US20110200444A1 - Multi-panel wind turbine blade with improved joints on the trailing edge - Google Patents

Multi-panel wind turbine blade with improved joints on the trailing edge Download PDF

Info

Publication number
US20110200444A1
US20110200444A1 US13/125,217 US200913125217A US2011200444A1 US 20110200444 A1 US20110200444 A1 US 20110200444A1 US 200913125217 A US200913125217 A US 200913125217A US 2011200444 A1 US2011200444 A1 US 2011200444A1
Authority
US
United States
Prior art keywords
panel
wind turbine
blade
trailing edge
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/125,217
Inventor
Enrique Vidorreta Garcia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Gamesa Renewable Energy Innovation and Technology SL
Original Assignee
Gamesa Innovation and Technology SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamesa Innovation and Technology SL filed Critical Gamesa Innovation and Technology SL
Assigned to GAMESA INNOVATION & TECHNOLOGY, S.L. reassignment GAMESA INNOVATION & TECHNOLOGY, S.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GARCIA VIDORRETA, ENRIQUE
Publication of US20110200444A1 publication Critical patent/US20110200444A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/23Manufacture essentially without removing material by permanently joining parts together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/50Building or constructing in particular ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This invention generally refers to wind turbine blades and more specifically to multi-panel blades with adhesive bondings on the trailing edge.
  • Wind turbines include a rotor that supports one or several blades that are spread out radially to capture the wind's kinetic energy and cause a rotary movement of a power train connected to an electric generator to produce electrical power.
  • the amount of energy produced by the wind turbines depends on the blade rotor sweep surface that receives wind action, and consequently, increasing the length of the blades normally implies an increase in the wind turbine's energy production.
  • EP 1 184 566 A1 describes a wind turbine blade that is made up assembling one, two or more longitudinal sections, each of which make up a central element made up by a longitudinal carbon fibre tube on which a series of transversal carbon fibre or fibre glass ribs are assembled connected to this central area and a carbon fibre or fibre glass cover connected to these ribs.
  • WO 01/46582 A2 describes a wind turbine blade that has a plurality of divided elements connected to the load transmission box beam and separated by gaskets that allow these divided elements movements between each other to minimise the traction forces in the blade region where these divided elements are situated.
  • An object of this invention is to provide a wind turbine blade configuration that allows improving the control of the geometry of the blade's trailing edge.
  • Another object of this invention is to provide a wind turbine blade configuration that allows improving panel connection on the trailing edge.
  • Another object of this invention is to provide a wind turbine blade configuration that contributes to increasing the robustness of panel connections on the trailing edge.
  • a wind turbine blade with an aerodynamic profile with a leading edge, a trailing edge and pressure and suction sides between the leading edge and trailing edge, the rear part of which consists of at least a first prefabricated panel on the pressure side and a second prefabricated panel on the suction side in which the configuration of the edges of these first and second panels includes flattened co-operating surfaces to facilitate its adhesive bonding along the trailing edge.
  • the edge of one of the two panels has the configuration of the trailing edge of the blade and its flattened surface is situated on an offset notch and on the other panel this flattened surface is situated on the edge.
  • these flattened co-operating surfaces are situated on the edges of the first and the second panel, and one of them is considerably thicker than the other.
  • these co-operating flattened surfaces are situated on the edges of the first and second panel so that the trailing edge is configured for connection, and both edges may have a similar thickness or one of them be considerably thicker than the other. These configurations are suitable for an intermediate section of the blade or near to its root and allow improving the control of the geometry of the blade's trailing edge.
  • the rear part of the blade in a section of the blade near to the root, also includes a third prefabricated panel that is joined to the edges of these first and second panels on the trailing edge which allows improving the control of the geometry of the blade's trailing edge, particularly in very long blades.
  • a similar result is obtained equipping the first or second panel (or both) with flap shaped extensions.
  • FIG. 1 is a schematic view in transversal section of a typical wind turbine blade.
  • FIGS. 2 a and 2 b are some schematic views in transversal section of the prefabricated panels used to make up two multi-panel blades.
  • FIG. 3 is a schematic view of a wind turbine blade according to the preferred embodiment of this invention.
