US20130022444A1 - Low pressure turbine exhaust diffuser with turbulators - Google Patents

Low pressure turbine exhaust diffuser with turbulators Download PDF

Info

Publication number
US20130022444A1
US20130022444A1 US13/185,861 US201113185861A US2013022444A1 US 20130022444 A1 US20130022444 A1 US 20130022444A1 US 201113185861 A US201113185861 A US 201113185861A US 2013022444 A1 US2013022444 A1 US 2013022444A1
Authority
US
United States
Prior art keywords
diffuser
turbulators
turbine exhaust
inlet
exhaust diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/185,861
Inventor
Sudhakar Neeli
Joshy John
Kevin Joseph Barb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US13/185,861 priority Critical patent/US20130022444A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOHN, JOSHY, Neeli, Sudhakar, BARB, KEVIN JOSEPH
Priority to DE102012106397A priority patent/DE102012106397A1/en
Priority to FR1256846A priority patent/FR2978200A1/en
Priority to RU2012130316/06A priority patent/RU2012130316A/en
Publication of US20130022444A1 publication Critical patent/US20130022444A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like

Definitions

  • This invention relates to steam turbine technology in general, and to an axial-to-radial flow, low pressure, steam turbine exhaust gas diffuser in particular.
  • a steam turbine low pressure (LP) section typically includes an inlet domain, multiple turbine stages and an exhaust gas diffuser (sometimes referenced to as an exhaust hood).
  • the exhaust gas diffuser is typically located at the last row of rotating blades or buckets, and is formed to include a steam flow guide between an axial flow inlet and a radial flow outlet. Flow diffusion takes place in the initial section of the diffuser, formed by the diffuser steam flow guide while the remainder of the diffuser features collect the gas flow in a chamber and guide it to the condenser.
  • diffuser or exhaust hood One of the main functions of the diffuser or exhaust hood is to recover static pressure as it guides the exhaust gas flow from the last stage row of buckets into the condenser.
  • diffusers are typically designed with respect to optimized turbine performance which may be measured in terms of maximum possible static pressure recovery.
  • the degree of static pressure recovery in the low pressure exhaust diffuser depends to a large extent on the Area Ratio formed by steam guide profile and on the last stage bucket exit profile, including bucket tip clearance. Generally, maximum pressure recovery comes at the end of the steam guide, but after that, pressure losses occur due to improper area scheduling.
  • the invention provides a turbine exhaust diffuser for use adjacent a last stage row of buckets fixed to a turbine rotor comprising an annular inner diffuser ring and an annular outer diffuser ring defining a flow path for steam exiting a last stage row of buckets in a first substantially axial direction at a diffuser inlet, and turning substantially ninety degrees to a diffuser outlet; the outer diffuser ring having a curved steam guide surface extending between the diffuser inlet and the diffuser outlet and having a first portion extending away from the diffuser inlet and a second portion, extending to the diffuser outlet, the second portion shaped to extend beyond vertical and back toward the diffuser inlet so as to establish a flow component in a second opposite axial direction; wherein the second portion is provided with a plurality of turbulators.
  • a turbine exhaust diffuser adjacent a last stage row of buckets fixed to a turbine rotor comprising an annular inner diffuser ring and an annular outer diffuser ring defining a flow path for steam exiting a last stage row of buckets in a first substantially axial direction at a diffuser inlet, and turning substantially ninety degrees to a diffuser outlet;
  • the outer diffuser ring having a curved steam guide surface extending between the diffuser inlet and the diffuser outlet and having a first portion extending away from the diffuser inlet and a second portion extending to the diffuser outlet, the second portion shaped to extend beyond vertical and back toward the diffuser inlet so as to establish a flow component in a second opposite axial direction; wherein the second portion is provided with a plurality of turbulators arranged in at least two radially-spaced, circumferential rows.
  • a method of method of increasing an outlet area of a turbine exhaust diffuser and minimizing flow separation along an outer wall portion of said turbine exhaust diffuser comprising shaping the outer wall portion extending between an axially-oriented diffuser inlet to a substantially radially oriented diffuser outlet to extend beyond vertical and back toward the diffuser inlet so as to establish a flow component in an upstream direction; and providing plural turbulators on the outer wall portion to generate localized vortices to minimize flow separation along the outer wall portion.
