WO1980000733A1 - Wind motor - Google Patents

Wind motor Download PDF

Info

Publication number
WO1980000733A1
WO1980000733A1 PCT/AT1979/000007 AT7900007W WO8000733A1 WO 1980000733 A1 WO1980000733 A1 WO 1980000733A1 AT 7900007 W AT7900007 W AT 7900007W WO 8000733 A1 WO8000733 A1 WO 8000733A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
parallel
wings
wind
blades
Prior art date
Application number
PCT/AT1979/000007
Other languages
German (de)
French (fr)
Inventor
R Herdin
Original Assignee
Wiener Brueckenbau
R Herdin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wiener Brueckenbau, R Herdin filed Critical Wiener Brueckenbau
Publication of WO1980000733A1 publication Critical patent/WO1980000733A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/214Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the invention relates to a wind power machine with a vertical rotary shaft and with blades rotating together with the latter having a wing profile which is arranged approximately tangentially with respect to the orbit.
  • Such wind power machines are known as Darrieus rotors (US Pat. No. 1A 835018) and have a number of advantages over pure resistance rotors, which convert the wind pressure directly into a torque.
  • the torque emitted by a Darrieus rotor is only negative during a rotation around 36O during two very short phases, namely when the blades are parallel to the wind Throughout the rest of the orbit, the Darrieus rotor gives a positive moment due to buoyancy forces that act on the wing profile of the wing.
  • the Darrieus rotor also has the advantage of a relatively high speed; the peripheral speed of its wings is greater than the wind speed. Another significant advantage is that in the event of a storm, only relatively small forces are required to brake or hold the wings, and when the wings are at rest, the storm only requires little of the entire construction.
  • a disadvantage of the Darrieus rotor is, however, a poor characteristic curve, ie wind turbines of this type only give the maximum power in a small speed range. In the event of speed fluctuations as a result of uneven wind speeds or loads, the power which is theoretically possible at a certain wind speed is therefore not achieved.
  • the invention has for its object to provide a wind turbine on the principle of the Darrieus rotor with an improved characteristic curve, i.e. with a larger usable speed range.
  • Two parallel wings are advantageously arranged side by side and not offset in the direction of rotation.
  • the parallel blades are arranged offset with respect to one another in the direction of rotation. It is also possible to arrange three parallel wings next to one another, the middle wing being offset in the direction of rotation with respect to the two outer wings. Furthermore, all wings can have the same symmetrical wing profile in a manner known per se.
  • FIG. 1 schematically shows an embodiment of a wind power machine according to the invention
  • FIG. 4 shows the profile of two interconnected blades of a wind turbine according to the invention.
  • the wind turbine shown in Fig.l has a vertical rotary shaft 1, which drives on a generator not visible in the drawing, and vertical blades 3 connected to the rotary shaft 1 via radial struts 2.
  • the blades 3 have an airfoil profile, which is related to the orbit 4 is arranged approximately tangentially. There are three wings 3 intervals of 120 distributed over the orbit 4.
  • An approximately equally large parallel wing 5 is arranged next to each wing 3 at a distance explained in more detail below; this results in three groups of two parallel wings 3, 5.
  • the wings 3, 5 are arranged in the rotational direction without offset.
  • the vector representation in FIG. 2 illustrates the principle of the Darrieus rotor.
  • the air is relative for the wing 3 located at the bottom left in FIG speed based on the peripheral speed (-u) and the wind speed (v).
  • the sum of (-u) and (v) results in (w), that is the speed of the air flow that flows against the wing 3 located in the direction of (-u).
  • This air flow generates the lift force A on the wing 3, which is perpendicular to (w).
  • the buoyancy force A causes a moment about the axis of rotation 1, the greater the greater the angle ⁇ between the direction of the buoyancy force A and the radial direction (strut 2).
  • This angle ⁇ is the same size as the angle between (-u) and (w), also designated ⁇ .
  • the buoyancy force A thus changes with the rotational position of the wing 3. It is zero when the angle ⁇ is zero, ie when the wing 3 is parallel to the wind direction (v). It is greatest when - as shown in FIG. 3 - the angle between (v) and (w) is 90 and the angle ⁇ has the greatest value.
  • Fig.4 shows the profile of the interconnected wings 3, 5 on a larger scale. It can be seen that both wings have the same symmetrical wing profile. It can also be seen that the distance between the wings a has approximately the order of magnitude of the wing depth t or that a is somewhat smaller than t in the exemplary embodiment shown.
  • Two radial struts, which connect the wings 3 and 5, are designated 6 and 7 in FIG. 4.

Abstract

The wind motor of the Darrieu rotor type with a vertical rotary shaft to which are associated turning wings (3, 5) the profile of which is arranged tangentially to their trajectory (4). At side of each wing (3) is arranged in parallel at a distance of about the depth (t) of the wing a similar second wing (5). The parallel wings (3, 5) are appropriately connected by radial cross members.

Description

WINDKRAFTMASCHINE WIND TURBINE
Die Erfindung betrifft eine Windkraftmaschine mit senkrechter Drehwelle und mit gemeinsam mit dieser umlaufenden Flügeln mit einem Tragflächenprofil, welches inbezug auf die Umlaufbahn etwa tangential angeordnet ist.The invention relates to a wind power machine with a vertical rotary shaft and with blades rotating together with the latter having a wing profile which is arranged approximately tangentially with respect to the orbit.
Derartige Windkraftmasfchinen sind als Darrieus-Rotoren (US-PS 1A 835018) bekannt und haben gegenüber reinen Widerstandsläufern, die den Winddruck unmittelbar in ein Drehmoment umsetzen, eine Reihe von Vorteilen. Im Gegensatz zu den Widerstandsläufern, die von jeder ganzen Umdrehung die Hälfte gegen den Wind laufen, ist das von einem Darrieus -Rotor abgegebene Drehmoment bei einem Umlauf um 36O nur während zweier sehr kurzer Phasen negativ, nämlich dann, wenn sich die Flügel parallel zum Wind befinden.Während der gesamten übrigen Umlaufbahn gibt der Darrieus-Rotor ein positives Moment ab aufgrund von Auftriebskräften, die am Tragflächenprofil der Flügel wirksam werden.Such wind power machines are known as Darrieus rotors (US Pat. No. 1A 835018) and have a number of advantages over pure resistance rotors, which convert the wind pressure directly into a torque. In contrast to the resistance rotors, which run half against each wind of every complete revolution, the torque emitted by a Darrieus rotor is only negative during a rotation around 36O during two very short phases, namely when the blades are parallel to the wind Throughout the rest of the orbit, the Darrieus rotor gives a positive moment due to buoyancy forces that act on the wing profile of the wing.
Außerdem hat der Darrieus-Rotor den Vorteil einer relativ hohen Drehzahl; die Umfangsgeschwindigkeit seiner Flügel ist nämlich größer als die Windgeschwindigkeit. Ein weiterer wesentlicher Vorteil besteht darin, daß bei Sturm nur relativ geringe Kräfte für das Bremsen bzw. Festhalten der Flügel erforderlich sind und bei stillstehenden Flügeln der Sturm die gesamte Konstruktion nur wenig beansprucht. Ein Nachteil des Darrieus-Rotors besteht aber in einer schlechten Kennlinie, d.h., solche Windkraftmaschinen geben nur in einem kleinen Drehzahlbereich die maximale Leistung ab. Bei Drehzahlschwankungen infolge ungleichmäßiger Windgeschwindigkeiten bzw. Belastungen wird die bei einer bestimmten Windgeschwindigkeit theoretisch mögliche Leistung daher nicht erreicht.The Darrieus rotor also has the advantage of a relatively high speed; the peripheral speed of its wings is greater than the wind speed. Another significant advantage is that in the event of a storm, only relatively small forces are required to brake or hold the wings, and when the wings are at rest, the storm only requires little of the entire construction. A disadvantage of the Darrieus rotor is, however, a poor characteristic curve, ie wind turbines of this type only give the maximum power in a small speed range. In the event of speed fluctuations as a result of uneven wind speeds or loads, the power which is theoretically possible at a certain wind speed is therefore not achieved.
Der Erfindung liegt die Aufgabe zugrunde, eine Windkraftmaschine nach dem Prinzip des Darrieus-Rotors mit einer verbesserten Kennlinie, d.h., mit einem größeren nutzbaren'Drehzahlbereich zu schaffen.The invention has for its object to provide a wind turbine on the principle of the Darrieus rotor with an improved characteristic curve, i.e. with a larger usable speed range.
Diese Aufgabe wird bei einer Windkraftmaschine der eingangs erwähnten Art dadurch gelöst, daß neben jedem Flügel in einem Abstand in der Größenordnung der Flügeltiefe mindestens ein etwa gleich großer paralleler Flügel angeordnet ist. Dadurch wird eine aerodynamische Verbesserung erreicht, die zu einer höheren Leistung der Windkraftmaschine insbesondere beim Hochlaufen auf eine größere Drehzahl führt. Die parallele Anordnung der Flügel ermöglicht deren Verbindung mittels radialer Streben. Dadurch ergibt sich eine Verbesserung der Festigkeit, wodurch wenigerAbstützungen benötigt werden und Verluste aufgrund deren Luftwiderstands entfallen.This object is achieved in a wind power machine of the type mentioned in the introduction in that at least one approximately equal-sized parallel wing is arranged next to each wing at a distance of the order of the wing depth. As a result, an aerodynamic improvement is achieved, which leads to a higher performance of the wind turbine, in particular when starting up to a higher speed. The parallel arrangement of the wings enables their connection by means of radial struts. This results in an improvement in strength, which means that fewer supports are required and losses due to their air resistance are eliminated.
Vorteilhaft sind je zwei parallele Flügel nebeneinander und in der Drehrichtung unversetzt angeordnet.Two parallel wings are advantageously arranged side by side and not offset in the direction of rotation.
Bei einer anderen Ausfuhrungsforra der erfindungsgemäßen Windkraftmaschine sind die parallelen Flügel in der Drehrichtung gegeneinander versetzt angeordnet. Es ist auch möglich, drei parallele Flügel nebeneinander anzuordnen, wobei der mittlere Flügel gegenüber den beiden äußeren Flügeln in der Drehrichtung nach vorne versetzt sein kann . Es können im weiteren alle Flügel in an sich bekannter Weise dasselbe symmetrische Tragflächenprofil haben.In another embodiment of the wind power machine according to the invention, the parallel blades are arranged offset with respect to one another in the direction of rotation. It is also possible to arrange three parallel wings next to one another, the middle wing being offset in the direction of rotation with respect to the two outer wings. Furthermore, all wings can have the same symmetrical wing profile in a manner known per se.
Die Erfindung wird an Hand der Zeichnung näher erläutert. Darin zeigtThe invention is explained in more detail with reference to the drawing. In it shows
Fig.1 schematisch ein Ausführungsbeispiel einer erfindungsgemäßen Windkraftmaschine,1 schematically shows an embodiment of a wind power machine according to the invention,
Fig.2 die Wirkungsweise eines Darrieus-Rotors anhand einer Vektor-Darstellung,2 the mode of operation of a Darrieus rotor on the basis of a vector representation,
Fig.3 dieses Vektor-Diagramm in einer bestimmten Drehstellung eines Flügels undFig.3 this vector diagram in a certain rotational position of a wing and
Fig.4 das Profil zweier miteinander verbundener Flügel einer erfindungsgemäßen Windkraftmaschine.4 shows the profile of two interconnected blades of a wind turbine according to the invention.
Die in Fig.l dargestellte Windkraftmaschine hat eine senkrechte Drehwelle 1, welche auf einen in der Zeichnung nicht sichtbaren Generator treibt und mit der Drehwelle 1 über radiale Strebefti 2 verbundene senkrechte Flügel 3. Die Flügel 3 haben ein Tragflächenprofil, welches in Bezug auf die Umlaufbahn 4 etwa tangential angeordnet ist.Es sind drei Flügel 3 Abständen von je 120 über die Umlaufbahn 4 verteilt angeordnet.The wind turbine shown in Fig.l has a vertical rotary shaft 1, which drives on a generator not visible in the drawing, and vertical blades 3 connected to the rotary shaft 1 via radial struts 2. The blades 3 have an airfoil profile, which is related to the orbit 4 is arranged approximately tangentially. There are three wings 3 intervals of 120 distributed over the orbit 4.
Es ist neben jedem Flügel 3 in einem weiter unten näher erläuterten Abstand ein etwa gleich großer paralleler Flügel 5 angeordnet; es ergeben sich somit drei Gruppen von je zwei parallelen Flügeln 3, 5. Die Flügel 3, 5 sind in der Drehrichtung unversetzt angeordnet.An approximately equally large parallel wing 5 is arranged next to each wing 3 at a distance explained in more detail below; this results in three groups of two parallel wings 3, 5. The wings 3, 5 are arranged in the rotational direction without offset.
Im übrigen ist in Fig.1 die Drehrichtung der Maschine durch einen Pfeil rund um die Drehwelle 1 und die Windrichtung durch einen Pfeil v angedeutet.Otherwise, the direction of rotation of the machine is indicated by an arrow around the rotary shaft 1 and the wind direction by an arrow v in FIG.
Die Vektor-Darstellung der Fig.2 veranschaulicht das Prinzip des Darrieus-Rotors. In Fig.2 sind für den in Fig.l links unten befindlichen Flügel 3 die Luftrelativ geschwindigkeit aufgrund der Umfangsgeschwindigkeit (-u) und die Windgeschwindigkeit (v) eingezeichnet. Die Summe aus (-u) und (v) ergibt (w), das ist die Geschwindigkeit derjenigen Luftströmung, die den in der Richtung von (-u) befindlichen Flügel 3 anströmt. Diese Luftströmung erzeugt am Flügel 3 die Auftriebskraft A, die senkrecht zu (w) ist. Die Auftriebskraft A bewirkt ein Moment um die Drehachse 1, das umso größer ist je größer der Winkelαzwischen der Richtung der Auftriebskraft A und der Radialrichtung (Strebe 2) ist. DieserWinkelαist gleich groß wie der ebenso mit α bezeichnete Winkel zwischen (-u) und (w). Die Auftriebskraft A ändert sich also mit der Drehstellung des Flügels 3. Sie ist null, wenn der Winkel α null ist, also wenn sich der Flügel 3 parallel zur Windrichtung (v) befindet. Sie ist am größten , wenn - wie in Fig.3 eingezeichnet - der Winkel zwischen (v) und (w) 90 beträgt und der Winkelαden größten Wert hat.The vector representation in FIG. 2 illustrates the principle of the Darrieus rotor. In FIG. 2, the air is relative for the wing 3 located at the bottom left in FIG speed based on the peripheral speed (-u) and the wind speed (v). The sum of (-u) and (v) results in (w), that is the speed of the air flow that flows against the wing 3 located in the direction of (-u). This air flow generates the lift force A on the wing 3, which is perpendicular to (w). The buoyancy force A causes a moment about the axis of rotation 1, the greater the greater the angle α between the direction of the buoyancy force A and the radial direction (strut 2). This angle α is the same size as the angle between (-u) and (w), also designated α. The buoyancy force A thus changes with the rotational position of the wing 3. It is zero when the angle α is zero, ie when the wing 3 is parallel to the wind direction (v). It is greatest when - as shown in FIG. 3 - the angle between (v) and (w) is 90 and the angle α has the greatest value.
In dieser Drehstellung - nahe derjenigen Stelle, wo die Radialrichtung (Strebe 2) mit der Windrichtung (v) zusammenfällt - besteht allerdings die Gefahr eines Leistungsverlustes durch Ablösen der Strömung vom Profil des Flügels 3. Der Wertαdarf einen bestimmten Grenzwert nicht überschreiten, wenn die den Auftrieb A bewirkende Strömung nicht abreißen soll. Die Überschreitung dieses Grenzwertes ist jedoch dann nicht zu verhindern, wenn das Verhältnis der Absolutwerte von (-u) und (v) zu klein wird, d.h., wenn (-u) bei gegebener Größe von (v) zu klein oder (v) bei gegebener Größe von (-u) zu groß wird. Diese Situation ist beim Anfahren des Darrieus-Rotors - dieser benötigt eine Anlaufhilfe, weil sonst keine ausreichend große Auftriebskraft A zustande kommt - aber auch dann unvermeidlich, wenn die Windgeschwindigkeit (v) plötzlich zunimmt. Hier setzt nun die Erfindung ein : Der dem Flügel 3 gemäß Fig. 1 zugeordnete Flügel 5 bewirkt eine Vergrößerung des maximalen Grenzwertes für den Winkelα; d.h., die Strömung zwischen den beiden Flügeln 3, 5 reißt nicht so schnell ab, wie wenn nur ein Flügel 3 vorhanden wäre. Der nutzbare Drehzahlbereich der Windkraftmaschine wird also vergrößert und es kann eine größere Leistung abgegeben werden.In this rotary position - close to the point where the radial direction (strut 2) coincides with the wind direction (v) - there is, however, a risk of a loss of performance due to the flow becoming detached from the profile of the wing 3. The value α must not exceed a certain limit value if the Flow A causing flow should not stop. However, this limit value cannot be exceeded if the ratio of the absolute values of (-u) and (v) becomes too small, ie if (-u) for a given size of (v) is too small or (v) at given size of (-u) becomes too large. This situation is unavoidable when starting up the Darrieus rotor - this needs a start-up aid because otherwise a sufficiently high lift force A is not achieved - but also if the wind speed (v) suddenly increases. This is where the invention comes in: The wing 5 assigned to the wing 3 according to FIG. 1 causes the maximum limit value for the angle α to be increased; that is, the flow between the two wings 3, 5 does not stop as quickly as if only one wing 3 were present. The usable speed range of the wind turbine is thus increased and a greater output can be delivered.
Fig.4 zeigt das Profil der miteinander verbundenen Flügel 3, 5 in einem größeren Maßstab. Man sieht, daß beide Flügel dasselbe symmetrische Tragflächenprofil haben. Man sieht auch, daß der Abstand der Flügel a etwa die Größenordnung der Flügeltiefe t hat bzw. daß a beim dargestellten Ausführungsbeispiel etwas kleiner als t ist. Zwei radiale Streben, welche die Flügel 3 und 5 verbinden, sind in Fig. 4 mit 6 bzw. 7 bezeichnet. Fig.4 shows the profile of the interconnected wings 3, 5 on a larger scale. It can be seen that both wings have the same symmetrical wing profile. It can also be seen that the distance between the wings a has approximately the order of magnitude of the wing depth t or that a is somewhat smaller than t in the exemplary embodiment shown. Two radial struts, which connect the wings 3 and 5, are designated 6 and 7 in FIG. 4.

Claims

P A T E N T A N S P R Ü C H E PATENT CLAIMS
1. Windkraftmaschine mit senkrechter Drehwelle und mit gemeinsam mit dieser umlaufenden Flügeln mit einem Tragflächenprofil, welches inbezug auf die Umlaufbahn etwa tangential angeordnet ist, d a d u r c h g e k e n n z e i c h n e t, daß neben jedem Flügel (3) in einem Abstand in der Größenordnung der Flügeltiefe (t) ein etwa gleich großer paralleler Flügel (5) angeordnet ist.1. Wind turbine with a vertical rotary shaft and together with this rotating blades with a wing profile, which is arranged approximately tangentially with respect to the orbit, characterized in that in addition to each blade (3) at a distance in the order of the wing depth (t) is approximately the same large parallel wing (5) is arranged.
2. Windkraftmaschine Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die parallelen Flügel (3,5) mittels radialer Streben (6,7) verbunden sind.2. Wind turbine claim 1, d a d u r c h g e k e n n z e i c h n e t that the parallel wings (3,5) are connected by means of radial struts (6,7).
3. Windkraftmaschine nach Anspruch 1 oder 2 d a d u r g e k e n n z e i c h n e t, daß je zwei parallele Flügel (3,5) nebeneinander und in der Drehrichtung unversetzt angeordnet sind.3. Wind power machine according to claim 1 or 2 d a d u r g e k e n n z e i c h n e t that two parallel blades (3,5) are arranged side by side and in the direction of rotation without offset.
4. Windkraftmaschine nach Anspruch 1 oder 2, d a d u r g e k e n n z e i c h n e t, daß die parallelen Flügel in der Drehrichtung gegeneinander versetzt angeordnet sind.4. Wind power machine according to claim 1 or 2, d a d u r g e k e n n z e i c h n e t that the parallel blades are arranged offset from one another in the direction of rotation.
5. Windkraftmaschine nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, daß alle Flügel (3,5) in an sich bekannter Weise dasselbe symmetrische Tragflächenprofil haben. 5. Wind turbine according to one of claims 1 to 4, d a d u r c h g e k e n n z e i c h n e t that all blades (3,5) have the same symmetrical wing profile in a manner known per se.
PCT/AT1979/000007 1978-10-11 1979-09-18 Wind motor WO1980000733A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT728978A AT359007B (en) 1978-10-11 1978-10-11 WIND TURBINE
AT7289/78 1978-10-11

Publications (1)

Publication Number Publication Date
WO1980000733A1 true WO1980000733A1 (en) 1980-04-17

Family

ID=3594550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT1979/000007 WO1980000733A1 (en) 1978-10-11 1979-09-18 Wind motor

Country Status (4)

Country Link
EP (1) EP0020402A1 (en)
AT (1) AT359007B (en)
AU (1) AU5145279A (en)
WO (1) WO1980000733A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2507251A1 (en) * 1981-06-05 1982-12-10 Escher Wyss Sa TURBINE INTENDED TO BE MOVED ALTERNATIVELY IN ONE SENSE AND IN THE OTHER BY THE WORKING FLUID
GB2125113A (en) * 1982-06-17 1984-02-29 Mitsubishi Electric Corp Turbine rotatable in one direction in a reciprocating flow
WO1984002751A1 (en) * 1983-01-04 1984-07-19 Erich Herter Turbine for the conversion of wind energy
US4624624A (en) * 1984-03-26 1986-11-25 Yum Nak I Collapsible vertical wind mill
WO1993023669A1 (en) * 1992-05-13 1993-11-25 Alfred Wilhelm Wind power engine with no housing
EP0679805A1 (en) * 1993-10-14 1995-11-02 Raul Ernesto Verastegui Cross-wind-axis wind turbine
WO2002053908A1 (en) * 2001-01-05 2002-07-11 Latekols, Sia Vertical axis wind turbine
WO2006063380A1 (en) * 2004-10-20 2006-06-22 Vortech Energy & Power Pty Limited Vertical axis wind turbine with twisted blade or auxiliary blade
ITBO20080658A1 (en) * 2008-10-27 2010-04-28 Linz Electric S R L WIND TURBINE WITH VERTICAL AXIS
WO2011117276A3 (en) * 2010-03-23 2012-03-08 Penn, Anneliese Rotor blade for h rotor
CN103452751A (en) * 2012-11-05 2013-12-18 上海理工大学 Vertical-axis wind turbine
EP3951164A4 (en) * 2019-04-22 2022-12-28 Vladimir Stepanovich Suhin Vertical axis-type wind turbine assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3517752A1 (en) * 1985-05-17 1986-11-20 Erich 8011 Heimstetten Herter Wind-collecting vane for horizontal turbines which can rotate about a vertical axis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR524142A (en) * 1914-04-15 1921-08-30 Leon Jules Costes Vertical axis wind motor with double-acting fixed vanes and automatic power variation
US4115032A (en) * 1977-03-07 1978-09-19 Heinz Lange Windmill rotor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR524142A (en) * 1914-04-15 1921-08-30 Leon Jules Costes Vertical axis wind motor with double-acting fixed vanes and automatic power variation
US4115032A (en) * 1977-03-07 1978-09-19 Heinz Lange Windmill rotor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2507251A1 (en) * 1981-06-05 1982-12-10 Escher Wyss Sa TURBINE INTENDED TO BE MOVED ALTERNATIVELY IN ONE SENSE AND IN THE OTHER BY THE WORKING FLUID
GB2125113A (en) * 1982-06-17 1984-02-29 Mitsubishi Electric Corp Turbine rotatable in one direction in a reciprocating flow
WO1984002751A1 (en) * 1983-01-04 1984-07-19 Erich Herter Turbine for the conversion of wind energy
EP0115767A1 (en) * 1983-01-04 1984-08-15 Erich Herter Wind energy conversion turbine
US4624624A (en) * 1984-03-26 1986-11-25 Yum Nak I Collapsible vertical wind mill
WO1993023669A1 (en) * 1992-05-13 1993-11-25 Alfred Wilhelm Wind power engine with no housing
EP0679805A1 (en) * 1993-10-14 1995-11-02 Raul Ernesto Verastegui Cross-wind-axis wind turbine
EA013527B1 (en) * 2001-01-05 2010-06-30 Латеколс Сиа Vertical axis wind turbine
WO2002053908A1 (en) * 2001-01-05 2002-07-11 Latekols, Sia Vertical axis wind turbine
CZ300294B6 (en) * 2001-01-05 2009-04-15 Latekols Sia Wind turbine having a vertical axis
WO2006063380A1 (en) * 2004-10-20 2006-06-22 Vortech Energy & Power Pty Limited Vertical axis wind turbine with twisted blade or auxiliary blade
US8469665B2 (en) 2004-10-20 2013-06-25 Windworks Engineering Limited Vertical axis wind turbine with twisted blade or auxiliary blade
ITBO20080658A1 (en) * 2008-10-27 2010-04-28 Linz Electric S R L WIND TURBINE WITH VERTICAL AXIS
WO2011117276A3 (en) * 2010-03-23 2012-03-08 Penn, Anneliese Rotor blade for h rotor
CN103452751A (en) * 2012-11-05 2013-12-18 上海理工大学 Vertical-axis wind turbine
EP3951164A4 (en) * 2019-04-22 2022-12-28 Vladimir Stepanovich Suhin Vertical axis-type wind turbine assembly

Also Published As

Publication number Publication date
AT359007B (en) 1980-10-10
ATA728978A (en) 1980-02-15
EP0020402A1 (en) 1981-01-07
AU5145279A (en) 1980-04-17

Similar Documents

Publication Publication Date Title
DE577917C (en) Wind turbine coupled to an electric generator
DE2639886C2 (en) Wind power machine
DE2307967C2 (en) Platform for a compressor blade
DE2829716A1 (en) WIND POWER MACHINE WITH VERTICAL AXIS
DE2852554C2 (en) Rotor for a turbo machine
EP0317618B1 (en) Wind power engine
DE2948060A1 (en) Wind-driven rotor with vertical shaft - has blades formed by helical strips with ends held between radial spokes on rotor shaft
WO1980000733A1 (en) Wind motor
DE2458061A1 (en) DEVICE FOR CHANGING THE SETTING ANGLE OF ROTOR BLADES AT DIFFERENT SPEED
DE10348060B4 (en) Rotor blade of a rotor of a wind energy plant
DE3223164C2 (en) Turbo machine rotor assembly and blade
EP0043452A2 (en) Regulation device for axial-flow compressors
DE1476907B2 (en) Gas turbine engine with two coaxially arranged rotating rotors
DE2831731A1 (en) WINDMILL
DE2740872A1 (en) DEVICE FOR USING KINETIC ENERGY, IN PARTICULAR FROM THE MOVEMENT OF WAVES OR THE SWELLING OF WATER MASS
DE4319291C1 (en) Rotor on vertical axis for wind-energy converter
DE2658032C3 (en) Impeller stage of a turbo machine
DE2757266C2 (en) Wind turbine system with main rotor and one or more auxiliary start-up motors
DE3117996C2 (en)
DE3129660A1 (en) Windwheel
DE2819673A1 (en) Wind-driven power generator - has two parallel bladed rotors with overlapping blade tip circles coupled for opposite rotation
EP0103042B1 (en) Fan comprising automatically adjustable blades about its longitudinal axis to avoid undesirable rotational speed
DE553983C (en) Blading of mainly axially loaded centrifugal machines such. B. steam turbines, pumps or fans
DE3590007T1 (en) Wind rotor
DE1036780B (en) Device for automatically reducing the blade position with high-speed wind turbines

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): CH DE FR GB NL SE