US4838761A - Methods and apparatus for preventing or retarding fruit and vegetable freezing - Google Patents

Methods and apparatus for preventing or retarding fruit and vegetable freezing Download PDF

Info

Publication number
US4838761A
US4838761A US06/913,083 US91308386A US4838761A US 4838761 A US4838761 A US 4838761A US 91308386 A US91308386 A US 91308386A US 4838761 A US4838761 A US 4838761A
Authority
US
United States
Prior art keywords
rotor
tower
shaft
ground
inversion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/913,083
Inventor
Alan R. Sheppard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US06/913,083 priority Critical patent/US4838761A/en
Application granted granted Critical
Publication of US4838761A publication Critical patent/US4838761A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • A01G13/08Mechanical apparatus for circulating the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/34Blade mountings

Definitions

  • freezes which occur in the fruit and vegetable industries are a well-known occurrence. These freezes are generally known to be due primarily to the formation of atmospheric inversions over a fairly wide area. This condition normally occurs on clear, calm, cold nights and is characterized by an atmosphere in which air temperature increases with altitude. Unfortunately, and inversion is an inherently stable condition which tends to persist until wind velocities increase or until daybreak, at which time incoming solar radiation begins to warm the earth and trees.
  • the present invention involves the transportation of large volumes of air from the higher, warm air levels existing during inversionary conditions down to the grove or orchard floor and spreading it out radially under the foliage canopies in the form of a "horizontal wake". As this horizontal wake is warmer, and therefore lighter, than the air above it, and because of the friction imposed by the ground and lower foliage level, a portion of this wake tends to ascend through and between the trees as it spreads radially, transferring its heat to the foliage and fruit.
  • a hovering, or stationary, rotor operating in a horizontal plane derives the majority of its air from a distance one rotor diameter above the plane of the rotor "disk". Furthermore, the maximum velocity which can be imparted to that air is twice the average velocity of the air passing through the rotor disk, this velocity occurring at a distance of one rotor diameter below the plane of that rotor.
  • the present invention is based upon the general precepts above, but more importantly, upon three characteristics of the horizontal wake which are unique to the rotor operating in "ground effect", i.e. within one rotor diameter above the earth:
  • the horizontal wake of such a rotor is composed of a very large number of vortices having a rectrograde spin, similar to a backward spinning tennis ball. This characteristic makes the wake tend to hug the ground, this tendency being opposed by the convective bouyance and friction effects noted above, and provides the horizontal range required to make the invention a viable frost-protection device;
  • I provide an apparatus and method for protecting crops, especially treeborne crops, against freezing which provides a rotor having at least two blades, each of an air-foil section, a blade retaining member connecting said blades, said retaining member being bent upward to form a "coning angle" to satisfy the rotor's structural requirements, a retaining member clamp which is “underslung” and pivots around a horizontal axis in a rotor yoke, a vertical tower which is fixed to the earth to inhibit gyration, a vertical drive shaft journaled in a tower and fixed to the rotor yoke at the top of that tower, drive means drivingly connected to the drive shaft at the bottom of the tower, said tower extending substantially above the level of the trees to be protected, a distance sufficient to pick up air in the inversion area but within the ground effect zone, and to deliver it to the ground in a generally cylindrical mass until it approaches the ground, at which time expansion of the compressed wake causes it to turn outward and move radially along the ground.
  • the rotor radius, and thus the tower height, is a function of grove geometry. If, for example,
  • R r the rotor radius
  • R w the radial distance form the rotor's axis of rotation to the nearest foliage
  • u o the average velocity of the air passing through the rotor disk
  • the rotor is of a "teetering" design to avoid wing sensitivity caused by the differential lift created when one blade advances into a wind and the other retreats from it.
  • the blade presently preferred is a Boeing VR7.1 blade.
  • the coning angle, imparted from the upward bend of the blade retaining member, is such that the vertical component of the centrifugal forces poses the lifting moment of each blade. As a result of this structure, there is no net lifting moment on the blades, all lift forces being translated to shear.
  • FIG. 1 is a side elevational view of an apparatus according to this invention installed in an orchard or grove;
  • FIG. 2 is a fragmentary section of the tower base and gear box of FIG. 1;
  • FIG. 3 is an enlarged side elevational view of a presently preferred hub arrangement for the blades of this invention
  • FIG. 4 is an enlarged elevational view at right angles to the view of FIG. 3;
  • FIG. 5 is a section on line V--V of FIG. 4; and FIG. 6 is a section on line VI--VI of FIG. 5.
  • a vertical drive shaft 13 extends upwardly through the tower and is journaled at the top of the tower in bearing 14, in the middle, and at the bottom of the tower in bearing 15.
  • Blade retaining tube 64 is fixed to a clamp 57 pivoting in yoke 50 on top of drive shaft 13.
  • the blade retaining tube has a positive dihedral which carries airfoil blades 19.
  • the lower end of the drive shaft 13 carries a bevel drive gear 20 which engages a bevel gear 21 at right angles thereto.
  • Gear 21 is mounted on one end of a horizontal power shaft 22 which shaft extends out of housing 11 through bearings 23, 24.
  • the other end of shaft 22 is connected to a drive means 25, such as an engine directly connected to the gear box.
  • FIGS. 3 through 6 I have illustrated the presently preferred hub arrangement for the propellor blades of this invention.
  • I provide a yoke 50 adapted to be removable mounted on the top end of driven shaft 13 by bolts 51 which are threaded into holes 52 in a solid block 53 fixed on the top end of shaft 13.
  • a key way 54 in the hollow base of yoke 50 is designed to accept a key 55 in head 53.
  • a teetering head and blade retaining tube clamp 57 is pivotally mounted at one end 58 on a pivot pin 59 in yoke 50.
  • the other end 60 of the teetering head and blade retaining tube clamp is provided with a removable clamp ring 61.
  • Each of the other end 60 and clamp ring 61 are provided with half circle grooves 62 and 63 respectively adapted to receive and tightly clamp a blade retaining tube 64 between then by means of tightening screws 65 which extend through clamp ring 61 into tube end 60.
  • the rotor blades 19 are bolted onto the blade retaining tube 64 at the desired angle to provide the necessary air velocity.
  • Rubber bumpers 70 are provided on yoke 50 to absorb the shock of abrupt movement of teeter head 57 around its pivot.

Abstract

Apparatus is provided for protecting crops such as fruit tree groves from frost damage in the form of a vertical tower fixed to the earth against gyration, a rotor on top with two airfoil blades extending upward at a conical angle and drive means drivingly connected to the rotor through a vertical shaft, said tower projecting substantially above the level of the trees to be protected and sufficient to pick up air in the inversion layer and deliver it to the ground in a generally cylindrical mass to provide a ground effect causing the air to spread out radially along the surface beneath a grove's foliage and then flow upwardly through the foliage.

Description

This application is a continuation of application Ser. No. 716,325, Filed Mar. 26, 1985, which in turn was continuation-in-part of application Ser. No. 523,737 Filed Aug. 16, 1983,both now abandoned.
The damaging freezes which occur in the fruit and vegetable industries are a well-known occurrence. These freezes are generally known to be due primarily to the formation of atmospheric inversions over a fairly wide area. This condition normally occurs on clear, calm, cold nights and is characterized by an atmosphere in which air temperature increases with altitude. Unfortunately, and inversion is an inherently stable condition which tends to persist until wind velocities increase or until daybreak, at which time incoming solar radiation begins to warm the earth and trees.
The freezing of foliage and of the crop is purely a radiation phenomena, brought on by the inversion, in which the soil, foliage and fruit all radiate heat to space. The result is that the atmoshere cools from the ground upward. As a result, it is not uncommon to find temperature differnetials of 10° or more between the ground and 60 foot levels above the ground.
The existence of this warmer air mass at higher elevations represents a very large potential energy source which can be used to offset a grove's net radiation heat loss.
There have been many methods and apparatus proposed in an effort to solve this freeze problem. Perhaps, the best known and most time honored is the use of "smudge pots" scattered through the area to be protected. While these are somewhat effective, they fall far short of being the real answer to the problem. It has also been proposed to use wind machines to create a surface wind simulating that which, when it naturally occurs, reduces the freeze damage. Such machines are illustrated in Towt U.S. Pat. No. 2,481,702; Potter U.S. Pat. No. 2,836,932; Beckett U.S. Pat. No. 2,895,259; Graboswki U.S. Pat. No. 3,180,570, Coles U.S. Pat. No. 3,288,353; and Vertrees et al. U.S. Pat. No. 3,309,533. The difficulty with such machines is that they were useful only on very calm nights and were at best very inefficient because they simply mixed the cold air next to the ground with somewhat warmer air at a limited height above the ground so that the effective raising of the temperature of the operative air mass at plant level was very low. In order to overcome this problem some attempts were made to draw air down from a higher level through a vertical duct and distribute it horizontally along the ground as in Graham Pat. No. 2,807,120. Unfortunately, such machines were not strong enough or effective enough to accomplish the result sought. Another approach is that shown in Davies U.S. Pat. No. 3,003,282 which attempted to combine the approach of drawing higher level air down through a duct with the smudge pot approach by heating it at ground level and then blowing it horizontally across the surface. Such an approach is expensive and difficult to use. Still another proposal is that of Smith U.S. Pat. No. 3,067,541 which uses rotors having nozzles along the trailing edge for spraying fertilizer, pesticides, fog dispersal substances, smoke and heat to the air. This is very complex structure designed to disperse air widely above a localized section.
The present invention involves the transportation of large volumes of air from the higher, warm air levels existing during inversionary conditions down to the grove or orchard floor and spreading it out radially under the foliage canopies in the form of a "horizontal wake". As this horizontal wake is warmer, and therefore lighter, than the air above it, and because of the friction imposed by the ground and lower foliage level, a portion of this wake tends to ascend through and between the trees as it spreads radially, transferring its heat to the foliage and fruit.
A hovering, or stationary, rotor operating in a horizontal plane derives the majority of its air from a distance one rotor diameter above the plane of the rotor "disk". Furthermore, the maximum velocity which can be imparted to that air is twice the average velocity of the air passing through the rotor disk, this velocity occurring at a distance of one rotor diameter below the plane of that rotor.
The present invention is based upon the general precepts above, but more importantly, upon three characteristics of the horizontal wake which are unique to the rotor operating in "ground effect", i.e. within one rotor diameter above the earth:
(1) the horizontal wake of such a rotor is composed of a very large number of vortices having a rectrograde spin, similar to a backward spinning tennis ball. This characteristic makes the wake tend to hug the ground, this tendency being opposed by the convective bouyance and friction effects noted above, and provides the horizontal range required to make the invention a viable frost-protection device;
(2) the extreme turbulance of the horizontal wake acts to greatly increase the heat transfer coefficient between the air of the wake and the foliage and fruit; and
(3) the horizontal wake is very thin and maximum air velocities occur within a distance 2% to 5% of the rotor radius above the ground. This phenomena acts also to give the air flow a useable range.
The use of the ground effect phenomena is a totally new concept in dealing with the frost problem, differentiating this invention from those of the past, none of which can be effective in severe conditions.
I provide an apparatus and method for protecting crops, especially treeborne crops, against freezing which provides a rotor having at least two blades, each of an air-foil section, a blade retaining member connecting said blades, said retaining member being bent upward to form a "coning angle" to satisfy the rotor's structural requirements, a retaining member clamp which is "underslung" and pivots around a horizontal axis in a rotor yoke, a vertical tower which is fixed to the earth to inhibit gyration, a vertical drive shaft journaled in a tower and fixed to the rotor yoke at the top of that tower, drive means drivingly connected to the drive shaft at the bottom of the tower, said tower extending substantially above the level of the trees to be protected, a distance sufficient to pick up air in the inversion area but within the ground effect zone, and to deliver it to the ground in a generally cylindrical mass until it approaches the ground, at which time expansion of the compressed wake causes it to turn outward and move radially along the ground.
The rotor radius, and thus the tower height, is a function of grove geometry. If, for example,
Rr = the rotor radius;
Rw = the radial distance form the rotor's axis of rotation to the nearest foliage;
hi = the tree skirt height;
uo = the average velocity of the air passing through the rotor disk; and
uw the averag velocity of the air entering the grove or orchard under the foliage of the trees, which ideally is 2u0, then as the air entering the grove must equal in quantity that passing through the rotor disk,
pi×R.sub.r.sup.2 ×U.sub.o =2pi×R.sub.w h.sub.i ;
In a grove or orchard having a 25'×25' tree spacing,
3' shirt heights and a skirt diameter of 20', Rr =√180, or 13.42'.
Preferably the rotor is of a "teetering" design to avoid wing sensitivity caused by the differential lift created when one blade advances into a wind and the other retreats from it. The blade presently preferred is a Boeing VR7.1 blade.
The coning angle, imparted from the upward bend of the blade retaining member, is such that the vertical component of the centrifugal forces poses the lifting moment of each blade. As a result of this structure, there is no net lifting moment on the blades, all lift forces being translated to shear.
The undersling of the blade retaining member with respect to its teetering axis eliminates the undesirable moment caused by the Coriolus forces inherent in a coned rotor.
In the foregoing general description of the invention, I have set out certain objects, purposes and advantages of this invention. Other objects, purposes and advantages of the invention will be apparent from a consideration of the following description and the accompanying drawings in which:
FIG. 1 is a side elevational view of an apparatus according to this invention installed in an orchard or grove;
FIG. 2 is a fragmentary section of the tower base and gear box of FIG. 1;
FIG. 3 is an enlarged side elevational view of a presently preferred hub arrangement for the blades of this invention;
FIG. 4 is an enlarged elevational view at right angles to the view of FIG. 3;
FIG. 5 is a section on line V--V of FIG. 4; and FIG. 6 is a section on line VI--VI of FIG. 5.
Referring to the drawing, I have illustrated a tower 10 mounted on a gear box 11 fixed to a concrete pad 12 in an orchard. A vertical drive shaft 13 extends upwardly through the tower and is journaled at the top of the tower in bearing 14, in the middle, and at the bottom of the tower in bearing 15. Blade retaining tube 64 is fixed to a clamp 57 pivoting in yoke 50 on top of drive shaft 13. The blade retaining tube has a positive dihedral which carries airfoil blades 19. The lower end of the drive shaft 13 carries a bevel drive gear 20 which engages a bevel gear 21 at right angles thereto. Gear 21 is mounted on one end of a horizontal power shaft 22 which shaft extends out of housing 11 through bearings 23, 24. The other end of shaft 22 is connected to a drive means 25, such as an engine directly connected to the gear box.
The air is carried downwardly and swept along the surface of the ground radially beneath the trees in the fashion as shown in FIG. 1. Such an apparatus when combined with the waste heat from the drive engine has a capacity for providing a reasonable degree of frost protection over a wide area with temperature differentials.
In FIGS. 3 through 6, I have illustrated the presently preferred hub arrangement for the propellor blades of this invention. In this arrangement, I provide a yoke 50 adapted to be removable mounted on the top end of driven shaft 13 by bolts 51 which are threaded into holes 52 in a solid block 53 fixed on the top end of shaft 13. A key way 54 in the hollow base of yoke 50 is designed to accept a key 55 in head 53. A teetering head and blade retaining tube clamp 57 is pivotally mounted at one end 58 on a pivot pin 59 in yoke 50. The other end 60 of the teetering head and blade retaining tube clamp is provided with a removable clamp ring 61. Each of the other end 60 and clamp ring 61 are provided with half circle grooves 62 and 63 respectively adapted to receive and tightly clamp a blade retaining tube 64 between then by means of tightening screws 65 which extend through clamp ring 61 into tube end 60. The rotor blades 19 are bolted onto the blade retaining tube 64 at the desired angle to provide the necessary air velocity. Rubber bumpers 70 are provided on yoke 50 to absorb the shock of abrupt movement of teeter head 57 around its pivot.
In the foregoing specification I have set out certain preferred practices and embodiments of this invention, however, it will be understood that this invention may be otherwise embodiment within the scope of the following claims.

Claims (9)

I claim:
1. An apparatus for protecting crops, particularly tree or orchard crops, from frost damage in situtaions where an inversion layer is present comprising a vertical tower fixed to earth against gyration at a level above the crop, a vetical shaft extending lengthwise through said tower, said shaft sized to hold a blade at a position within the inversion layer, a rotor attached to the shaft above the tower so as to be at a position within the inversion layer which will produce a ground effect when the rotor turns, said rotor including a blade retaining member bent upward to form a conical angle, at least two blades of airfoil section, means connecting said blades to said blade retaining member at a pitch angle satisfying the rotor's aerodynamic requirements and drive means drivingly connected to the drive shaft at the bottom of the tower, wherein said blades are positioned at a height sufficient to pick up air in the inversion layer and direct it to the ground to spread out radially along the earth generally beneath the foliage of the crop and then upwardly through and between the foliage and positioned at a height within the ground effect zone of said rotor.
2. An apparatus as claimed in claim 1 wherein the vertical shaft is driven by a horizontal shaft through a pair of bevel gears between said shafts.
3. An apparatus as claimed in claim 2 wherein the horizontal shaft is driven by a motor arranged at the base of the tower so as to provide minimal interference with air flow.
4. An apparatus as claimed in claim 1 wherein the tower projects about one rotor diameter above the ground.
5. An apparatus as claimed in claim 2 wherein the tower projects about one rotor diameter above the ground.
6. An apparatus as claimed in claim 3 wherein the rotor radius (Rr)=√4Rw h when Rw is the radial distance from the rotor's axis of rotation to the nearest foliage and hi is the tree skirt height.
7. An apparatus for protecting crops, particularly tree or orchard crops, from frost damage in situtions where an inversion layer is present comprising a vertical tower fixed to earth against gyration at a level above the crop, a vertical shaft extending lengthwise through said tower, said shaft sized to hold a blade at a position within the inversion layer, a rotor attached to the shaft above the tower so as to be at a position within the inversion layer which will produce a ground effect when the rotor turns, said rotor including a blade retaining member bent upward to form a conical angle, at least two blades of air foil section mounted in the blade retaining member, means connecting said blades to said blade retaining member at a pitch angle satisfying the rotor's aerodynamic requirements, a teetering head mounted in pivot means on the top end of said shaft for teetering rotation, said teetering head fixedly carrying said blade retaining means, and drive means drivingly connected to the drive shaft at the bottom of the tower, wherein said blades are positioned at a height sufficient to pick up air in the inversion layer and direct it to the ground to spread out radially along the earth generally beneath the foilage of the crop and then upwardly through and between the foilage and positioned at a height within the ground effect zone of said rotor wherein the rotor radius (Rr)=√4Rw hi when Rw is the radial distance from the rotor's axis of rotation to the nearest foliage had hi is the tree skirt height.
8. An apparatus as claimed in claim 7 wherein the blade retaining member is a blade retaining tube fixed in said teeterin head, said tube having the ends thereof bent upwardly in a conical contour.
9. An apparatus as claimed in claim 8 wherein the pivoting holder is a yoke fixed on the top of the vertical shaft and the teetering head is a clamping head pivoted at one end in said yoke and having a clamp means for said blade retaining tube at the other end.
US06/913,083 1983-08-16 1986-09-29 Methods and apparatus for preventing or retarding fruit and vegetable freezing Expired - Fee Related US4838761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/913,083 US4838761A (en) 1983-08-16 1986-09-29 Methods and apparatus for preventing or retarding fruit and vegetable freezing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US52373783A 1983-08-16 1983-08-16
US71632585A 1985-03-26 1985-03-26
US06/913,083 US4838761A (en) 1983-08-16 1986-09-29 Methods and apparatus for preventing or retarding fruit and vegetable freezing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US71632585A Continuation 1983-08-16 1985-03-26

Publications (1)

Publication Number Publication Date
US4838761A true US4838761A (en) 1989-06-13

Family

ID=27414876

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/913,083 Expired - Fee Related US4838761A (en) 1983-08-16 1986-09-29 Methods and apparatus for preventing or retarding fruit and vegetable freezing

Country Status (1)

Country Link
US (1) US4838761A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244346A (en) * 1991-02-07 1993-09-14 Fergusson Alec H B Portable wind machine
US5354175A (en) * 1992-03-16 1994-10-11 Northern Power Systems, Inc. Wind turbine rotor hub and teeter joint
US5934013A (en) * 1996-11-27 1999-08-10 Barra; Florencio Lazo Agricultural heating control method
AU760239B2 (en) * 1999-06-01 2003-05-08 Dennis James Ordish Method and system for protecting crops from frost damage
US20050090196A1 (en) * 2003-09-23 2005-04-28 Jean-Guy Dube Cooling fan
US20070125155A1 (en) * 2005-11-23 2007-06-07 Pioneer Hi-Bred International, Inc. Device and method for screening a plant population for wind damage resistance traits
CN103314821A (en) * 2013-06-19 2013-09-25 天水锻压机床(集团)有限公司 Blower for orchard
CN105422509A (en) * 2014-09-19 2016-03-23 重庆海光玻璃钢制品有限公司 2500m frost prevention machine blade
CN105735192A (en) * 2016-03-03 2016-07-06 邱世军 Fixed type fog and haze removing device
CN105889129A (en) * 2014-09-19 2016-08-24 重庆海光玻璃钢制品有限公司 2100m frost protection machine blade
CN105889130A (en) * 2014-09-19 2016-08-24 重庆海光玻璃钢制品有限公司 2500m frost protection machine rear wind direction blade
US20190186677A1 (en) * 2016-05-09 2019-06-20 Jiangsu University Frost prevention machine support with adjustable bottom structure

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1398927A (en) * 1919-12-31 1921-11-29 Lester J Whitlock Temperature-moderator for orchards and the like
US1499894A (en) * 1922-07-17 1924-07-01 Waldo D Waterman Air circulator and heater
US1811303A (en) * 1925-11-24 1931-06-23 Autogiro Co Of America Aircraft with rotative wings
US1993635A (en) * 1933-08-08 1935-03-05 Towt Charles Warren Apparatus for preventing damage to vegetation by frosting and sunburning temperatures
US2054383A (en) * 1936-03-30 1936-09-15 Ludewig Hercel Joseph Wind power apparatus
GB470757A (en) * 1936-02-17 1937-08-17 Harold Hay Hutchison Improvements in or relating to rotary wing aircraft
US2230165A (en) * 1939-10-12 1941-01-28 Allen Jack Fan attachment for land vehicles
US2317629A (en) * 1941-03-27 1943-04-27 Ernest G Mccauley Aircraft propeller hub
US2444539A (en) * 1943-05-11 1948-07-06 Roy E Sharpes Propeller mounting
US2481702A (en) * 1946-05-27 1949-09-13 Charles Kinchcloc Towt Air circulating device
US2492615A (en) * 1946-05-04 1949-12-27 Hartzell Industries Propeller hub
US2529339A (en) * 1949-03-08 1950-11-07 Warren L Irvine Blower for frost prevention
FR1024980A (en) * 1950-06-27 1953-04-09 Groupe D Etudes Dorand Oscillating propeller hub
US2655764A (en) * 1950-01-04 1953-10-20 Percy G Watkins Device for heating orchards
US2661068A (en) * 1950-09-02 1953-12-01 Leo B Gaskill Air circulator for orchards and field crops
US2736137A (en) * 1956-02-28 thaheld
US2742095A (en) * 1948-06-17 1956-04-17 Autogiro Co Of America Mechanism for balancing single blade aircraft rotor
US2807120A (en) * 1955-10-07 1957-09-24 C & H Machine Company Apparatus for protecting agricultural crops from frost
US2830669A (en) * 1955-06-03 1958-04-15 Herman R Klockner Blade-pitch-regulating means for the rotors of sustaining-rotor-equipped aircraft
US2836932A (en) * 1955-09-01 1958-06-03 Edwin B Potter Portable crop saver
US2895259A (en) * 1956-07-02 1959-07-21 Ram Jet Wind Inc Orchard fan driven by ram-jet engines
US2944610A (en) * 1951-07-28 1960-07-12 United Aircraft Corp Rotor blade counterbalance means
US3003282A (en) * 1960-12-05 1961-10-10 Davies Gwyn Frost-protective device for growing vegetation
US3067541A (en) * 1960-10-10 1962-12-11 American Liquid Gas Corp Agricultural method and apparatus for heating, treating, and circulating air
US3180570A (en) * 1963-03-25 1965-04-27 Alfred J Grabowski Hydraulic wind machine
US3243890A (en) * 1963-10-10 1966-04-05 Kenneth H Easterday Wind machine for drying crops
US3288358A (en) * 1964-09-04 1966-11-29 Nat Frost Prot Co Inc Wind machine construction
US3306533A (en) * 1965-04-01 1967-02-28 Rodney A Vertrees Orchard air mixer wind machine
US3409221A (en) * 1966-05-23 1968-11-05 Fmc Corp Method of and apparatus for distributing agricultural chemicals
US3784319A (en) * 1972-04-17 1974-01-08 Summa Corp Coriolis-relieving aircraft rotor assembly
US4092084A (en) * 1976-07-22 1978-05-30 The South African Inventions Development Corporation Of Scientia Rotor for an autogiro
US4148594A (en) * 1977-06-10 1979-04-10 Ssp Agricultural Equipment, Inc. Fan blade for wind machines
US4333728A (en) * 1977-08-11 1982-06-08 Textron, Inc. Compound hub spring system for helicopters
US4439108A (en) * 1982-06-08 1984-03-27 Richard Will Windmill having centrifically feathered rotors to control rotor speed
US4449889A (en) * 1983-01-20 1984-05-22 Belden Ralph A Windmill
US4501089A (en) * 1982-08-10 1985-02-26 Cobden Turbines Pty. Ltd. Frost control
US4644683A (en) * 1985-07-12 1987-02-24 Jones Darrell R Method and apparatus for enhancing the pollination of alfalfa

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2736137A (en) * 1956-02-28 thaheld
US1398927A (en) * 1919-12-31 1921-11-29 Lester J Whitlock Temperature-moderator for orchards and the like
US1499894A (en) * 1922-07-17 1924-07-01 Waldo D Waterman Air circulator and heater
US1811303A (en) * 1925-11-24 1931-06-23 Autogiro Co Of America Aircraft with rotative wings
US1993635A (en) * 1933-08-08 1935-03-05 Towt Charles Warren Apparatus for preventing damage to vegetation by frosting and sunburning temperatures
GB470757A (en) * 1936-02-17 1937-08-17 Harold Hay Hutchison Improvements in or relating to rotary wing aircraft
US2054383A (en) * 1936-03-30 1936-09-15 Ludewig Hercel Joseph Wind power apparatus
US2230165A (en) * 1939-10-12 1941-01-28 Allen Jack Fan attachment for land vehicles
US2317629A (en) * 1941-03-27 1943-04-27 Ernest G Mccauley Aircraft propeller hub
US2444539A (en) * 1943-05-11 1948-07-06 Roy E Sharpes Propeller mounting
US2492615A (en) * 1946-05-04 1949-12-27 Hartzell Industries Propeller hub
US2481702A (en) * 1946-05-27 1949-09-13 Charles Kinchcloc Towt Air circulating device
US2742095A (en) * 1948-06-17 1956-04-17 Autogiro Co Of America Mechanism for balancing single blade aircraft rotor
US2529339A (en) * 1949-03-08 1950-11-07 Warren L Irvine Blower for frost prevention
US2655764A (en) * 1950-01-04 1953-10-20 Percy G Watkins Device for heating orchards
FR1024980A (en) * 1950-06-27 1953-04-09 Groupe D Etudes Dorand Oscillating propeller hub
US2661068A (en) * 1950-09-02 1953-12-01 Leo B Gaskill Air circulator for orchards and field crops
US2944610A (en) * 1951-07-28 1960-07-12 United Aircraft Corp Rotor blade counterbalance means
US2830669A (en) * 1955-06-03 1958-04-15 Herman R Klockner Blade-pitch-regulating means for the rotors of sustaining-rotor-equipped aircraft
US2836932A (en) * 1955-09-01 1958-06-03 Edwin B Potter Portable crop saver
US2807120A (en) * 1955-10-07 1957-09-24 C & H Machine Company Apparatus for protecting agricultural crops from frost
US2895259A (en) * 1956-07-02 1959-07-21 Ram Jet Wind Inc Orchard fan driven by ram-jet engines
US3067541A (en) * 1960-10-10 1962-12-11 American Liquid Gas Corp Agricultural method and apparatus for heating, treating, and circulating air
US3003282A (en) * 1960-12-05 1961-10-10 Davies Gwyn Frost-protective device for growing vegetation
US3180570A (en) * 1963-03-25 1965-04-27 Alfred J Grabowski Hydraulic wind machine
US3243890A (en) * 1963-10-10 1966-04-05 Kenneth H Easterday Wind machine for drying crops
US3288358A (en) * 1964-09-04 1966-11-29 Nat Frost Prot Co Inc Wind machine construction
US3306533A (en) * 1965-04-01 1967-02-28 Rodney A Vertrees Orchard air mixer wind machine
US3409221A (en) * 1966-05-23 1968-11-05 Fmc Corp Method of and apparatus for distributing agricultural chemicals
US3784319A (en) * 1972-04-17 1974-01-08 Summa Corp Coriolis-relieving aircraft rotor assembly
US4092084A (en) * 1976-07-22 1978-05-30 The South African Inventions Development Corporation Of Scientia Rotor for an autogiro
US4148594A (en) * 1977-06-10 1979-04-10 Ssp Agricultural Equipment, Inc. Fan blade for wind machines
US4333728A (en) * 1977-08-11 1982-06-08 Textron, Inc. Compound hub spring system for helicopters
US4439108A (en) * 1982-06-08 1984-03-27 Richard Will Windmill having centrifically feathered rotors to control rotor speed
US4501089A (en) * 1982-08-10 1985-02-26 Cobden Turbines Pty. Ltd. Frost control
US4449889A (en) * 1983-01-20 1984-05-22 Belden Ralph A Windmill
US4644683A (en) * 1985-07-12 1987-02-24 Jones Darrell R Method and apparatus for enhancing the pollination of alfalfa

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244346A (en) * 1991-02-07 1993-09-14 Fergusson Alec H B Portable wind machine
US5354175A (en) * 1992-03-16 1994-10-11 Northern Power Systems, Inc. Wind turbine rotor hub and teeter joint
US5934013A (en) * 1996-11-27 1999-08-10 Barra; Florencio Lazo Agricultural heating control method
AU760239B2 (en) * 1999-06-01 2003-05-08 Dennis James Ordish Method and system for protecting crops from frost damage
US20050090196A1 (en) * 2003-09-23 2005-04-28 Jean-Guy Dube Cooling fan
US7412880B2 (en) * 2005-11-23 2008-08-19 Pioneer Hi-Bred International, Inc. Device and method for screening a plant population for wind damage resistance traits
US20070125155A1 (en) * 2005-11-23 2007-06-07 Pioneer Hi-Bred International, Inc. Device and method for screening a plant population for wind damage resistance traits
CN103314821A (en) * 2013-06-19 2013-09-25 天水锻压机床(集团)有限公司 Blower for orchard
CN105422509A (en) * 2014-09-19 2016-03-23 重庆海光玻璃钢制品有限公司 2500m frost prevention machine blade
CN105889129A (en) * 2014-09-19 2016-08-24 重庆海光玻璃钢制品有限公司 2100m frost protection machine blade
CN105889130A (en) * 2014-09-19 2016-08-24 重庆海光玻璃钢制品有限公司 2500m frost protection machine rear wind direction blade
CN105735192A (en) * 2016-03-03 2016-07-06 邱世军 Fixed type fog and haze removing device
CN105735192B (en) * 2016-03-03 2018-06-05 泉州市君贤网络科技有限公司 A kind of floatation type drives away haze device
US20190186677A1 (en) * 2016-05-09 2019-06-20 Jiangsu University Frost prevention machine support with adjustable bottom structure

Similar Documents

Publication Publication Date Title
US4838761A (en) Methods and apparatus for preventing or retarding fruit and vegetable freezing
US4017205A (en) Vertical axis windmill
US3568358A (en) Flying saucer toy
US4084102A (en) Wind driven, high altitude power apparatus
US20020192070A1 (en) Balanced, high output, rapid rotation wind turbine (Weathervane multi-rotor windmill)
US20150024674A1 (en) Agricultural frost protection using induction fans
US4236504A (en) Impellers and apparatus for use therewith
US2736137A (en) thaheld
US1357314A (en) Process of preventing frost or heat injury in orchards, &c.
US4501089A (en) Frost control
EP0845204B1 (en) Method and apparatus for frost control in agriculture and fruit production
CA2075752C (en) Increasing lift on helicopter rotor blades and airplane propellers
JP2021528600A (en) Windmill including rotor assembly and rotor assembly
CN210503207U (en) Seeding drive arrangement of agricultural aircraft
US8410627B2 (en) Self orienting vertical axis wind turbine
US1905502A (en) Frost control machine
CN2393330Y (en) Anti-frosting device for crop of fruit garden
US7121804B1 (en) Fan system
US3003282A (en) Frost-protective device for growing vegetation
EP0724703A1 (en) Device and procedure for utilizing solar energy mainly for protection against cyclones, tornados, hails, etc.
US4753034A (en) Anti-frost fan
RU2178830C2 (en) Method for controlling wind power takeoff and wind-electric generating unit
CN218604764U (en) Novel pull-free variable-diameter deformation bird repeller
CN109257968A (en) The weeding of the adaptive tea field gradient of energy and scarifier attachment and its working method
US3767324A (en) Fan apparatus

Legal Events

Date Code Title Description
CC Certificate of correction
CC Certificate of correction
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19930613

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362