  • FIG. 1 is a cross section through an upper or radially outer portion of a gas turbine exhaust diffuser in accordance with an exemplary but nonlimiting embodiment of the invention
  • FIG. 2 is a perspective view of the diffuser portion shown in FIG. 1 ;
  • FIG. 3 is an enlarged detail taken from FIG. 2 ;
  • FIG. 4 illustrates the degree of flow separation in an example diffuser in accordance with the invention, but without turbulators or vortex generators;
  • FIG. 5 illustrates a diffuser as shown in FIG. 4 but illustrating a reduction in flow separation achieved with the addition of turbulators or vortex generators in accordance with the invention.
  • FIG. 1 there is shown a radially outer portion of an exhaust hood or diffuser 10 that may be part of a low pressure steam turbine.
  • the diffuser 10 guides the turbine engine exhaust flow from the last stage blades or buckets 12 into an exhaust steam housing (not shown) and then to a condenser (also, not shown).
  • the diffuser is generally shaped as a hollow toroid, with only a profile or cross section of the radially outer portion of the diffuser shown in FIG. 1 .
  • the diffuser 10 is generally formed by an outer ring 14 and an inner ring 16 that are joined to create the hollow toroidal shape, with an inlet 18 to the diffuser 10 closely adjacent the last row of blades or buckets, represented by the single blade 12 .
  • the diffuser 10 thus forms a steam guide or flow path for steam exiting the last stage row of blades or buckets that extends initially in a substantially axial direction at the last stage 12 and then turns substantially ninety degrees, terminating at the diffuser outlet 20 .
  • an outer ring portion (also referred to as the steam guide portion) of a conventional diffuser closest to the blade tips extends substantially vertically, i.e., substantially perpendicular to the turbine rotor axis (that extends substantially parallel to the diffuser surface 23 ).
  • This steam guide portion of the diffuser is shown at 22 in dotted line-format in FIG. 1 .
  • both the inner and outer rings are substantially vertically-oriented.
  • the area ratio at the outlet 20 , along diffuser steam guide wall portion or surface 24 is increased by turning the inner ring beyond vertical, back toward the turbine exit stage, thus providing a flow component in a second axial or upstream direction, e.g., by about 15° (See FIG. 1 and compare the dotted line 22 with the solid line 24 ).
  • this approach has a tendency to cause undesirable boundary layer separation along the steam guide wall surface 24 , particularly that portion closest to the outlet 20 , as shown in FIG. 4 .
  • turbulators or vortex generators 26 are disclosed as hemispherical projections with two, radially-spaced, circumferential rows arranged about the inner ring 14 , specifically about that portion of steam guide wall surface 24 that is shaped to extend beyond vertical and back toward the last stage buckets. It will be appreciated, however, that the invention is not limited to turbulators or vortex generators of hemispherical shape, but also contemplates hemispherical dimples or recesses.
  • the shape may also vary from round to oval to rectangular, etc. and the height or depth may also vary as will be appreciated by those skilled in the art. It is also within the scope of the invention to vary the number of rows of turbulators or vortex generators, and to have the turbulators or vortex generators in adjacent rows circumferentially aligned with, or staggered relative to adjacent rows.
  • turbulators or vortex generators 26 on the inside surface 24 of the diffuser outlet has been shown to increase pressure recovery to a significant degree.
  • the turbulators or vortex generators 26 energize the boundary layer due to increased turbulence or localized vortices, helping to keep the flow attached to the surface 24 and thus increasing the static pressure recovery.
  • the pressure recovery improved by a factor of 0.07 (where 100% pressure recovery is given a value of 1.0, the pressure recovery improved from 0.64 to 0.71). This difference is illustrated diagrammatically in FIGS. 4 and 5 with flow separation indicated by cross-hatching along the steam guide surface 24 .
  • the invention provides for highly effective flow diffusion which yields a reduction of the so-called backpressure for the turbine, allowing the turbine to have an increased overall pressure ratio for the same temperature reservoir of the thermodynamiccycle, or to deliver the same output at a higher efficiency (i.e., for a reduced fuel input).