  • FIG. 4 is a schematic plant view of a blade according to this invention showing the different areas and sections with a different configuration on the trailing edge.
  • FIGS. 5 a, 5 b, 5 c and 5 d are partial views in transversal section of the blade in FIG. 3 by the C-C plane showing four possible variants of the embodiment of the invention.
  • FIGS. 6 a, 6 b and 6 c are partial views in transversal section of the blade in FIG. 3 by the B-B plane showing three possible variants of the embodiment of the invention.
  • FIG. 7 is a partial view in transversal section of the blade in FIG. 3 by the A-A plane showing a possible variant of the embodiment of the invention.
  • FIGS. 8 a, 8 b, 8 c and 8 d are partial views in transversal section of the blade in FIG. 3 by the A-A plane showing four possible variants of the embodiment of the invention.
  • FIG. 1 shows the typical aerodynamic profile of a wind turbine blade with a leading edge 3 , a trailing edge 5 and pressure and suction sides 7 , 9 between the leading edge 3 and the trailing edge 5 and FIGS. 2 a and 2 b show two possible multi-panel configurations.
  • the blade components are two crossbeams 11 , a front shell 12 and two rear shells 15 and 17 and in the case of FIG. 2 b the blade components are two crossbeams 11 and two shells 15 , 17 .
  • This invention is applicable to the multi-panel configurations shown in FIGS. 2 a and 2 b and to any other configuration that includes panels on the rear area analogous to the shells 15 , 17 .
  • the basic idea of this invention is to configure the geometry of the prefabricated panels on the trailing edge so that, on the one hand, they include specific surfaces for making their adhesive bonding easier, and on the other that allow guaranteeing the required shape of the trailing edge. This implies that the transversal section of the panels has a variable geometry along the blade and that, even a third panel is used on a section of the blade near to its root.
  • two sections 21 , 23 and, inside the section 21 , two areas 25 , 27 can be distinguished that as we will detail below have the edges of their panels with a different transversal section and each one may have a different length (the white arrows in FIG. 4 mark the ranges they move in).
  • section 21 the length of which may range from 70% to 100% of the length of the blade, measured from its tip, the trailing edge is made gluing the two flattened surfaces on the edges of the panels 31 , 41 .
  • the blade's trailing edge is made up by one of the two panels 31 , 41 to which the other panel 41 , 31 is joined in an offset notch, and the connection on the co-operating flattened surfaces 33 , 43 is made with the adhesive layer 29 .
  • the co-operating flattened surfaces 34 , 44 that are joined with the adhesive layer 29 , are situated on the edges of the first and second panel 31 , 41 so that the trailing edge is configured by its joint, and the one of the edges is thicker than the other.
  • the edges of the first and second panel 31 , 41 include some co-operating flattened surfaces 35 , 45 on their edges to make it easier to joint them with the adhesive layer 29 , and the blade's trailing edge is demarcated by the edges of the first and second panel 21 , 31 .
  • one of the edges of the panels 31 , 41 is thicker than the other.
  • the blade's edge is configured with the two rear panels 31 , 41 and a third panel 51 , that is U shaped with some wings 55 , 57 and a web that decreases in height towards the tip of the blade (as can be seen in FIG. 3 ).
  • the edges of the first and second panel 31 , 41 include some planed surfaces 37 , 47 co-operating with the wings 45 , 47 of the third panel 51 to facilitate a joint between them with the adhesive layers 29 .
  • the blade's trailing edge is thus demarcated by the third panel 51 and by the ends of the first and second panel 31 , 41 .
  • the blade's edge may be configured with the two panels 31 , 41 including some flaps 61 , 63 to make the flattened surfaces necessary for connection with an adhesive layer 29 .
  • the lower panel 31 is spread on a L shaped folded flap 61 on which a flattened area 39 that co-operates with the flattened area 49 of the upper panel 41 is situated.
  • the upper panel 41 is spread on a L shaped folded flap 61 on which a flattened area 49 that co-operates with the flattened area 39 of the lower panel 31 is situated.
  • FIG. 8 c the two panels 31 , 41 are spread on folded flaps 61 , 63 on which the flattened surfaces 39 , 49 are situated that are joined with the adhesive layer 29 forming the direction of these flaps with the direction perpendicular to the blade profile rope, and angle ⁇ that in a preferred embodiment ranges from 0°-30°.
  • FIG. 8 d shows the special case in which the direction of these flaps 61 , 63 coincides with the direction perpendicular to the blade profile rope, i.e. when ⁇ 32 0°.
  • Drastic reduction in the finishing phase (cutting surplus material, polishing, reworks to obtain the correct aerodynamic profile, reinforcing the trailing edge's joint).
  • FIGS. 5 a, 5 b, 5 c and 5 d reduces the concentration of stresses on the trailing edge, preventing premature failures in the adhesive bonding that occur with the current solution on the end part of the blade.

Abstract

A multi-panel wind turbine blade with improved joints on the trailing edge, with an aerodynamic profile with a leading edge (3), a trailing edge (5) and pressure and suction sides (7, 9) between the leading edge (3) and the trailing edge (5), where the transversal section of the edges of the prefabricated panels (31, 41) laid out on the pressure and suction side have a variable geometry on the trailing edge area (5) along the blade, with at least a first section (21) of the blade including its tip, in which the configuration of the edges of these panels (31, 41) includes some co-operating flattened surfaces (33, 43; 34, 44; 35, 45) to facilitate its adhesive bonding along the trailing edge (5). This variable geometry includes the possibility of using a third panel (51) on a blade section near to its root.

Description

    FIELD OF THE INVENTION
  • This invention generally refers to wind turbine blades and more specifically to multi-panel blades with adhesive bondings on the trailing edge.
  • BACKGROUND
  • Wind turbines include a rotor that supports one or several blades that are spread out radially to capture the wind's kinetic energy and cause a rotary movement of a power train connected to an electric generator to produce electrical power.
  • The amount of energy produced by the wind turbines depends on the blade rotor sweep surface that receives wind action, and consequently, increasing the length of the blades normally implies an increase in the wind turbine's energy production.
  • To facilitate the manufacturing of wind turbine blades the division of the blade into several panels has been proposed that can be manufactured individually perfectly and assembled later on to make up the blade. Some of the proposals known are the following.
  • EP 1 184 566 A1 describes a wind turbine blade that is made up assembling one, two or more longitudinal sections, each of which make up a central element made up by a longitudinal carbon fibre tube on which a series of transversal carbon fibre or fibre glass ribs are assembled connected to this central area and a carbon fibre or fibre glass cover connected to these ribs.
  • WO 01/46582 A2 describes a wind turbine blade that has a plurality of divided elements connected to the load transmission box beam and separated by gaskets that allow these divided elements movements between each other to minimise the traction forces in the blade region where these divided elements are situated.
  • The current trend in the industry for wind turbines with larger rotor blades requires new blade designs suitable for firstly complying with transport and quality conditions set out by large sized blades and secondly by the conditions set out by the manufacturing processes with a view to obtaining the maximum degree of automation.
  • SUMMARY OF THE INVENTION
  • An object of this invention is to provide a wind turbine blade configuration that allows improving the control of the geometry of the blade's trailing edge.
  • Another object of this invention is to provide a wind turbine blade configuration that allows improving panel connection on the trailing edge.
  • Another object of this invention is to provide a wind turbine blade configuration that contributes to increasing the robustness of panel connections on the trailing edge.
  • These and other objects of this invention are achieved providing a wind turbine blade with an aerodynamic profile with a leading edge, a trailing edge and pressure and suction sides between the leading edge and trailing edge, the rear part of which consists of at least a first prefabricated panel on the pressure side and a second prefabricated panel on the suction side in which the configuration of the edges of these first and second panels includes flattened co-operating surfaces to facilitate its adhesive bonding along the trailing edge.
  • In a preferred embodiment of this invention, the edge of one of the two panels has the configuration of the trailing edge of the blade and its flattened surface is situated on an offset notch and on the other panel this flattened surface is situated on the edge. In another embodiment, these flattened co-operating surfaces are situated on the edges of the first and the second panel, and one of them is considerably thicker than the other. These configurations are suitable for the final section of the blade (although they may extend along the entire blade, particularly in short length blades) and allow improving the control of the geometry of the trailing edge of the blade.
  • In a preferred embodiment of this invention, these co-operating flattened surfaces are situated on the edges of the first and second panel so that the trailing edge is configured for connection, and both edges may have a similar thickness or one of them be considerably thicker than the other. These configurations are suitable for an intermediate section of the blade or near to its root and allow improving the control of the geometry of the blade's trailing edge.
  • In a preferred embodiment of this invention, in a section of the blade near to the root, the rear part of the blade also includes a third prefabricated panel that is joined to the edges of these first and second panels on the trailing edge which allows improving the control of the geometry of the blade's trailing edge, particularly in very long blades. A similar result is obtained equipping the first or second panel (or both) with flap shaped extensions.
  • Other characteristics and advantages of this invention can be inferred from the following detailed description regarding the accompanying figures.
  • BRIEF DESCRIPTION OF FIGURES
  • FIG. 1 is a schematic view in transversal section of a typical wind turbine blade.
  • FIGS. 2 a and 2 b are some schematic views in transversal section of the prefabricated panels used to make up two multi-panel blades.
  • FIG. 3 is a schematic view of a wind turbine blade according to the preferred embodiment of this invention.
  • FIG. 4 is a schematic plant view of a blade according to this invention showing the different areas and sections with a different configuration on the trailing edge.
  • FIGS. 5 a, 5 b, 5 c and 5 d are partial views in transversal section of the blade in FIG. 3 by the C-C plane showing four possible variants of the embodiment of the invention.
  • FIGS. 6 a, 6 b and 6 c are partial views in transversal section of the blade in FIG. 3 by the B-B plane showing three possible variants of the embodiment of the invention.
  • FIG. 7 is a partial view in transversal section of the blade in FIG. 3 by the A-A plane showing a possible variant of the embodiment of the invention.
  • FIGS. 8 a, 8 b, 8 c and 8 d are partial views in transversal section of the blade in FIG. 3 by the A-A plane showing four possible variants of the embodiment of the invention.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • FIG. 1 shows the typical aerodynamic profile of a wind turbine blade with a leading edge 3, a trailing edge 5 and pressure and suction sides 7, 9 between the leading edge 3 and the trailing edge 5 and FIGS. 2 a and 2 b show two possible multi-panel configurations.
  • In the case of FIG. 2 a, the blade components are two crossbeams 11, a front shell 12 and two rear shells 15 and 17 and in the case of FIG. 2 b the blade components are two crossbeams 11 and two shells 15, 17.
  • As is well known in the technique, a multi-panel blade has several advantages:
  • It allows the use of different materials and/or manufacturing processes and/or structural configurations for each part of the blade according to its requirements, which optimises the cost of the blade.
  • It makes quality control easier.
  • It allows the blade manufacturer to organise its plans according to different criteria and subcontract the manufacturing of any of the parts if this is necessary.
  • This invention is applicable to the multi-panel configurations shown in FIGS. 2 a and 2 b and to any other configuration that includes panels on the rear area analogous to the shells 15, 17.
  • The basic idea of this invention is to configure the geometry of the prefabricated panels on the trailing edge so that, on the one hand, they include specific surfaces for making their adhesive bonding easier, and on the other that allow guaranteeing the required shape of the trailing edge. This implies that the transversal section of the panels has a variable geometry along the blade and that, even a third panel is used on a section of the blade near to its root.
  • In this sense, and as illustrated in FIG. 4, two sections 21, 23 and, inside the section 21, two areas 25, 27, can be distinguished that as we will detail below have the edges of their panels with a different transversal section and each one may have a different length (the white arrows in FIG. 4 mark the ranges they move in).
  • In section 21, the length of which may range from 70% to 100% of the length of the blade, measured from its tip, the trailing edge is made gluing the two flattened surfaces on the edges of the panels 31, 41.
  • In area 25, the length of which may range from 33% to 100% of the length of section 21, and in the embodiments shown in FIGS. 5 a and 5 b, the blade's trailing edge is made up by one of the two panels 31, 41 to which the other panel 41, 31 is joined in an offset notch, and the connection on the co-operating flattened surfaces 33, 43 is made with the adhesive layer 29. In the embodiments shown in FIGS. 5 c and 5 d, the co-operating flattened surfaces 34, 44, that are joined with the adhesive layer 29, are situated on the edges of the first and second panel 31, 41 so that the trailing edge is configured by its joint, and the one of the edges is thicker than the other.
  • In area 27, the length of which may range from 65% to 100% of the length of section 21, and in the embodiment shown in FIG. 6 a, the edges of the first and second panel 31, 41, with a similar configuration, include some co-operating flattened surfaces 35, 45 on their edges to make it easier to joint them with the adhesive layer 29, and the blade's trailing edge is demarcated by the edges of the first and second panel 21, 31. In the embodiments shown in FIGS. 6 b and 6 c, one of the edges of the panels 31, 41 is thicker than the other.
  • In section 23 the length of which may range from 1% to 30% of the length of the blade measured from the root, and in the embodiment shown in FIG. 7, the blade's edge is configured with the two rear panels 31, 41 and a third panel 51, that is U shaped with some wings 55, 57 and a web that decreases in height towards the tip of the blade (as can be seen in FIG. 3). The edges of the first and second panel 31, 41 include some planed surfaces 37, 47 co-operating with the wings 45, 47 of the third panel 51 to facilitate a joint between them with the adhesive layers 29. The blade's trailing edge is thus demarcated by the third panel 51 and by the ends of the first and second panel 31, 41.
  • Likewise, in section 23, and as shown in FIGS. 8 a, 8 b, 8 c and 8 d, the blade's edge may be configured with the two panels 31, 41 including some flaps 61, 63 to make the flattened surfaces necessary for connection with an adhesive layer 29.
  • In the embodiment shown in FIG. 8 a the lower panel 31 is spread on a L shaped folded flap 61 on which a flattened area 39 that co-operates with the flattened area 49 of the upper panel 41 is situated.
  • In the embodiment shown in FIG. 8 b the upper panel 41 is spread on a L shaped folded flap 61 on which a flattened area 49 that co-operates with the flattened area 39 of the lower panel 31 is situated.
  • In the embodiment shown in FIG. 8 c the two panels 31, 41 are spread on folded flaps 61, 63 on which the flattened surfaces 39, 49 are situated that are joined with the adhesive layer 29 forming the direction of these flaps with the direction perpendicular to the blade profile rope, and angle Ω that in a preferred embodiment ranges from 0°-30°. FIG. 8 d shows the special case in which the direction of these flaps 61, 63 coincides with the direction perpendicular to the blade profile rope, i.e. when Ω32 0°.
  • As an expert in this field will well understand, the term “co-operating flattened surfaces” used in the previous paragraphs should be understood in the widest sense as some surfaces suitably shaped for joints normally used in the wind industry and in particular for adhesive bondings.
  • These flattened surfaces and the schematised geometry in the Figures may be carried out in several ways, for example by machining and surfacing the geometry or using counter moulds in these areas of the parts.
  • The following advantages are worthy of mention among the advantages of this invention regarding the previous technique:
  • Better assembly of the different panels to make the complete blade, due to the greater control in the surfaces to be connected and the adjacent geometry (lower tolerances).
  • Drastic reduction in the finishing phase (cutting surplus material, polishing, reworks to obtain the correct aerodynamic profile, reinforcing the trailing edge's joint).
  • Better control of the trailing edge's aerodynamic surface. This better control allows reducing the noise made by the blade (lower environmental impact) and also increasing the blade's efficiency, which results in an increase of the wind turbine's production under the same wind conditions.
  • The geometry shown in FIGS. 5 a, 5 b, 5 c and 5 d reduces the concentration of stresses on the trailing edge, preventing premature failures in the adhesive bonding that occur with the current solution on the end part of the blade.
  • Although this invention has been described entirely in terms of preferred embodiments, it is clear that could be introduced modifications within its scope, not regarding the latter as limited by the embodiments described above, rather by the following claims.

Claims (13)

1. A wind turbine blade with an aerodynamic profile with a leading edge (3), a trailing edge (5) and pressure and suction sides (7, 9) between the leading edge (3) and the trailing edge (5), characterised by in at least a first section (21) of the blade, including its tip, its rear part including at least a first prefabricated panel (31) and on the pressure side and a second prefabricated panel (41) on the suction side in which the configuration of the edges of these first and second panels (31, 41) includes some co-operating flattened surfaces (33, 43; 34, 44; 35, 45) to facilitate its adhesive bonding along the trailing edge (5).
2. A wind turbine blade according to claim 1, wherein the length of this first section (21) of the blade ranging from 70% to 100% of the length of the blade from its tip.
3. A wind turbine blade according to claim 2, wherein in a first area (23) of this first section (21), with a length ranging from 33% to 100% of the length of this first section (21), the edge of one these two panels (31, 41) having the configuration of the trailing edge (5) of the blade and its flattened surface (33, 43) situated on an offset notch and by the other panel (41, 31) having its flattened surface (43, 33) situated on its edge.
4. A wind turbine blade according to claim 2, wherein in a first area (25) of this first section (21), with a length ranging from 33% to 100% of the length of this first section (21), these co-operating flattened surfaces (34, 44) being situated on the edges of the first and the second panel (31, 41) so that the trailing edge (5) is configured for connection, with one of the edges thicker than the other.
5. A wind turbine blade according to claim 2, wherein in a second area (27) of this first section (21), with a length ranging from 65% to 100% of the length of this first section (21), these co-operating flattened surfaces (35, 45) being situated on the edges of the first and the second panel (31, 41) so that the trailing edge (5) is configured for connection.
6. A wind turbine blade according to claim 5, wherein one of the edges of the first and second panel (31, 41) being thicker than the other.
7. A wind turbine blade according to claim 2, wherein in a second section (23) of the blade next to its root also including a third prefabricated panel (51) that is joined to the edges of these first and second panels (31, 41) on the trailing edge (5).
8. A wind turbine blade according to claim 7, wherein this third prefabricated panel (51) being U shaped and by in this second section (23) of the blade the edges of the first and second panel (31, 41) having some co-operating flattened surfaces (37, 47) with the wings (55, 57) of this third panel (51) to facilitate an adhesive bonding between them.
9. A wind turbine blade according to claim 2, wherein in a second section (23) of the blade near to its root, the flattened surface (39, 49) of at least one of these two panels (31, 41) being situated on an extension (61) folded on its edge to be joined to the flattened surface (49, 39) of the other panel (41, 31).
10. A wind turbine blade according to claim 9, wherein this extension (61) being L shaped so that this flattened surface (39, 49) is opposite the flattened surface (49, 39) of the other panel situated on its edge to be able to carry out its adhesive bonding.
11. A wind turbine blade according to claim 9, wherein the flattened surface (49, 39) of the other panel also being situated on an extension (63) folded on its edge, so that both extensions (61, 63) face each other to carry out the adhesive bonding in a transversal direction to the blade profile rope.
12. A wind turbine blade according to claim 11, wherein the direction of these extensions (61, 63) forming an angle □, ranging from 0°-30° with the direction perpendicular to the blade rope.
13. A wind turbine blade according to claim 7, wherein the length of this second section (23) of the blade ranging from 1% to 30% of the its length measured from the blade's root.
US13/125,217 2008-10-28 2009-10-26 Multi-panel wind turbine blade with improved joints on the trailing edge Abandoned US20110200444A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ESP200803063 2008-10-28
ES200803063A ES2341073B1 (en) 2008-10-28 2008-10-28 A MULTI-PANEL AIRPLANE SHOVEL WITH IMPROVED JOINTS ON THE EXIT EDGE.
PCT/ES2009/070458 WO2010049560A1 (en) 2008-10-28 2009-10-26 A multiple-panel wind generator blade with improved joints along the trailing edge

Publications (1)

Publication Number Publication Date
US20110200444A1 true US20110200444A1 (en) 2011-08-18

Family

ID=42128292

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/125,217 Abandoned US20110200444A1 (en) 2008-10-28 2009-10-26 Multi-panel wind turbine blade with improved joints on the trailing edge

Country Status (5)

Country Link
US (1) US20110200444A1 (en)
EP (1) EP2341241A4 (en)
CN (1) CN102197216A (en)
ES (1) ES2341073B1 (en)
WO (1) WO2010049560A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206062A1 (en) * 2007-02-28 2008-08-28 Gamesa Innovation & Technology, Sl. Wind turbine multi-panel blade
US8382440B2 (en) 2008-12-05 2013-02-26 Modular Wind Energy, Inc. Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
CN104653411A (en) * 2014-12-24 2015-05-27 中国科学院工程热物理研究所 Wind turbine blade with tail edge reinforced prefabricated member
US20150267681A1 (en) * 2012-10-16 2015-09-24 Envision Energy (Denmark) Aps Wind turbine having external gluing flanges near flat back panel
US9470205B2 (en) 2013-03-13 2016-10-18 Vestas Wind Systems A/S Wind turbine blades with layered, multi-component spars, and associated systems and methods
US9500179B2 (en) 2010-05-24 2016-11-22 Vestas Wind Systems A/S Segmented wind turbine blades with truss connection regions, and associated systems and methods
US9945354B2 (en) 2014-10-27 2018-04-17 General Electric Company System and method for controlling bonding material in a wind turbine blade
US10773464B2 (en) 2017-11-21 2020-09-15 General Electric Company Method for manufacturing composite airfoils
US10821696B2 (en) 2018-03-26 2020-11-03 General Electric Company Methods for manufacturing flatback airfoils for wind turbine rotor blades
US10821652B2 (en) 2017-11-21 2020-11-03 General Electric Company Vacuum forming mold assembly and method for creating a vacuum forming mold assembly
US10830206B2 (en) 2017-02-03 2020-11-10 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
US10865769B2 (en) 2017-11-21 2020-12-15 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
US10913216B2 (en) 2017-11-21 2021-02-09 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
US10920745B2 (en) 2017-11-21 2021-02-16 General Electric Company Wind turbine rotor blade components and methods of manufacturing the same
US11035339B2 (en) 2018-03-26 2021-06-15 General Electric Company Shear web assembly interconnected with additive manufactured components
US11040503B2 (en) 2017-11-21 2021-06-22 General Electric Company Apparatus for manufacturing composite airfoils
US11098691B2 (en) 2017-02-03 2021-08-24 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
US11248582B2 (en) 2017-11-21 2022-02-15 General Electric Company Multiple material combinations for printed reinforcement structures of rotor blades
US11390013B2 (en) 2017-11-21 2022-07-19 General Electric Company Vacuum forming mold assembly and associated methods
US11668275B2 (en) 2017-11-21 2023-06-06 General Electric Company Methods for manufacturing an outer skin of a rotor blade

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012217904A1 (en) * 2012-10-01 2014-04-03 Repower Systems Se Fiber composite component and rotor blade
US8926276B2 (en) * 2013-01-23 2015-01-06 Concepts Eti, Inc. Structures and methods for forcing coupling of flow fields of adjacent bladed elements of turbomachines, and turbomachines incorporating the same
CN103273593B (en) * 2013-05-31 2015-08-19 新疆金风科技股份有限公司 Fan blade bonding angle mould manufacturing method and fan blade adhering method
KR101520898B1 (en) * 2013-11-26 2015-05-18 한국에너지기술연구원 Manufacturing method of flat-back shaped composite wind blade
DK3488099T3 (en) 2016-07-19 2021-07-26 Lm Wind Power Int Tech Ii Aps WIND TURBLE WINGS WITH FLATBACK ROOT SEGMENT AND RELATED PROCEDURE
CN107559155B (en) * 2017-10-16 2024-03-08 国电联合动力技术有限公司 Wind turbine generator system blade, paving bonding method thereof and wind turbine generator system
GB201905852D0 (en) 2019-04-26 2019-06-12 Blade Dynamics Ltd Wind turbine blade and method for producing a wind turbine blade
GB201905845D0 (en) 2019-04-26 2019-06-12 Blade Dynamics Ltd Method for producting a wind turbine blade and wind turbine blade
GB201911619D0 (en) 2019-08-14 2019-09-25 Lm Wind Power As Wind turbine blade assembly and method for producing a wind turbine blade
EP4086450A1 (en) * 2021-05-05 2022-11-09 LM Wind Power A/S A rotor blade for a wind turbine, a wind turbine, and a method for manufacturing the rotor blade

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3606580A (en) * 1969-09-10 1971-09-20 Cyclops Corp Hollow airfoil members
US4732542A (en) * 1981-04-01 1988-03-22 Messerschmitt-Bolkow-Blohm Gesellschaft mit beschranker Haftung Large airfoil structure and method for its manufacture
US20070098561A1 (en) * 2005-10-29 2007-05-03 Nordex Energy Gmbh Rotor blade for wind power plants
US20080187442A1 (en) * 2007-02-07 2008-08-07 Kevin James Standish Rotor blade trailing edge assembly and method of use
US20100028162A1 (en) * 2008-08-01 2010-02-04 Vestas Wind Systems A/S Rotor blade extension portion having a skin located over a framework
US8092187B2 (en) * 2008-12-30 2012-01-10 General Electric Company Flatback insert for turbine blades

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8907544D0 (en) * 1989-04-04 1989-05-17 Kidd Archibald W The design of a windmill blade
FR2863319B1 (en) * 2003-12-09 2006-03-31 Ocea Sa SEMI-RIGID AIR TERMINAL AIRBORNE BLADE AND CORRESPONDING AEROGENERATOR

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3606580A (en) * 1969-09-10 1971-09-20 Cyclops Corp Hollow airfoil members
US4732542A (en) * 1981-04-01 1988-03-22 Messerschmitt-Bolkow-Blohm Gesellschaft mit beschranker Haftung Large airfoil structure and method for its manufacture
US20070098561A1 (en) * 2005-10-29 2007-05-03 Nordex Energy Gmbh Rotor blade for wind power plants
US20080187442A1 (en) * 2007-02-07 2008-08-07 Kevin James Standish Rotor blade trailing edge assembly and method of use
US20100028162A1 (en) * 2008-08-01 2010-02-04 Vestas Wind Systems A/S Rotor blade extension portion having a skin located over a framework
US8092187B2 (en) * 2008-12-30 2012-01-10 General Electric Company Flatback insert for turbine blades

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206062A1 (en) * 2007-02-28 2008-08-28 Gamesa Innovation & Technology, Sl. Wind turbine multi-panel blade
US8262361B2 (en) * 2007-02-28 2012-09-11 Gamesa Innovation & Technology, S.L. Wind turbine multi-panel blade
US8382440B2 (en) 2008-12-05 2013-02-26 Modular Wind Energy, Inc. Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
US9518558B2 (en) 2008-12-05 2016-12-13 Vestas Wind Systems A/S Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
US9845787B2 (en) 2008-12-05 2017-12-19 Vestas Wind Systems A/S Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
US9500179B2 (en) 2010-05-24 2016-11-22 Vestas Wind Systems A/S Segmented wind turbine blades with truss connection regions, and associated systems and methods
US20150267681A1 (en) * 2012-10-16 2015-09-24 Envision Energy (Denmark) Aps Wind turbine having external gluing flanges near flat back panel
US9759187B2 (en) * 2012-10-16 2017-09-12 Envision Energy (Denmark) Aps Wind turbine having external gluing flanges near flat back panel
US9470205B2 (en) 2013-03-13 2016-10-18 Vestas Wind Systems A/S Wind turbine blades with layered, multi-component spars, and associated systems and methods
US9945354B2 (en) 2014-10-27 2018-04-17 General Electric Company System and method for controlling bonding material in a wind turbine blade
CN104653411A (en) * 2014-12-24 2015-05-27 中国科学院工程热物理研究所 Wind turbine blade with tail edge reinforced prefabricated member
US11098691B2 (en) 2017-02-03 2021-08-24 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
US10830206B2 (en) 2017-02-03 2020-11-10 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
US10821652B2 (en) 2017-11-21 2020-11-03 General Electric Company Vacuum forming mold assembly and method for creating a vacuum forming mold assembly
US10773464B2 (en) 2017-11-21 2020-09-15 General Electric Company Method for manufacturing composite airfoils
US10865769B2 (en) 2017-11-21 2020-12-15 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
US10913216B2 (en) 2017-11-21 2021-02-09 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
US10920745B2 (en) 2017-11-21 2021-02-16 General Electric Company Wind turbine rotor blade components and methods of manufacturing the same
US11668275B2 (en) 2017-11-21 2023-06-06 General Electric Company Methods for manufacturing an outer skin of a rotor blade
US11040503B2 (en) 2017-11-21 2021-06-22 General Electric Company Apparatus for manufacturing composite airfoils
US11548246B2 (en) 2017-11-21 2023-01-10 General Electric Company Apparatus for manufacturing composite airfoils
US11248582B2 (en) 2017-11-21 2022-02-15 General Electric Company Multiple material combinations for printed reinforcement structures of rotor blades
US11390013B2 (en) 2017-11-21 2022-07-19 General Electric Company Vacuum forming mold assembly and associated methods
US10821696B2 (en) 2018-03-26 2020-11-03 General Electric Company Methods for manufacturing flatback airfoils for wind turbine rotor blades
US11035339B2 (en) 2018-03-26 2021-06-15 General Electric Company Shear web assembly interconnected with additive manufactured components

Also Published As

Publication number Publication date
ES2341073B1 (en) 2011-05-20
CN102197216A (en) 2011-09-21
EP2341241A1 (en) 2011-07-06
EP2341241A4 (en) 2019-05-01
WO2010049560A1 (en) 2010-05-06
ES2341073A1 (en) 2010-06-14

Similar Documents

Publication Publication Date Title
US20110200444A1 (en) Multi-panel wind turbine blade with improved joints on the trailing edge
CN106286115B (en) Modular wind turbine rotor blade and method of assembling the same
EP1965074B1 (en) A wind turbine multi-panel blade
EP2246558B1 (en) Wind turbine blade with prefabricated leading edge segments
EP2432997B1 (en) Wind turbine blade provided with flow altering devices and methods of designing and modifying a wind turbine blade
EP2432996B1 (en) A method of operating a wind turbine
US7922454B1 (en) Joint design for rotor blade segments of a wind turbine
US9057359B2 (en) Wind turbine blade with base part having non-positive camber
US20110200446A1 (en) Multi-panel wind turbine blade with integrated root
EP2432995B1 (en) Wind turbine blade with base part having inherent non-ideal twist
EP2357358B1 (en) Rotor blade of a wind turbine
CN102562437B (en) Wind turbine blade with modular leading edge
CN103032259A (en) Wind turbine rotor blade joint
US20120134817A1 (en) Wind turbine rotor blade with trailing edge extension and method of attachment
EP2432992B1 (en) Method of manufacturing a wind turbine blade having predesigned segment
CN106286118B (en) Modular wind turbine rotor blade and method of assembling the same
CN103291536A (en) Blade insert for a wind turbine rotor blade and related method
WO2010133585A1 (en) Wind turbine blade
CN111051693A (en) Joint assembly for wind turbine rotor blade
EP3874156B1 (en) Method to retrofit a wind turbine rotor blade with a replacement blade tip segment
EP3830412B1 (en) Process of assembling wind rotor blade segments by means of structural elements
CN113874623A (en) Segmented wind turbine blade
EP4174310A1 (en) Segmented wind turbine blade

Legal Events

Date Code Title Description
AS Assignment

Owner name: GAMESA INNOVATION & TECHNOLOGY, S.L., SPAIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GARCIA VIDORRETA, ENRIQUE;REEL/FRAME:026157/0965

Effective date: 20110404

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION