US2956400A - Internal-ribbed exhaust nozzle for jet propulsion devices - Google Patents

Internal-ribbed exhaust nozzle for jet propulsion devices Download PDF

Info

Publication number
US2956400A
US2956400A US663671A US66367157A US2956400A US 2956400 A US2956400 A US 2956400A US 663671 A US663671 A US 663671A US 66367157 A US66367157 A US 66367157A US 2956400 A US2956400 A US 2956400A
Authority
US
United States
Prior art keywords
nozzle
passages
passage
rib
central
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US663671A
Inventor
Ferri Antonio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Curtiss Wright Corp
Original Assignee
Curtiss Wright Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Curtiss Wright Corp filed Critical Curtiss Wright Corp
Priority to US663671A priority Critical patent/US2956400A/en
Application granted granted Critical
Publication of US2956400A publication Critical patent/US2956400A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/46Nozzles having means for adding air to the jet or for augmenting the mixing region between the jet and the ambient air, e.g. for silencing
    • F02K1/48Corrugated nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/06Varying effective area of jet pipe or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/181Two-dimensional patterned ridged

Definitions

  • My invention relates to an exhaust nozzle for jet propulsion devices. More particularly the invention is directed to an internal-ribbed nozzle having particular application to aircraft jet engines.
  • a prime object of the invention is to provide a suitable jet engine exhaust nozzle which may be constructed in a considerably shorter length than conventionally designed nozzles known in the art.
  • the nozzle of the invention includes a central three dimensional axially symmetric passage and a plurality of other passages, which are preferably substantially two dimensional, surrounding the central passage.
  • the passages located about the central passage are formed by the side walls of a number of rib-like members.
  • the respective passages are defined by the matching of longitudinal pressure gradients.
  • Fig. l is a longitudinal sectional view through the nozzle of the invention.
  • Fig. 2 is a cross-sectional View taken on the plane of the line 2-2; of Fig. 1.
  • Fig. 3 is a cross-sectional view taken on the plane of the line 33 of Fig. 1.
  • Fig. 4 is a plan development of the inside of the nozzle showing the spoke-like members of the nozzle.
  • Fig. 5 is a longitudinal sectional view of a spoke-like nozzle provided with closure flaps for varying the throat area of the nozzle.
  • Pig. 6 is a sectional view taken on the plane of the line 66 of Fig. 5.
  • Fig. 7 is a transverse sectional view taken on the plane of the line 7-7 of Fig. 1.
  • Fig. 8 is a transverse sectional view taken on the plane of the line 8-% of Fig. 1.
  • reference character 1 designates a converging-diverging nozzle embodying features of the invention.
  • Such nozzle has a three dimensional cen ral axially symmetric passage 2 and a plurality of other longitudinally extending passages 3 disposed about the central passage between rib-like members 4 projecting rom the nozzle wall 5.
  • the central passage and surrounding passages are converging-diverging in form.
  • Such passages extend throughout only a portion of the overall length of the nozzle.
  • the lengths of the atent 2,955,400 Patented Oct. 18, 1960 central and surrounding passages are determined by the lengths of the rib-like members 4, and beyond the ends 6 of the rib-like members the central and surrounding passages merge.
  • the rib-like members 4, and therefore the separate passages, may in theory be extended to the extreme end 7 of the nozzle, however, because of very thin rib sections which would be required at the exit, it is generally desirable to terminate the members 4 short of the end of the nozzle as shown.
  • gas flow through the nozzle is in part expanded in the central axially symmetrical passage 2, and in part in the other passages 3 about the central passage.
  • the inside surface 8 of the nozzle wall is parallel to the axially asymmetric contour defined by the rib surfaces 8; and as a result the pasages 3 are substantially two dimensional and expansion in such passages take place circumferentially.
  • longitudinal pressure gradients between the central and other passages are substantially matched at least over most of the length of the rib members by properly designing the longitudinal extending passages 3 between the rib walls 9 in a well known manner so that there is substantially no expansion of the gas flow in the central passage into the other passages.
  • the rib-like members 4 of the nozzle terminate a short distance upstream from the throat 10 of the axially symmetric passage.
  • the two dimensional passages have throats 11 located in the vicinity of the throat 10, however, the throats 11 do not necessarily occupy the same longitudinal position in the nozzle as the throat 10.
  • the throats of the two dimen sional passages are preferably disposed upstream from the throat 10 of the axially symmetric passage. This is because of an abrupt divergence at the throat of an axially symmertic passage of the minimum length type and a resulting pressure discontinuity.
  • FIG. 5 and 6 showing a rib-like nozzle provided with structure for varying nozzle geometry.
  • the effective throat area of such nozzle includes the throat area of the axially symmetric passage 12 and the throat area of the two dimensional passages 13, formed by the ribs 14 extending from the nozzle wall 15.
  • the throat area of the passages 13 is, however, readily varied as by fiaps l6 pivoted in the nozzle as at 17 at the upstream ends of the rib-like members 14, and operable between the ribs.
  • the flaps 16 are operable between closed positions in which they obstruct the flow of gases into the two dimensional passages such that the effective throat area of the nozzle is equal to the throat area of the axially symmetric passage 12, and open positions in which the flaps set in recesses 19 in the nozzle wall to provide a maximum efiective throat for the nozzle.
  • the flaps may be disposed between their open and closed positions to provide any intermediate efiective throat size for the nozzle.
  • Various positions of the flaps for controlling the effective throat area of the nozzle are shown in Figures 5 and 6.
  • the flap positions may be adjusted in response to control signals by any suitable mechanism which may, for example, include the hydraulically operated piston 20 in cylinder 21, a ring 22 connected to the piston, and linkages 23, 24, and 25 connecting the ring to each of the flaps.
  • a nozzle of unique design which by permitting expansion through a central axially symmetrical passage and surrounding twodimensional passages, provides for a nozzle of reduced length.
  • the nozzle may be readily adapted to vary its geometry, and so provide a nozzle which may be operated efiiciently under various conditions. Because of the adjustable feature the nozzle is of course particularly suitable for use on the afterburner of a gas turbine engine of a jet aircraft.
  • An exhaust nozzle for a jet engine comprising a nozzle wall having a plurality of rib-like members extending therefrom to define a central axially symmetric converging-diverging passage and a plurality of peripheral converging-diverging passages about the central passage between the rib-like members communicating with said central passage, said peripheral passages being formed with throats disposed upstream from the throat of the axially symmetric passage.
  • An exhaust nozzle for a jet engine comprising a nozzle Wall having a plurality of lib-like members extending therefrom to define a central axially symmetric converging-diverging passage and plurality of peripheral converging-diverging passages about the central passage between the rib-like members and communicating with said central passage, the nozzle also having flaps movable in the peripheral passages for varying the nozzle throat area.
  • An exhaust nozzle for a jet engine comprising a nozzle wall having a plurality of rib-like members extending inwardly therefrom defining a nozzle passage having a central converging-diverging portion and a plurality of peripheral converging-diverging port-ions extending radially from said central portion and communicating therewith and disposed between said rib-like members, said wall extending downstream beyond said central and peripheral portions.
  • An exhaust nozzle for a jet engine comprising a nozzle wall of circular cross-section having a plurality of longitudinally disposed rib-like members extending radially inward therefrom a distance less than the radius of said nozzle, said rib-like members having innerfaces defining a central passage of first converging-diverging contour and lateral faces defining with said wall a plurality of peripheral passages of second converging-diverging contour and communicating with said central passage, said wall extending downstream beyond said central and peripheral passages.
  • An exhaust nozzle for a jet engine comprising a nozzle Wall of circular cross-section having a plurality of rib-like members extending radially inward therefrom a distance less than the radius of said nozzle, said rib-like members having inner faces contoured to define a central converging-diverging passage having a throat, said rib-like members having lateral faces contoured to define a plurality of peripheral converging-diverging passages having throats and communicating with said central passage, the throats of .said peripheral passages being positioned upstream from said central throat.

Description

Oct. 18, 1960 A. FERRI 2,956,400
INTERNAL-RIBBBD EXHAUST NOZZLE FOR JET PROPULSION mavzcas Filed June 5, 1957 3 Sheets-Sheet 1 INVENTOR. ANTEINID FERRI AEENT Oct. 18, 1960 A. FERRI INTERNAL-RIBBED- EXHAUST NOZZLE FOR JET PROPULSION DEVICES Filed June 5, 1957 3 Sheets-Sheet 2 INVENTOR. ANTDNID FEHRI AEENT INTERNAL-RIBBED EXHAUST NOZZLE FOR JET PROPULSION DEVICES AEIENT INTERNAL-RIBBED EXHAUST NOZZLE FOR JET PROPULSION DEVICES Antonio Ferri, Rockville Centre, N.Y., assignor to Curtiss-Wright Corporation, a corporation of Delaware Filed June 5, 1957, Ser. No. 663,671
7 Claims. (Cl. Gil-35.6)
My invention relates to an exhaust nozzle for jet propulsion devices. More particularly the invention is directed to an internal-ribbed nozzle having particular application to aircraft jet engines.
A prime object of the invention is to provide a suitable jet engine exhaust nozzle which may be constructed in a considerably shorter length than conventionally designed nozzles known in the art.
It is another object of the invention to provide such a nozzle which has variable area means for controlling the amount of expansion within the nozzle.
Other objects and advantages of the invention will become apparent during a reading of the specification.
The nozzle of the invention includes a central three dimensional axially symmetric passage and a plurality of other passages, which are preferably substantially two dimensional, surrounding the central passage. The passages located about the central passage are formed by the side walls of a number of rib-like members. Although the central passage and surrounding passages are not physically separated by a dividing wall, nevertheless, the respective passages are defined by the matching of longitudinal pressure gradients. By expanding a portion of the gas flow through the nozzle in the central passage and the remaining portion of the flow in the other passages, the length of the nozzle may be considerably reduced over that required for a nozzle with the same minimum area for the passage of gases having only the usual axially symmetric passage.
Referring to the drawings:
Fig. l is a longitudinal sectional view through the nozzle of the invention.
Fig. 2 is a cross-sectional View taken on the plane of the line 2-2; of Fig. 1.
Fig. 3 is a cross-sectional view taken on the plane of the line 33 of Fig. 1.
Fig. 4 is a plan development of the inside of the nozzle showing the spoke-like members of the nozzle.
Fig. 5 is a longitudinal sectional view of a spoke-like nozzle provided with closure flaps for varying the throat area of the nozzle.
Pig. 6 is a sectional view taken on the plane of the line 66 of Fig. 5.
Fig. 7 is a transverse sectional view taken on the plane of the line 7-7 of Fig. 1.
Fig. 8 is a transverse sectional view taken on the plane of the line 8-% of Fig. 1.
Reference is made to Figures 1-4 inclusive of the drawings wherein reference character 1 designates a converging-diverging nozzle embodying features of the invention. Such nozzle has a three dimensional cen ral axially symmetric passage 2 and a plurality of other longitudinally extending passages 3 disposed about the central passage between rib-like members 4 projecting rom the nozzle wall 5. As shown, the central passage and surrounding passages are converging-diverging in form. Such passages extend throughout only a portion of the overall length of the nozzle. The lengths of the atent 2,955,400 Patented Oct. 18, 1960 central and surrounding passages are determined by the lengths of the rib-like members 4, and beyond the ends 6 of the rib-like members the central and surrounding passages merge. The rib-like members 4, and therefore the separate passages, may in theory be extended to the extreme end 7 of the nozzle, however, because of very thin rib sections which would be required at the exit, it is generally desirable to terminate the members 4 short of the end of the nozzle as shown.
With the desicribed construction, gas flow through the nozzle is in part expanded in the central axially symmetrical passage 2, and in part in the other passages 3 about the central passage. As shown the inside surface 8 of the nozzle wall is parallel to the axially asymmetric contour defined by the rib surfaces 8; and as a result the pasages 3 are substantially two dimensional and expansion in such passages take place circumferentially. There are no physical boundaries between the central passages 2 and other passages 3. However, longitudinal pressure gradients between the central and other passages are substantially matched at least over most of the length of the rib members by properly designing the longitudinal extending passages 3 between the rib walls 9 in a well known manner so that there is substantially no expansion of the gas flow in the central passage into the other passages.
The rib-like members 4 of the nozzle terminate a short distance upstream from the throat 10 of the axially symmetric passage. The two dimensional passages have throats 11 located in the vicinity of the throat 10, however, the throats 11 do not necessarily occupy the same longitudinal position in the nozzle as the throat 10. With an axially symmetric passage of a minimum length type, that is, such as to provide a maximum thrust in the shortest possible length, the throats of the two dimen sional passages are preferably disposed upstream from the throat 10 of the axially symmetric passage. This is because of an abrupt divergence at the throat of an axially symmertic passage of the minimum length type and a resulting pressure discontinuity. In order to match pressures between the two dimensional passage and axially symmetric passage at the throat of the axially symmetric passage it would be necessary to have a discontinuity in area in each of the two dimensional passages. Such discontinuity in area would cause =flow separation. It is therefore preferable to fair the rib contour over the discontinuity thereby placing the throat of the two dimensional passage 21 short distance upstream from the throat of the axially symmetric passage.
Reference is now made to Figures 5 and 6 showing a rib-like nozzle provided with structure for varying nozzle geometry. The effective throat area of such nozzle includes the throat area of the axially symmetric passage 12 and the throat area of the two dimensional passages 13, formed by the ribs 14 extending from the nozzle wall 15. The throat area of the passages 13 is, however, readily varied as by fiaps l6 pivoted in the nozzle as at 17 at the upstream ends of the rib-like members 14, and operable between the ribs. The flaps 16 are operable between closed positions in which they obstruct the flow of gases into the two dimensional passages such that the effective throat area of the nozzle is equal to the throat area of the axially symmetric passage 12, and open positions in which the flaps set in recesses 19 in the nozzle wall to provide a maximum efiective throat for the nozzle. The flaps may be disposed between their open and closed positions to provide any intermediate efiective throat size for the nozzle. Various positions of the flaps for controlling the effective throat area of the nozzle are shown in Figures 5 and 6. The flap positions may be adjusted in response to control signals by any suitable mechanism which may, for example, include the hydraulically operated piston 20 in cylinder 21, a ring 22 connected to the piston, and linkages 23, 24, and 25 connecting the ring to each of the flaps.
It will now be apparent that I have devised a nozzle of unique design which by permitting expansion through a central axially symmetrical passage and surrounding twodimensional passages, provides for a nozzle of reduced length. Furthermore, as indicated the nozzle may be readily adapted to vary its geometry, and so provide a nozzle which may be operated efiiciently under various conditions. Because of the adjustable feature the nozzle is of course particularly suitable for use on the afterburner of a gas turbine engine of a jet aircraft.
It should of course beunderstood that this invention is not limited to the specific details of construction and arrangement thereof herein shown and described, and that changes and modifications may occur to one skilled in the 7 art without departing from the spirit of the invention.
I claim as my invention:
1. An exhaust nozzle for a jet engine comprising a nozzle wall having a plurality of rib-like members extending therefrom to define a central axially symmetric converging-diverging passage and a plurality of peripheral converging-diverging passages about the central passage between the rib-like members communicating with said central passage, said peripheral passages being formed with throats disposed upstream from the throat of the axially symmetric passage.
2. An exhaust nozzle for a jet engine comprising a nozzle Wall having a plurality of lib-like members extending therefrom to define a central axially symmetric converging-diverging passage and plurality of peripheral converging-diverging passages about the central passage between the rib-like members and communicating with said central passage, the nozzle also having flaps movable in the peripheral passages for varying the nozzle throat area.
3. An exhaust nozzle for a jet engine comprising a nozzle wall having a plurality of rib-like members extending inwardly therefrom defining a nozzle passage having a central converging-diverging portion and a plurality of peripheral converging-diverging port-ions extending radially from said central portion and communicating therewith and disposed between said rib-like members, said wall extending downstream beyond said central and peripheral portions.
4. An exhaust nozzle as defined in claim 3 wherein said rib-like members are aerodynamically contoured to provide said peripheral portions adapted to substantially match pressures longitudinally at the boundaries of said central and peripheral portions.
5. An exhaust nozzle for a jet engine comprising a nozzle wall of circular cross-section having a plurality of longitudinally disposed rib-like members extending radially inward therefrom a distance less than the radius of said nozzle, said rib-like members having innerfaces defining a central passage of first converging-diverging contour and lateral faces defining with said wall a plurality of peripheral passages of second converging-diverging contour and communicating with said central passage, said wall extending downstream beyond said central and peripheral passages.
6. An exhaust nozzle for a jet engine comprising a nozzle Wall of circular cross-section having a plurality of rib-like members extending radially inward therefrom a distance less than the radius of said nozzle, said rib-like members having inner faces contoured to define a central converging-diverging passage having a throat, said rib-like members having lateral faces contoured to define a plurality of peripheral converging-diverging passages having throats and communicating with said central passage, the throats of .said peripheral passages being positioned upstream from said central throat.
7. An exhaust nozzle as defined in claim 6, wherein there are disposed a plurality of flaps between said rib-like members, said flaps having their upstream ends pivotally mounted to thenozzle Wall adjacent to the upstream ends of said rib-like members and their downstream ends arcuately movable between said rib-like members to vary the throat areas of said peripheral passages, and means for imparting arcuate motion to said flaps.
References Cited in the file of this patent UNITED STATES PATENTS 2,481,059 Africano Sept. 6, 1949 2,486,019 Goddard Oct. 25, 1949 2,579,043 Kallal Dec. 18, 1951 2,623,465 Jasse Dec. 30, 1952 2,625,008 Crook Jan. 13, 1953 2,682,147 Ferris June 29, 1954 2,744,380 McMillan et al May 8, 1956 FOREIGN PATENTS 506,839 Italy Dec. 27, 1954
US663671A 1957-06-05 1957-06-05 Internal-ribbed exhaust nozzle for jet propulsion devices Expired - Lifetime US2956400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US663671A US2956400A (en) 1957-06-05 1957-06-05 Internal-ribbed exhaust nozzle for jet propulsion devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US663671A US2956400A (en) 1957-06-05 1957-06-05 Internal-ribbed exhaust nozzle for jet propulsion devices

Publications (1)

Publication Number Publication Date
US2956400A true US2956400A (en) 1960-10-18

Family

ID=24662823

Family Applications (1)

Application Number Title Priority Date Filing Date
US663671A Expired - Lifetime US2956400A (en) 1957-06-05 1957-06-05 Internal-ribbed exhaust nozzle for jet propulsion devices

Country Status (1)

Country Link
US (1) US2956400A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3613996A (en) * 1969-07-03 1971-10-19 Rohr Corp Ejector with suppressor chutes
US3995662A (en) * 1972-06-16 1976-12-07 Chandler Evans Inc. Fluidic switches
US4077572A (en) * 1976-03-25 1978-03-07 Chandler Evans Inc. Reduced size altitude insensitive thrust vector control nozzle
US4298088A (en) * 1978-06-08 1981-11-03 Bbc Brown, Boveri & Company, Limited Diffuser resonances
EP0244335A2 (en) * 1986-04-30 1987-11-04 United Technologies Corporation Diffuser
US5110560A (en) * 1987-11-23 1992-05-05 United Technologies Corporation Convoluted diffuser
US5956784A (en) * 1996-10-08 1999-09-28 American Products, Inc. Hydro-therapy spa jet nozzle
US6105516A (en) * 1998-01-08 2000-08-22 Bowen; Peter Burner nozzle for pulverized coal
US6375096B1 (en) 2000-03-01 2002-04-23 Cleveland State University Two component spray gun and nozzle attachment
US20040144867A1 (en) * 2003-01-24 2004-07-29 Spraying Systems Co. High-pressure cleaning spray nozzle
US20090320486A1 (en) * 2008-06-26 2009-12-31 Ephraim Jeff Gutmark Duplex tab exhaust nozzle
WO2010063583A1 (en) * 2008-12-05 2010-06-10 Siemens Aktiengesellschaft Ring diffuser for an axial turbomachine
US20120104055A1 (en) * 2010-10-27 2012-05-03 Alstom Technology Ltd Flow deflectors for fuel nozzles
RU2451814C2 (en) * 2007-08-17 2012-05-27 Эрбюс Операсьон (Сас) Aircraft turbojet low-noise engine
US20130019583A1 (en) * 2011-07-22 2013-01-24 Kin Pong Lo Diffuser with backward facing step having varying step height
WO2015077067A1 (en) 2013-11-21 2015-05-28 United Technologies Corporation Axisymmetric offset of three-dimensional contoured endwalls

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2481059A (en) * 1944-08-28 1949-09-06 Us Sec War Adjustable rocket nozzle
US2486019A (en) * 1943-01-11 1949-10-25 Daniel And Florence Guggenheim Jet control apparatus applicable to entrainment of fluids
US2579043A (en) * 1948-03-20 1951-12-18 Mcdonnell Aircraft Corp Exit area control for jet engines
US2623465A (en) * 1949-02-15 1952-12-30 Brandt Soc Nouv Ets Projectile
US2625008A (en) * 1951-02-28 1953-01-13 Curtiss Wright Corp Variable flow nozzle
US2682147A (en) * 1951-06-16 1954-06-29 Rohr Aircraft Corp Adjustable nozzle for exhaust gas
US2744380A (en) * 1946-10-02 1956-05-08 Edward B Mcmillan Method of generating jet power through sulfide reaction

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2486019A (en) * 1943-01-11 1949-10-25 Daniel And Florence Guggenheim Jet control apparatus applicable to entrainment of fluids
US2481059A (en) * 1944-08-28 1949-09-06 Us Sec War Adjustable rocket nozzle
US2744380A (en) * 1946-10-02 1956-05-08 Edward B Mcmillan Method of generating jet power through sulfide reaction
US2579043A (en) * 1948-03-20 1951-12-18 Mcdonnell Aircraft Corp Exit area control for jet engines
US2623465A (en) * 1949-02-15 1952-12-30 Brandt Soc Nouv Ets Projectile
US2625008A (en) * 1951-02-28 1953-01-13 Curtiss Wright Corp Variable flow nozzle
US2682147A (en) * 1951-06-16 1954-06-29 Rohr Aircraft Corp Adjustable nozzle for exhaust gas

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3613996A (en) * 1969-07-03 1971-10-19 Rohr Corp Ejector with suppressor chutes
US3995662A (en) * 1972-06-16 1976-12-07 Chandler Evans Inc. Fluidic switches
US4077572A (en) * 1976-03-25 1978-03-07 Chandler Evans Inc. Reduced size altitude insensitive thrust vector control nozzle
US4298088A (en) * 1978-06-08 1981-11-03 Bbc Brown, Boveri & Company, Limited Diffuser resonances
EP0244335A2 (en) * 1986-04-30 1987-11-04 United Technologies Corporation Diffuser
EP0244335A3 (en) * 1986-04-30 1989-02-15 United Technologies Corporation Diffuser
US5110560A (en) * 1987-11-23 1992-05-05 United Technologies Corporation Convoluted diffuser
US5956784A (en) * 1996-10-08 1999-09-28 American Products, Inc. Hydro-therapy spa jet nozzle
US5983417A (en) * 1996-10-08 1999-11-16 American Products, Inc. Hydro-therapy spa jet nozzle
US6105516A (en) * 1998-01-08 2000-08-22 Bowen; Peter Burner nozzle for pulverized coal
US6375096B1 (en) 2000-03-01 2002-04-23 Cleveland State University Two component spray gun and nozzle attachment
US20040144867A1 (en) * 2003-01-24 2004-07-29 Spraying Systems Co. High-pressure cleaning spray nozzle
WO2004067186A1 (en) * 2003-01-24 2004-08-12 Spraying Systems Co. High-pressure cleaning spray nozzle
US6851632B2 (en) * 2003-01-24 2005-02-08 Spraying Systems Co. High-pressure cleaning spray nozzle
RU2451814C2 (en) * 2007-08-17 2012-05-27 Эрбюс Операсьон (Сас) Aircraft turbojet low-noise engine
US20090320486A1 (en) * 2008-06-26 2009-12-31 Ephraim Jeff Gutmark Duplex tab exhaust nozzle
WO2010011381A1 (en) * 2008-06-26 2010-01-28 General Electric Company Duplex tab exhaust nozzle
GB2474377A (en) * 2008-06-26 2011-04-13 Gen Electric Duplex tab exhaust nozzle
US8087250B2 (en) 2008-06-26 2012-01-03 General Electric Company Duplex tab exhaust nozzle
GB2474377B (en) * 2008-06-26 2012-02-29 Gen Electric Duplex tab exhaust nozzle
EP2455585A1 (en) * 2008-12-05 2012-05-23 Siemens Aktiengesellschaft Assembly for an axial turbo engine and axial turbo engine
WO2010063583A1 (en) * 2008-12-05 2010-06-10 Siemens Aktiengesellschaft Ring diffuser for an axial turbomachine
US8721272B2 (en) 2008-12-05 2014-05-13 Siemens Aktiengesellschaft Ring diffuser for an axial turbomachine
US8721273B2 (en) 2008-12-05 2014-05-13 Siemens Aktiengesellschaft Ring diffuser for an axial turbomachine
US20120104055A1 (en) * 2010-10-27 2012-05-03 Alstom Technology Ltd Flow deflectors for fuel nozzles
US9388982B2 (en) * 2010-10-27 2016-07-12 Alstom Technology Ltd Flow deflectors for fuel nozzles
US20130019583A1 (en) * 2011-07-22 2013-01-24 Kin Pong Lo Diffuser with backward facing step having varying step height
US9109466B2 (en) * 2011-07-22 2015-08-18 The Board Of Trustees Of The Leland Stanford Junior University Diffuser with backward facing step having varying step height
WO2015077067A1 (en) 2013-11-21 2015-05-28 United Technologies Corporation Axisymmetric offset of three-dimensional contoured endwalls
EP3071813A4 (en) * 2013-11-21 2017-07-26 United Technologies Corporation Axisymmetric offset of three-dimensional contoured endwalls

Similar Documents

Publication Publication Date Title
US2956400A (en) Internal-ribbed exhaust nozzle for jet propulsion devices
US3092205A (en) Jet noise suppressor nozzle
US3605939A (en) Device for reducing the noise produced by fluid flow escaping from a nozzle
US3432100A (en) Ejecting nozzle for propellers provided with a plurality of driving streams and,more particularly,two driving streams
US3667233A (en) Dual mode supersonic combustion ramjet engine
US2928235A (en) Jet propulsion nozzle for supersonic flight
US3367579A (en) Supersonic convergent-divergent jet exhaust nozzle
US3065818A (en) Jet noise suppressor nozzle
US2971327A (en) Discharge control of an overexpanding propulsion nozzle
GB1100099A (en) Improvements in convergent-divergent jet exhaust nozzle for supersonic aircraft
US3133412A (en) Jet noise suppression means and thrust reverser
US3346193A (en) Supersonic ejector type exhaust nozzle
US4214703A (en) Aircraft engine nozzle
US5463866A (en) Supersonic jet engine installation and method with sound suppressing nozzle
US4026472A (en) Convergent-divergent plug nozzle
US2753684A (en) Thrust reversal and variable orifice for jet engines
GB1198522A (en) Variable Area Propulsion Nozzle.
US3390837A (en) Convergent-divergent plug nozzle having a plurality of freely-floating tandem flaps
US2803944A (en) Thrust reversing device for jet engines
US2986002A (en) Leaky-type exhaust nozzle for jet propulsion devices
US4088270A (en) Two dimensional wedge/translating shroud nozzle
US3570769A (en) Jet nozzle
GB1090147A (en) Thrust nozzle for supersonic gas turbine jet engines of the by-pass type
US2848867A (en) Ejector-silencer exhaust nozzle
US2841955A (en) Directional control for jets