Abstract

A turbine exhaust diffuser for use adjacent a last stage row of buckets fixed to a turbine rotor includes an annular inner diffuser ring and an annular outer diffuser ring defining a flow path for steam exiting a last stage row of buckets in a first substantially axial direction at a diffuser inlet, and turning substantially ninety degrees to a diffuser outlet. The outer diffuser ring has a curved steam guide surface extending between the diffuser inlet and the diffuser outlet including a first portion extending away from the diffuser inlet and a second portion extending to said diffuser outlet, the second portion shaped to extend beyond vertical and back toward the diffuser inlet so as to establish a flow component in a second opposite axial direction. The second portion is also provided with a plurality of turbulators to minimize flow separation along the steam guide surface.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates to steam turbine technology in general, and to an axial-to-radial flow, low pressure, steam turbine exhaust gas diffuser in particular.
  • A steam turbine low pressure (LP) section typically includes an inlet domain, multiple turbine stages and an exhaust gas diffuser (sometimes referenced to as an exhaust hood). The exhaust gas diffuser is typically located at the last row of rotating blades or buckets, and is formed to include a steam flow guide between an axial flow inlet and a radial flow outlet. Flow diffusion takes place in the initial section of the diffuser, formed by the diffuser steam flow guide while the remainder of the diffuser features collect the gas flow in a chamber and guide it to the condenser.
  • One of the main functions of the diffuser or exhaust hood is to recover static pressure as it guides the exhaust gas flow from the last stage row of buckets into the condenser. In fact, diffusers are typically designed with respect to optimized turbine performance which may be measured in terms of maximum possible static pressure recovery.
  • The degree of static pressure recovery in the low pressure exhaust diffuser depends to a large extent on the Area Ratio formed by steam guide profile and on the last stage bucket exit profile, including bucket tip clearance. Generally, maximum pressure recovery comes at the end of the steam guide, but after that, pressure losses occur due to improper area scheduling.
  • On the other hand, in order to reduce production costs, it is desirable to shorten the length of the turbine rotor or shaft. A reduced shaft length results in reduced available Area Ratio at the end of the steam guide. To compensate for loss of area due to reduced shaft length, it has been proposed to design the steam guide section of the diffuser more aggressively, to increase the area at the diffuser outlet. The consequence of such an aggressive design, however, is flow separation along the steam guide, i.e., along the outer steam guide wall portion closest to the last stage bucket tips, and particularly at the outlet end of the outer steam guide wall portion.
  • There remains a need, therefore, for a solution to the problem of achieving maximum pressure recovery with an aggressive steam guide design, but without incurring flow separation along the steam guide surface of the diffuser.
  • BRIEF DESCRIPTION OF THE INVENTION
  • In accordance with a first exemplary but nonlimiting aspect, the invention provides a turbine exhaust diffuser for use adjacent a last stage row of buckets fixed to a turbine rotor comprising an annular inner diffuser ring and an annular outer diffuser ring defining a flow path for steam exiting a last stage row of buckets in a first substantially axial direction at a diffuser inlet, and turning substantially ninety degrees to a diffuser outlet; the outer diffuser ring having a curved steam guide surface extending between the diffuser inlet and the diffuser outlet and having a first portion extending away from the diffuser inlet and a second portion, extending to the diffuser outlet, the second portion shaped to extend beyond vertical and back toward the diffuser inlet so as to establish a flow component in a second opposite axial direction; wherein the second portion is provided with a plurality of turbulators.
  • In accordance with another exemplary but nonlimiting aspect, there is provided a turbine exhaust diffuser adjacent a last stage row of buckets fixed to a turbine rotor comprising an annular inner diffuser ring and an annular outer diffuser ring defining a flow path for steam exiting a last stage row of buckets in a first substantially axial direction at a diffuser inlet, and turning substantially ninety degrees to a diffuser outlet; the outer diffuser ring having a curved steam guide surface extending between the diffuser inlet and the diffuser outlet and having a first portion extending away from the diffuser inlet and a second portion extending to the diffuser outlet, the second portion shaped to extend beyond vertical and back toward the diffuser inlet so as to establish a flow component in a second opposite axial direction; wherein the second portion is provided with a plurality of turbulators arranged in at least two radially-spaced, circumferential rows.
  • In accordance with still another exemplary embodiment, there is provided a method of method of increasing an outlet area of a turbine exhaust diffuser and minimizing flow separation along an outer wall portion of said turbine exhaust diffuser comprising shaping the outer wall portion extending between an axially-oriented diffuser inlet to a substantially radially oriented diffuser outlet to extend beyond vertical and back toward the diffuser inlet so as to establish a flow component in an upstream direction; and providing plural turbulators on the outer wall portion to generate localized vortices to minimize flow separation along the outer wall portion.
  • The invention will now be described in detail in connection with the drawings identified below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross section through an upper or radially outer portion of a gas turbine exhaust diffuser in accordance with an exemplary but nonlimiting embodiment of the invention;
  • FIG. 2 is a perspective view of the diffuser portion shown in FIG. 1;
  • FIG. 3 is an enlarged detail taken from FIG. 2;
  • FIG. 4 illustrates the degree of flow separation in an example diffuser in accordance with the invention, but without turbulators or vortex generators; and
  • FIG. 5 illustrates a diffuser as shown in FIG. 4 but illustrating a reduction in flow separation achieved with the addition of turbulators or vortex generators in accordance with the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • With reference initially to FIG. 1, there is shown a radially outer portion of an exhaust hood or diffuser 10 that may be part of a low pressure steam turbine. The diffuser 10 guides the turbine engine exhaust flow from the last stage blades or buckets 12 into an exhaust steam housing (not shown) and then to a condenser (also, not shown). The diffuser is generally shaped as a hollow toroid, with only a profile or cross section of the radially outer portion of the diffuser shown in FIG. 1. The diffuser 10 is generally formed by an outer ring 14 and an inner ring 16 that are joined to create the hollow toroidal shape, with an inlet 18 to the diffuser 10 closely adjacent the last row of blades or buckets, represented by the single blade 12. Reference to the outer ring 14 and inner ring 16 is primarily for convenience. These rings may be of substantially channel-shape in cross section, and joined by welding or other suitable means, to form the annular, hollow toroid. The construction and assembly details, however, are not part of this invention, except as otherwise described herein. The diffuser 10 thus forms a steam guide or flow path for steam exiting the last stage row of blades or buckets that extends initially in a substantially axial direction at the last stage 12 and then turns substantially ninety degrees, terminating at the diffuser outlet 20. Adjacent the outlet 20 it can be seen that an outer ring portion (also referred to as the steam guide portion) of a conventional diffuser closest to the blade tips extends substantially vertically, i.e., substantially perpendicular to the turbine rotor axis (that extends substantially parallel to the diffuser surface 23). This steam guide portion of the diffuser is shown at 22 in dotted line-format in FIG. 1. In other words, at the outlet 20, both the inner and outer rings are substantially vertically-oriented.
  • In order to compensate for reduced shaft length and maintain maximum pressure recovery, the area ratio at the outlet 20, along diffuser steam guide wall portion or surface 24, is increased by turning the inner ring beyond vertical, back toward the turbine exit stage, thus providing a flow component in a second axial or upstream direction, e.g., by about 15° (See FIG. 1 and compare the dotted line 22 with the solid line 24). As noted above, this approach has a tendency to cause undesirable boundary layer separation along the steam guide wall surface 24, particularly that portion closest to the outlet 20, as shown in FIG. 4.
  • It has been determined that the addition of turbulators or vortex generators 26 to the interior of steam guide wall surface 24 helps the exhaust flow to remain attached along that section of the diffuser wall. With reference also to FIGS. 2 and 3, the turbulators or vortex generators 26 are disclosed as hemispherical projections with two, radially-spaced, circumferential rows arranged about the inner ring 14, specifically about that portion of steam guide wall surface 24 that is shaped to extend beyond vertical and back toward the last stage buckets. It will be appreciated, however, that the invention is not limited to turbulators or vortex generators of hemispherical shape, but also contemplates hemispherical dimples or recesses. The shape may also vary from round to oval to rectangular, etc. and the height or depth may also vary as will be appreciated by those skilled in the art. It is also within the scope of the invention to vary the number of rows of turbulators or vortex generators, and to have the turbulators or vortex generators in adjacent rows circumferentially aligned with, or staggered relative to adjacent rows.
  • The described use of turbulators or vortex generators 26 on the inside surface 24 of the diffuser outlet has been shown to increase pressure recovery to a significant degree. Specifically, the turbulators or vortex generators 26 energize the boundary layer due to increased turbulence or localized vortices, helping to keep the flow attached to the surface 24 and thus increasing the static pressure recovery. In one example, where the clearance between the last stage turbine blade shroud or tip and the surrounding casing is 110 mils, the pressure recovery improved by a factor of 0.07 (where 100% pressure recovery is given a value of 1.0, the pressure recovery improved from 0.64 to 0.71). This difference is illustrated diagrammatically in FIGS. 4 and 5 with flow separation indicated by cross-hatching along the steam guide surface 24.
  • It will be understood that specific pressure recovery enhancements will depend on turbine configuration, bucket tip clearances and the like.
  • Thus, the invention provides for highly effective flow diffusion which yields a reduction of the so-called backpressure for the turbine, allowing the turbine to have an increased overall pressure ratio for the same temperature reservoir of the thermodynamiccycle, or to deliver the same output at a higher efficiency (i.e., for a reduced fuel input).

Claims (20)

1. A turbine exhaust diffuser for use adjacent a last stage row of buckets fixed to a turbine rotor, the diffuser comprising:
an annular inner diffuser ring and an annular outer diffuser ring defining a flow path for steam exiting a last stage row of buckets in a first substantially axial direction at a diffuser inlet, and turning substantially ninety degrees to a diffuser outlet; the outer diffuser ring having a curved steam guide surface extending between the diffuser inlet and the diffuser outlet and having a first portion extending away from the diffuser inlet and a second portion, extending to said diffuser outlet, said second portion shaped to extend beyond vertical and back toward said diffuser inlet so as to establish a flow component in a second opposite axial direction; wherein said second portion is provided with a plurality of turbulators.
2. The low pressure turbine diffuser of claim 1 wherein said turbulators are arranged in radially-spaced, circumferential rows.
3. The turbine exhaust diffuser of claim 2 wherein turbulators in adjacent radially-spaced, circumferential rows are circumferentially aligned.
4. The turbine exhaust diffuser of claim 2 wherein turbulators in adjacent radially-spaced circumferential rows are circumferentially staggered.
5. The turbine exhaust diffuser of claim 2 wherein said radially-spaced circumferential rows comprise at least two rows.
6. The turbine exhaust diffuser of claim 1 wherein said turbulators comprise hemispherical protrusions.
7. The turbine exhaust diffuser of claim 1 wherein said turbulators comprise hemispherical depressions.
8. The turbine exhaust diffuser of claim 1 wherein said turbulators have non-round shapes.
9. The turbine exhaust diffuser of claim 8 wherein said turbulators are arranged in radially-spaced, circumferential rows.
10. A turbine exhaust diffuser adjacent a last stage row of buckets fixed to a turbine rotor comprising:
an annular inner diffuser ring and an annular diffuser outer ring defining a flow path for steam exiting a last stage row of buckets in a first substantially axial direction at a diffuser inlet, and turning substantially ninety degrees to a diffuser outlet;
the outer diffuser ring having a curved steam guide surface extending between the diffuser inlet and the diffuser outlet and having a first portion extending away from the diffuser inlet and a second portion extending to said diffuser outlet, said second portion shaped to extend beyond vertical and back toward said diffuser inlet so as to establish a flow component in a second opposite axial direction; wherein said second portion is provided with a plurality of turbulators arranged in at least two radially-spaced, circumferential rows.
11. The turbine exhaust diffuser of claim 10 the turbine exhaust diffuser of claim 2 wherein turbulators in adjacent radially-spaced, circumferential rows are circumferentially staggered.
12. The turbine exhaust diffuser of claim 10 wherein said turbulators comprise hemispherical dimples.
13. The turbine exhaust diffuser of claim 11 wherein said turbulators comprise hemispherical protrusions.
14. The turbine exhaust diffuser of claim 10 said turbulators have non-round shapes.
15. A method of increasing an outlet area of a turbine exhaust diffuser and minimizing flow separation along an outer wall portion of said turbine exhaust diffuser comprising:
(a) shaping the outer wall portion extending between an axially-oriented diffuser inlet to a substantially radially oriented diffuser outlet to extend beyond vertical and back toward the diffuser inlet so as to establish a flow component in an upstream axial direction; and
(b) providing plural turbulators on said outer wall portion to generate localized vortices to minimize flow separation along said outer wall portion.
16. The turbine exhaust diffuser of claim 15 wherein wherein said plural turbulators are arranged in radially-spaced, circumferential rows.
17. The turbine exhaust diffuser of claim 15 wherein said plural turbulators have round shapes.
18. The turbine exhaust diffuser of claim 15 wherein said plural turbulators have non-round shapes.
19. The turbine exhaust diffuser of claim 15 wherein said turbulators comprise projections or dimples.
20. The method of claim 16 wherein said plural turbulators in adjacent radially-spaced, circumferential rows are circumferentially aligned or staggered.
US13/185,861 2011-07-19 2011-07-19 Low pressure turbine exhaust diffuser with turbulators Abandoned US20130022444A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/185,861 US20130022444A1 (en) 2011-07-19 2011-07-19 Low pressure turbine exhaust diffuser with turbulators
DE102012106397A DE102012106397A1 (en) 2011-07-19 2012-07-16 Low pressure turbine outlet diffuser with turbulators
FR1256846A FR2978200A1 (en) 2011-07-19 2012-07-16 LOW PRESSURE TURBINE EXHAUST DIFFUSER WITH TURBULATORS
RU2012130316/06A RU2012130316A (en) 2011-07-19 2012-07-18 EXHAUST TURBINE DIFFUSER (OPTIONS) AND METHOD FOR INCREASING THE AREA OF THE OUTLET OF THE EXHAUST DIFFUSER AND TO REDUCE THE MINIMUM DIVERSITY OF THE FLOW ALONG THE PART OF THE EXTERNAL WALL OF THE EXHAUST DIFFUSER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/185,861 US20130022444A1 (en) 2011-07-19 2011-07-19 Low pressure turbine exhaust diffuser with turbulators

Publications (1)

Publication Number Publication Date
US20130022444A1 true US20130022444A1 (en) 2013-01-24

Family

ID=47469720

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/185,861 Abandoned US20130022444A1 (en) 2011-07-19 2011-07-19 Low pressure turbine exhaust diffuser with turbulators

Country Status (4)

Country Link
US (1) US20130022444A1 (en)
DE (1) DE102012106397A1 (en)
FR (1) FR2978200A1 (en)
RU (1) RU2012130316A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139255A (en) * 2017-06-19 2019-01-04 通用电气波兰有限责任公司 Gas deflation assembly and its method for exhausting with vortex generator
US11143058B2 (en) 2017-12-20 2021-10-12 General Electric Company Exhaust device and an associated method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3023322B1 (en) * 2014-07-03 2019-09-06 Safran Aircraft Engines AIR INLET HANDLE FOR TURBOMACHINE

Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2615301A (en) * 1946-11-09 1952-10-28 United Aircraft Corp Centrifugal diffuser
US2674845A (en) * 1951-05-02 1954-04-13 Walter D Pouchot Diffuser apparatus with boundary layer control
US2724545A (en) * 1949-12-05 1955-11-22 Tech Studien Ag Discharge casings for axial flow engines
US3144202A (en) * 1960-11-19 1964-08-11 Helmbold Theodor Stabilizing devices for generating and guiding potential whirls
US3149470A (en) * 1962-08-29 1964-09-22 Gen Electric Low pressure turbine exhaust hood
US3552877A (en) * 1968-02-15 1971-01-05 Escher Wyss Ltd Outlet housing for an axial-flow turbomachine
US3578264A (en) * 1968-07-09 1971-05-11 Battelle Development Corp Boundary layer control of flow separation and heat exchange
US4182595A (en) * 1978-01-30 1980-01-08 Westinghouse Electric Corp. Discharge assembly for an axial flow compressor
US4214452A (en) * 1977-08-25 1980-07-29 Alsthom-Atlantique Exhaust device for a condensable-fluid axial-flow turbine
US4315715A (en) * 1978-07-26 1982-02-16 Nissan Motor Company, Limited Diffuser for fluid impelling device
US4971768A (en) * 1987-11-23 1990-11-20 United Technologies Corporation Diffuser with convoluted vortex generator
US5110560A (en) * 1987-11-23 1992-05-05 United Technologies Corporation Convoluted diffuser
US5203674A (en) * 1982-11-23 1993-04-20 Nuovo Pignone S.P.A. Compact diffuser, particularly suitable for high-power gas turbines
US5361828A (en) * 1993-02-17 1994-11-08 General Electric Company Scaled heat transfer surface with protruding ramp surface turbulators
US5536146A (en) * 1989-02-03 1996-07-16 Hitachi, Ltd. Combined generator system
US5547339A (en) * 1995-04-11 1996-08-20 Comair Rotron, Inc. Turbulator for a fluid impelling device
US5737915A (en) * 1996-02-09 1998-04-14 General Electric Co. Tri-passage diffuser for a gas turbine
US20020025248A1 (en) * 1999-08-16 2002-02-28 Ching-Pang Lee Method for enhancing heat transfer inside a turbulated cooling passage
US6439840B1 (en) * 2000-11-30 2002-08-27 Pratt & Whitney Canada Corp. Bypass duct fan noise reduction assembly
US6533546B2 (en) * 2000-07-31 2003-03-18 Alstom (Switzerland) Ltd. Low-pressure steam turbine with multi-channel diffuser
US6589600B1 (en) * 1999-06-30 2003-07-08 General Electric Company Turbine engine component having enhanced heat transfer characteristics and method for forming same
US6598781B2 (en) * 1999-05-03 2003-07-29 General Electric Company Article having turbulation and method of providing turbulation on an article
US6602046B2 (en) * 1999-02-15 2003-08-05 Universität Stuttgart Diffusor without any pulsation of the shock boundary layer, and a method for suppressing the shock boundary layer pulsation in diffusors
US20040052643A1 (en) * 2002-09-18 2004-03-18 Bunker Ronald Scott Linear surface concavity enhancement
US20040091350A1 (en) * 2002-11-13 2004-05-13 Paolo Graziosi Fluidic actuation for improved diffuser performance
US7104067B2 (en) * 2002-10-24 2006-09-12 General Electric Company Combustor liner with inverted turbulators
US20080104961A1 (en) * 2006-11-08 2008-05-08 Ronald Scott Bunker Method and apparatus for enhanced mixing in premixing devices
US20080315012A1 (en) * 2002-06-21 2008-12-25 Darko Segota Method and System for Regulating Internal Fluid Flow Within an Enclosed or Semi-enclosed Environment
US20090263241A1 (en) * 2006-11-13 2009-10-22 Alstom Technology Ltd Diffuser and exhaust system for turbine
US20090308075A1 (en) * 2005-03-31 2009-12-17 Hitachi, Ltd. Turbine exhaust system and method for modifying the same
US20100034647A1 (en) * 2006-12-07 2010-02-11 General Electric Company Processes for the formation of positive features on shroud components, and related articles
US7731475B2 (en) * 2007-05-17 2010-06-08 Elliott Company Tilted cone diffuser for use with an exhaust system of a turbine
US20100172747A1 (en) * 2009-01-08 2010-07-08 General Electric Company Plasma enhanced compressor duct
US7780403B2 (en) * 2006-09-08 2010-08-24 Siemens Energy, Inc. Adjustable turbine exhaust flow guide and bearing cone assemblies
US20100260598A1 (en) * 2009-04-08 2010-10-14 Rolls-Royce Plc Thermal control system for turbines
US20110164972A1 (en) * 2010-01-04 2011-07-07 General Electric Company Hollow steam guide diffuser having increased pressure recovery
US20120034064A1 (en) * 2010-08-06 2012-02-09 General Electric Company Contoured axial-radial exhaust diffuser
US20120121405A1 (en) * 2010-11-16 2012-05-17 General Electric Company Low pressure exhaust gas diffuser for a steam turbine
US20120171030A1 (en) * 2009-09-16 2012-07-05 Mitsubishi Heavy Industries, Ltd. Discharge scroll and turbomachine
US8221054B2 (en) * 2009-05-28 2012-07-17 General Electric Company Corrugated hood for low pressure steam turbine
US8337160B2 (en) * 2009-10-19 2012-12-25 Toyota Motor Engineering & Manufacturing North America, Inc. High efficiency turbine system
US20130019583A1 (en) * 2011-07-22 2013-01-24 Kin Pong Lo Diffuser with backward facing step having varying step height
US8475125B2 (en) * 2010-04-13 2013-07-02 General Electric Company Shroud vortex remover

Patent Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2615301A (en) * 1946-11-09 1952-10-28 United Aircraft Corp Centrifugal diffuser
US2724545A (en) * 1949-12-05 1955-11-22 Tech Studien Ag Discharge casings for axial flow engines
US2674845A (en) * 1951-05-02 1954-04-13 Walter D Pouchot Diffuser apparatus with boundary layer control
US3144202A (en) * 1960-11-19 1964-08-11 Helmbold Theodor Stabilizing devices for generating and guiding potential whirls
US3149470A (en) * 1962-08-29 1964-09-22 Gen Electric Low pressure turbine exhaust hood
US3552877A (en) * 1968-02-15 1971-01-05 Escher Wyss Ltd Outlet housing for an axial-flow turbomachine
US3578264A (en) * 1968-07-09 1971-05-11 Battelle Development Corp Boundary layer control of flow separation and heat exchange
US3578264B1 (en) * 1968-07-09 1991-11-19 Univ Michigan
US4214452A (en) * 1977-08-25 1980-07-29 Alsthom-Atlantique Exhaust device for a condensable-fluid axial-flow turbine
US4182595A (en) * 1978-01-30 1980-01-08 Westinghouse Electric Corp. Discharge assembly for an axial flow compressor
US4315715A (en) * 1978-07-26 1982-02-16 Nissan Motor Company, Limited Diffuser for fluid impelling device
US5203674A (en) * 1982-11-23 1993-04-20 Nuovo Pignone S.P.A. Compact diffuser, particularly suitable for high-power gas turbines
US4971768A (en) * 1987-11-23 1990-11-20 United Technologies Corporation Diffuser with convoluted vortex generator
US5110560A (en) * 1987-11-23 1992-05-05 United Technologies Corporation Convoluted diffuser
US5536146A (en) * 1989-02-03 1996-07-16 Hitachi, Ltd. Combined generator system
US5361828A (en) * 1993-02-17 1994-11-08 General Electric Company Scaled heat transfer surface with protruding ramp surface turbulators
US5547339A (en) * 1995-04-11 1996-08-20 Comair Rotron, Inc. Turbulator for a fluid impelling device
US5737915A (en) * 1996-02-09 1998-04-14 General Electric Co. Tri-passage diffuser for a gas turbine
US6602046B2 (en) * 1999-02-15 2003-08-05 Universität Stuttgart Diffusor without any pulsation of the shock boundary layer, and a method for suppressing the shock boundary layer pulsation in diffusors
US6598781B2 (en) * 1999-05-03 2003-07-29 General Electric Company Article having turbulation and method of providing turbulation on an article
US6589600B1 (en) * 1999-06-30 2003-07-08 General Electric Company Turbine engine component having enhanced heat transfer characteristics and method for forming same
US20020025248A1 (en) * 1999-08-16 2002-02-28 Ching-Pang Lee Method for enhancing heat transfer inside a turbulated cooling passage
US6533546B2 (en) * 2000-07-31 2003-03-18 Alstom (Switzerland) Ltd. Low-pressure steam turbine with multi-channel diffuser
US6439840B1 (en) * 2000-11-30 2002-08-27 Pratt & Whitney Canada Corp. Bypass duct fan noise reduction assembly
US20080315012A1 (en) * 2002-06-21 2008-12-25 Darko Segota Method and System for Regulating Internal Fluid Flow Within an Enclosed or Semi-enclosed Environment
US20040052643A1 (en) * 2002-09-18 2004-03-18 Bunker Ronald Scott Linear surface concavity enhancement
US7104067B2 (en) * 2002-10-24 2006-09-12 General Electric Company Combustor liner with inverted turbulators
US20040091350A1 (en) * 2002-11-13 2004-05-13 Paolo Graziosi Fluidic actuation for improved diffuser performance
US20090308075A1 (en) * 2005-03-31 2009-12-17 Hitachi, Ltd. Turbine exhaust system and method for modifying the same
US7780403B2 (en) * 2006-09-08 2010-08-24 Siemens Energy, Inc. Adjustable turbine exhaust flow guide and bearing cone assemblies
US20080104961A1 (en) * 2006-11-08 2008-05-08 Ronald Scott Bunker Method and apparatus for enhanced mixing in premixing devices
US20090263241A1 (en) * 2006-11-13 2009-10-22 Alstom Technology Ltd Diffuser and exhaust system for turbine
US7934904B2 (en) * 2006-11-13 2011-05-03 Alstom Technology Ltd. Diffuser and exhaust system for turbine
US20100034647A1 (en) * 2006-12-07 2010-02-11 General Electric Company Processes for the formation of positive features on shroud components, and related articles
US7731475B2 (en) * 2007-05-17 2010-06-08 Elliott Company Tilted cone diffuser for use with an exhaust system of a turbine
US20100172747A1 (en) * 2009-01-08 2010-07-08 General Electric Company Plasma enhanced compressor duct
US20100260598A1 (en) * 2009-04-08 2010-10-14 Rolls-Royce Plc Thermal control system for turbines
US8221054B2 (en) * 2009-05-28 2012-07-17 General Electric Company Corrugated hood for low pressure steam turbine
US20120171030A1 (en) * 2009-09-16 2012-07-05 Mitsubishi Heavy Industries, Ltd. Discharge scroll and turbomachine
US8337160B2 (en) * 2009-10-19 2012-12-25 Toyota Motor Engineering & Manufacturing North America, Inc. High efficiency turbine system
US20110164972A1 (en) * 2010-01-04 2011-07-07 General Electric Company Hollow steam guide diffuser having increased pressure recovery
US8439633B2 (en) * 2010-01-04 2013-05-14 General Electric Company Hollow steam guide diffuser having increased pressure recovery
US8475125B2 (en) * 2010-04-13 2013-07-02 General Electric Company Shroud vortex remover
US20120034064A1 (en) * 2010-08-06 2012-02-09 General Electric Company Contoured axial-radial exhaust diffuser
US20120121405A1 (en) * 2010-11-16 2012-05-17 General Electric Company Low pressure exhaust gas diffuser for a steam turbine
US8591185B2 (en) * 2010-11-16 2013-11-26 General Electric Company Low pressure exhaust gas diffuser for a steam turbine
US20130019583A1 (en) * 2011-07-22 2013-01-24 Kin Pong Lo Diffuser with backward facing step having varying step height

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139255A (en) * 2017-06-19 2019-01-04 通用电气波兰有限责任公司 Gas deflation assembly and its method for exhausting with vortex generator
US11143058B2 (en) 2017-12-20 2021-10-12 General Electric Company Exhaust device and an associated method thereof

Also Published As

Publication number Publication date
RU2012130316A (en) 2014-01-27
DE102012106397A1 (en) 2013-01-31
FR2978200A1 (en) 2013-01-25

Similar Documents

Publication Publication Date Title
CN107435561B (en) System for cooling seal rails of tip shroud of turbine blade
CN107448300B (en) Airfoil for a turbine engine
US9476315B2 (en) Axial flow turbine
JP5503140B2 (en) Divergent turbine nozzle
US8132417B2 (en) Cooling of a gas turbine engine downstream of combustion chamber
US8475125B2 (en) Shroud vortex remover
JP5606473B2 (en) Steam turbine
EP2615245B1 (en) Film cooled turbine airfoil having trench segments on the exterior surface
US8807927B2 (en) Clearance flow control assembly having rail member
EP2390466A1 (en) A cooling arrangement for a gas turbine
US10309228B2 (en) Impingement insert for a gas turbine engine
US8591184B2 (en) Hub flowpath contour
US10450874B2 (en) Airfoil for a gas turbine engine
US20150096306A1 (en) Gas turbine airfoil with cooling enhancement
US9528380B2 (en) Turbine bucket and method for cooling a turbine bucket of a gas turbine engine
US20130022444A1 (en) Low pressure turbine exhaust diffuser with turbulators
US8870532B2 (en) Exhaust hood diffuser
JP2012082826A (en) Turbine bucket shroud tail
EP3241990A1 (en) A turbomachine blade or vane having a vortex generating element
JP2017219042A (en) Nozzle cooling system for gas turbine engine
WO2016033465A1 (en) Gas turbine blade tip shroud flow guiding features
US20160186577A1 (en) Cooling configurations for turbine blades
US10738638B2 (en) Rotor blade with wheel space swirlers and method for forming a rotor blade with wheel space swirlers
JP5404187B2 (en) End wall member and gas turbine
JP2010169047A (en) Axial flow turbine

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NEELI, SUDHAKAR;JOHN, JOSHY;BARB, KEVIN JOSEPH;SIGNING DATES FROM 20110629 TO 20110630;REEL/FRAME:026614/0098

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION