US8807953B2 (en) 2008-06-24 2014-08-19 Bladena Aps Reinforced wind turbine blade
US8899936B2 (en) 2008-06-20 2014-12-02 Vestas Wind Systems A/S Method of manufacturing a spar for a wind turbine from elements having end portions extending transversely to an intermediate portion
EP2631467B1 (de) * 2012-02-24 2015-10-14 Siemens Aktiengesellschaft Anordnung zur Minderung der von einer Windturbinenschaufel erzeugten Geräusche
US9168705B2 (en) 2008-06-27 2015-10-27 Senvion Se Rotor blade for a wind turbine, method and manufacturing mold for the production thereof
DK178293B1 (en) * 2010-12-15 2015-11-09 Gen Electric Wind turbine blade with modular guide
US9297357B2 (en) 2013-04-04 2016-03-29 General Electric Company Blade insert for a wind turbine rotor blade
DK178479B1 (da) * 2007-09-17 2016-04-11 Gen Electric System og fremgangsmåde til at samle vindmøllevinger
US9416768B2 (en) 2009-12-02 2016-08-16 Bladena Aps Reinforced airfoil shaped body
US9506452B2 (en) 2013-08-28 2016-11-29 General Electric Company Method for installing a shear web insert within a segmented rotor blade assembly
US9790919B2 (en) 2014-02-25 2017-10-17 General Electric Company Joint assembly for rotor blade segments of a wind turbine
EP3275783A1 (de) * 2016-07-27 2018-01-31 Bell Helicopter Textron Inc. Rotorblatterosionsschutzsysteme
EP2343451B1 (de) 2009-10-08 2018-04-04 LM Wind Power International Technology II ApS Windturbinenschaufel mit einer Mehrzahl von Leitvorrichtungen
US10563636B2 (en) 2017-08-07 2020-02-18 General Electric Company Joint assembly for a wind turbine rotor blade
US10570879B2 (en) 2017-05-23 2020-02-25 General Electric Company Joint assembly for a wind turbine rotor blade with flanged bushings
EP2350452B2 (de) 2008-10-14 2020-08-19 Vestas Wind Systems A/S Windturbinenblatt mit einer Vorrichtung zur Änderung der aerodynamischen Fläche oder Form
US10760544B2 (en) * 2016-06-20 2020-09-01 General Electric Company Sealing members for jointed rotor blade assemblies
US10961982B2 (en) 2017-11-07 2021-03-30 General Electric Company Method of joining blade sections using thermoplastics
EP3803105B1 (de) 2018-05-31 2022-04-06 Vestas Wind Systems A/S Windturbinenblattvorderkantenverkleidung
US11499523B2 (en) 2017-12-20 2022-11-15 Vestas Wind Systems A/S Wind turbine blades and manufacturing systems and methods using segmented blade assembly

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105942B2 (en) * 2001-07-11 2006-09-12 Hydra Tidal Energy Technology As Plant, generator and propeller element for generating energy from watercurrents
DE10235496B4 (de) * 2002-08-02 2015-07-30 General Electric Co. Verfahren zum Herstellen eines Rotorblattes, Rotorblatt und Windenergieanlage
FR2863319B1 (fr) * 2003-12-09 2006-03-31 Ocea Sa Pale d'aerogenerateur a liaisons semi-rigides et aerogenerateur correspondant
US7153090B2 (en) * 2004-12-17 2006-12-26 General Electric Company System and method for passive load attenuation in a wind turbine
US8012299B2 (en) 2008-03-05 2011-09-06 Vestas Wind Systems A/S Assembly tool and a method of manufacturing a blade
DE102008038620A1 (de) * 2008-06-27 2009-12-31 Powerblades Gmbh Verfahren und Fertigungsform zur Fertigung eines Rotorblattes für eine Windenergieanlage
DE102009002637A1 (de) * 2009-04-24 2010-10-28 Wobben, Aloys Rotorblatt für eine Windenergieanlage
DE102013200287A1 (de) * 2013-01-11 2014-07-17 Bayerische Motoren Werke Aktiengesellschaft Verfahren für die Herstellung eines Strukturbauteils eines Fahrzeugs
CN105927465B (zh) * 2016-05-31 2019-06-04 上海理工大学 一种垂直轴风力机磁性变形叶片
BR112020011866B1 (pt) * 2017-12-14 2023-12-19 Lm Wind Power International Technology Ii Aps Sistema e método para fabricar uma pluralidade de pré-formas para uma lâmina de rotor de turbina eólica
CN113323797A (zh) * 2021-08-03 2021-08-31 常州市宏发纵横新材料科技股份有限公司 一种模块化风电叶片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1085142A (fr) * 1953-06-19 1955-01-27 Sncase Perfectionnements aux surfaces aérodynamiques et plus particulièrement aux pales d'hélicoptères
DE1260985B (de) * 1965-02-01 1968-02-08 United Aircraft Corp Gegengewicht fuer Rotorblaetter, das im Inneren eines den Blattvorderteil bildenden Holmes eingebaut ist
GB1391558A (en) * 1972-03-23 1975-04-23 Boeing Co Honeycomb structural panels
US4295790A (en) * 1979-06-21 1981-10-20 The Budd Company Blade structure for use in a windmill
US4316701A (en) * 1976-08-30 1982-02-23 The Boeing Company Composite aerodynamic rotor blade assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1085142A (fr) * 1953-06-19 1955-01-27 Sncase Perfectionnements aux surfaces aérodynamiques et plus particulièrement aux pales d'hélicoptères
DE1260985B (de) * 1965-02-01 1968-02-08 United Aircraft Corp Gegengewicht fuer Rotorblaetter, das im Inneren eines den Blattvorderteil bildenden Holmes eingebaut ist
GB1391558A (en) * 1972-03-23 1975-04-23 Boeing Co Honeycomb structural panels
US4316701A (en) * 1976-08-30 1982-02-23 The Boeing Company Composite aerodynamic rotor blade assembly
US4295790A (en) * 1979-06-21 1981-10-20 The Budd Company Blade structure for use in a windmill

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780407A3 (de) * 2005-10-29 2009-03-18 NORDEX ENERGY GmbH Rotorblatt für Windkraftanlagen
EP1780407A2 (de) * 2005-10-29 2007-05-02 NORDEX ENERGY GmbH Rotorblatt für Windkraftanlagen
US8647063B2 (en) 2006-03-14 2014-02-11 Tecsis Tecnologia Sistemas Avançados S.A. Multi-element blade with aerodynamic profiles
WO2007105174A1 (en) * 2006-03-14 2007-09-20 Tecsis Tecnologia E Sistemas Avançados Ltda Multi-element blade with aerodynamic profiles
US8192170B2 (en) 2006-05-11 2012-06-05 Aloys Wobben Rotor blade for a wind energy installation
WO2008052677A3 (en) * 2006-11-02 2008-09-18 Lignum Vitae Ltd Wind rotor blade and wind turbine comprising such blade
WO2008052677A2 (en) * 2006-11-02 2008-05-08 Lignum Vitae Limited Wind rotor blade and wind turbine comprising such blade
US8454318B2 (en) 2006-12-15 2013-06-04 Bladena Aps Reinforced aerodynamic profile
US8485786B2 (en) 2007-01-16 2013-07-16 Bladena Aps Reinforced blade for wind turbine
US8632312B2 (en) 2007-01-25 2014-01-21 Bladena Aps Reinforced blade for wind turbine
WO2008092451A3 (en) * 2007-01-29 2008-12-11 Univ Danmarks Tekniske Wind turbine blade
WO2008092451A2 (en) * 2007-01-29 2008-08-07 Danmarks Tekniske Universitet Wind turbine blade
EP1965074A3 (de) * 2007-02-28 2011-08-03 Gamesa Innovation And Technology, S.L. Aus mehreren Platten bestehendes Windturbinenblatt
EP1965074A2 (de) 2007-02-28 2008-09-03 Gamesa Innovation And Technology, S.L. Aus mehreren Platten bestehendes Windturbinenblatt
ES2342638A1 (es) * 2007-02-28 2010-07-09 GAMESA INNOVATION & TECHNOLOGY, S.L. Una pala de aerogenerador multi-panel.
US8262361B2 (en) 2007-02-28 2012-09-11 Gamesa Innovation & Technology, S.L. Wind turbine multi-panel blade
ES2343712A1 (es) * 2007-05-03 2010-08-06 Manuel Torres Martinez Pala de aerogenerador dividida en tramos y proceso de fabricacion de la misma.
ES2322423A1 (es) * 2007-06-21 2009-06-19 Manuel Torres Martinez Pala para aerogenerador de eje horizontal.
DK178479B1 (da) * 2007-09-17 2016-04-11 Gen Electric System og fremgangsmåde til at samle vindmøllevinger
WO2009130467A2 (en) 2008-04-24 2009-10-29 Blade Dynamics Limited A wind turbine blade
WO2009130467A3 (en) * 2008-04-24 2010-09-23 Blade Dynamics Limited A wind turbine blade
US9133818B2 (en) 2008-04-24 2015-09-15 Blade Dynamics Limited Wind turbine blade
US8899936B2 (en) 2008-06-20 2014-12-02 Vestas Wind Systems A/S Method of manufacturing a spar for a wind turbine from elements having end portions extending transversely to an intermediate portion
US8777579B2 (en) 2008-06-20 2014-07-15 Vestas Wind Systems A/S Method of manufacturing a spar for a wind turbine from elements comprising different materials
US8777578B2 (en) 2008-06-20 2014-07-15 Vestas Wind Systems A/S Method of manufacturing a spar for a wind turbine from elements having geometrically well-defined joint surface portions
US8807953B2 (en) 2008-06-24 2014-08-19 Bladena Aps Reinforced wind turbine blade
US9784240B2 (en) 2008-06-24 2017-10-10 Bladena Solutions Aps Reinforced wind turbine blade
US9168705B2 (en) 2008-06-27 2015-10-27 Senvion Se Rotor blade for a wind turbine, method and manufacturing mold for the production thereof
GB2462308A (en) * 2008-08-01 2010-02-03 Vestas Wind Sys As Extension portion for wind turbine blade
US8393865B2 (en) 2008-08-01 2013-03-12 Vestas Wind Systems A/S Rotor blade extension portion having a skin located over a framework
US8317479B2 (en) 2008-08-01 2012-11-27 Vestas Wind Systems A/S Segmented rotor blade extension portion
EP2350452B2 (de) 2008-10-14 2020-08-19 Vestas Wind Systems A/S Windturbinenblatt mit einer Vorrichtung zur Änderung der aerodynamischen Fläche oder Form
US7854594B2 (en) 2009-04-28 2010-12-21 General Electric Company Segmented wind turbine blade
US8043065B2 (en) 2009-05-01 2011-10-25 General Electric Company Wind turbine blade with prefabricated leading edge segments
US9011103B2 (en) 2009-07-13 2015-04-21 Senvion Se Rotor blade of a wind power plant, method of fabricating a rotor blade and a pair of belts for a rotor blade
US8961143B2 (en) 2009-07-13 2015-02-24 Repower Systems Ag Rotor blade of a wind power plant and method for fabricating a rotor blade of a wind power plant
WO2011006562A3 (de) * 2009-07-13 2011-10-13 Repower Systems Ag Rotorblatt einer windenergieanlage, verfahren zum fertigen eines rotorblattes sowie gurtpaar für ein rotorblatt
EP2454472B1 (de) * 2009-07-13 2016-03-09 Senvion GmbH Rotorblatt einer windenergieanlage sowie verfahren zum fertigen eines rotorblattes einer windenergieanlage
DE102009033165A1 (de) * 2009-07-13 2011-01-27 Repower Systems Ag Rotorblatt einer Windenergieanlage, Verfahren zum Fertigen eines Rotorblattes sowie Gurtpaar für ein Rotorblatt
DE102009033164A1 (de) * 2009-07-13 2011-01-27 Repower Systems Ag Rotorblatt einer Windenergieanlage sowie Verfahren zum Fertigen eines Rotorblattes einer Windenergieanlage
WO2011056121A1 (en) * 2009-10-02 2011-05-12 Ägir Konsult AB Wind turbine with turbine blades
EP2343451B1 (de) 2009-10-08 2018-04-04 LM Wind Power International Technology II ApS Windturbinenschaufel mit einer Mehrzahl von Leitvorrichtungen
US9416768B2 (en) 2009-12-02 2016-08-16 Bladena Aps Reinforced airfoil shaped body
CN102086846A (zh) * 2009-12-07 2011-06-08 再生动力系统股份公司 风能设备的风轮叶片的带
EP2518313A1 (de) * 2009-12-25 2012-10-31 Mitsubishi Heavy Industries, Ltd. Windmühlenschaufel und windmühle zur erzeugung von windenergie
EP2518313A4 (de) * 2009-12-25 2014-05-21 Mitsubishi Heavy Ind Ltd Windmühlenschaufel und windmühle zur erzeugung von windenergie
DE102011001086B4 (de) 2010-03-05 2020-06-04 Lätzsch GmbH Kunststoffverarbeitung Windflügel für eine Strömungsenergieanlage
EP2363602A3 (de) * 2010-03-05 2014-04-16 Lätzsch GmbH Kunststoffverarbeitung Windflügel für eine Strömungsenergieanlage
DE202010000323U1 (de) * 2010-03-05 2011-06-22 Lätzsch GmbH Kunststoffverarbeitung, 04567 Windflügel für eine Strömungsenergieanlage
CN102278271A (zh) * 2010-06-08 2011-12-14 通用电气公司 用于风力涡轮机转子叶片的后缘连结缘条
WO2012031976A1 (de) * 2010-09-10 2012-03-15 Wobben, Aloys Abnehmbare rotorblattspitze
US9371817B2 (en) 2010-09-10 2016-06-21 Wobben Properties Gmbh Removable rotor blade tip
US7922454B1 (en) 2010-10-29 2011-04-12 General Electric Company Joint design for rotor blade segments of a wind turbine
DK178293B1 (en) * 2010-12-15 2015-11-09 Gen Electric Wind turbine blade with modular guide
EP2481914A1 (de) * 2011-01-31 2012-08-01 Vestas Wind Systems A/S Rotorblatt einer Windkraftanlage und Herstellungsmethode dafür
GB2488099A (en) * 2011-01-31 2012-08-22 Vestas Wind Sys As Modular wind turbine blade with both spar and foil sections forming aerodynamic profile
EP2492497A2 (de) 2011-02-24 2012-08-29 Gamesa Innovation & Technology, S.L. Verbesserte Windturbinenschaufel mit mehreren Platten
US8967976B2 (en) 2011-02-24 2015-03-03 Gamesa Innovation & Technology, S.L. Wind turbine with multi-panel blade
WO2012140058A2 (en) 2011-04-11 2012-10-18 Lm Wind Power A/S A wind turbine blade comprising resistive heating means
US9719359B2 (en) 2011-04-11 2017-08-01 LM WP Patent Holdings A/S Wind turbine blade comprising resistive heating means
CN103748356A (zh) * 2011-04-11 2014-04-23 Lmwp专利控股有限公司 包括电阻加热装置的风力涡轮机叶片
EP2527128A2 (de) 2011-05-24 2012-11-28 Gamesa Innovation & Technology, S.L. Bondingverfahren für eine Windturbinenschaufel mit mehreren Blättern
US10408060B2 (en) 2011-09-23 2019-09-10 Howden Solyvent-Ventec Rotating machine blade with reinforced modular structure
FR2980514A1 (fr) * 2011-09-23 2013-03-29 Flakt Solyvent Ventec Pale de machine tournante a structure modulaire renforcee
WO2013041814A1 (fr) * 2011-09-23 2013-03-28 Fläkt Solyvent-Ventec Pale de machine tournante a structure modulaire renforcée
FR3059040A1 (fr) * 2011-09-23 2018-05-25 Flakt Solyvent-Ventec Pale de machine tournante a structure modulaire renforcee
US9567980B2 (en) 2012-02-24 2017-02-14 Siemens Aktiengesellschaft Arrangement to reduce noise originated by a wind turbine blade
EP2631467B1 (de) * 2012-02-24 2015-10-14 Siemens Aktiengesellschaft Anordnung zur Minderung der von einer Windturbinenschaufel erzeugten Geräusche
EP2666615A1 (de) 2012-05-23 2013-11-27 Nordex Energy GmbH Verfahren zur Herstellung einer Windenergieanlagenrotorblatthalbschale bzw. eines Windenergieanlagenrotorblatts und Herstellungsform zu diesem Zweck
US9108376B2 (en) 2012-05-23 2015-08-18 Nordex Energy Gmbh Method for making a wind turbine rotor blade half shell or wind turbine rotor blade and production mold therefor
US9297357B2 (en) 2013-04-04 2016-03-29 General Electric Company Blade insert for a wind turbine rotor blade
US9506452B2 (en) 2013-08-28 2016-11-29 General Electric Company Method for installing a shear web insert within a segmented rotor blade assembly
US9790919B2 (en) 2014-02-25 2017-10-17 General Electric Company Joint assembly for rotor blade segments of a wind turbine
US10760544B2 (en) * 2016-06-20 2020-09-01 General Electric Company Sealing members for jointed rotor blade assemblies
US10538317B2 (en) 2016-07-27 2020-01-21 Textron Innovations Inc. Rotor blade erosion protection systems
EP3275783A1 (de) * 2016-07-27 2018-01-31 Bell Helicopter Textron Inc. Rotorblatterosionsschutzsysteme
US10570879B2 (en) 2017-05-23 2020-02-25 General Electric Company Joint assembly for a wind turbine rotor blade with flanged bushings
US10563636B2 (en) 2017-08-07 2020-02-18 General Electric Company Joint assembly for a wind turbine rotor blade
US10961982B2 (en) 2017-11-07 2021-03-30 General Electric Company Method of joining blade sections using thermoplastics
US11499523B2 (en) 2017-12-20 2022-11-15 Vestas Wind Systems A/S Wind turbine blades and manufacturing systems and methods using segmented blade assembly
EP3803105B1 (de) 2018-05-31 2022-04-06 Vestas Wind Systems A/S Windturbinenblattvorderkantenverkleidung

Also Published As

Publication number Publication date
DE19962454A1 (de) 2001-07-05
AU3151201A (en) 2001-07-03
WO2001046582A3 (de) 2001-12-27

Similar Documents

Publication Publication Date Title
WO2001046582A2 (de) Rotorblatt für windenergieanlagen
EP1244873B1 (de) Verwendung einer stossverbindung für rotorblätter
EP2363599B2 (de) Rotorblatt für eine Windenergieanlage, Windenergieanlage und Verfahren zum Herstellen eines Rotorblatts
DE102010017062B4 (de) Rotorblatt einer Windkraftanlage
DE2648343C3 (de) Schlag- und schwenkgelenkloser Rotor für Drehflügelflugzeuge
EP0019691A1 (de) Aus einzelnen Abschnitten gefertigtes Rotorblatt
DE20320714U1 (de) Rotorblatt für Windenergieanlagen
EP1636490B1 (de) Rotorblattanschluss
EP3724072A1 (de) Flugmodul
EP2788618B1 (de) Hinterkasten, rotorblatt mit hinterkasten und windenergieanlage mit solchem rotorblatt
EP2434143B1 (de) Rotorblatt oder Rotorblattsegment für eine Windenergieanlage
DE102014203936A1 (de) Verfahren zum Herstellen eines Rotorblatts einer Windenergieanlage, Rotorblatt und Windenergieanlage
DE102017125060A1 (de) Ringförmige Konsole zum externen Spannen eines Turmsegments, externes Spannsystem eines Hybridturms, Turmabschnitt eines Hybridturms, Hybridturm, Windenergieanlage und Montageverfahren eines externen Spannsystems für einen Hybridturm
EP2733063A1 (de) Morphingstruktur für eine Flügelvorderkante
DE2758086C2 (de) Rotor für ein Drehflügelflugzeug mit gelenklosem Blattanschluß
DE2645174A1 (de) Rotorkopf fuer einen schlag- und schwenkgelenklosen rotor
DE202013007886U1 (de) Windenergieanlagenrotorblatt mit passiver Lastreduzierung
DE202006013519U1 (de) Windenergieanlage mit konusförmig angeordneten Rotorblättern
DE102005038857B4 (de) Doppelschalig aufgebauter Mittelkasten
DE102012102746B4 (de) Rotorblatt mit adaptivem Vorflügel für eine Windenergieanlage
EP3376024A1 (de) Teilbares windenergieanlagenrotorblatt mit bolzenverbindung
DE102015110981A1 (de) Windenergieanlage zur Gewinnung von elektrischer Energie aus Wind und entsprechender Turm
WO2021004723A1 (de) Rotorblatt für eine windenergieanlage, rotorblattsegment, windenergieanlage und verfahren zur herstellung eines rotorblattes
EP3464892B1 (de) Windenergieanlage mit turm mit aerodynamischem profil
EP3887670A1 (de) Verfahren zum einbringen eines rotorblattgurts in eine rotorblattschale, gurtform, rotorblatt sowie windenergieanlage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AU BB BG BR CA CN CU DZ EE ID IL IN JP KR LT LV MX NO NZ PL RO SG UA US VN ZA

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AU BB BG BR CA CN CU DZ EE ID IL IN JP KR LT LV MX NO NZ PL RO SG UA US VN ZA

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP