US20080273974A1 - Wind turbine device - Google Patents

Wind turbine device Download PDF

Info

Publication number
US20080273974A1
US20080273974A1 US12/070,677 US7067708A US2008273974A1 US 20080273974 A1 US20080273974 A1 US 20080273974A1 US 7067708 A US7067708 A US 7067708A US 2008273974 A1 US2008273974 A1 US 2008273974A1
Authority
US
United States
Prior art keywords
blade
wind
blades
helically twisted
airfoil blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/070,677
Inventor
William S. Becker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/629,370 external-priority patent/US7132760B2/en
Application filed by Individual filed Critical Individual
Priority to US12/070,677 priority Critical patent/US20080273974A1/en
Publication of US20080273974A1 publication Critical patent/US20080273974A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/213Rotors for wind turbines with vertical axis of the Savonius type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/214Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/25Geometry three-dimensional helical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • This invention relates to wind turbine devices, and more particularly to a universal-axis wind turbine device having a combination of multiple blade designs and a surrounding safety cage structure.
  • wind turbine structures include the common propeller blade type turbine, the so-called Darrieus blade type turbine, and the so-called Savonius blade type turbine.
  • the present invention comprises in one form a hybrid wind turbine formed of both an inner helical screw-type blade design, with the individual helical blades formed of flexible segmented vane members operable as an air valve to allow air to pass between them when in their leeward (non-wind-gathering) position relative to the wind so as to reduce blade drag, and at least a pair of outer generally straight airfoil blades, which are of greater overall length than the inner helical blades.
  • the entire hybrid blade combination is mounted for rotation within a protective cage structure to prevent unwanted entry of humans, birds and other objects in the blade path, and to help with secure, low vibration mounting, safety and insurability for urban settings.
  • the inner segmented helical screw-type S blades permit early start up of the hybrid turbine at low wind speeds. They also act as wind brakes at unduly high wind speeds to prevent runaway conditions.
  • the outer airfoil blades enable the hybrid wind turbine to achieve high rotational speeds and resultant high energy production efficiencies at upper wind speeds. Together the helical and airfoil blades help maximize harvesting of wind energy.
  • the present hybrid wind turbine operates with minimal noise and vibration, particularly since the segmented helical vane members operate at a rotational (varying torque) rate that does not exceed the speed of the wind by more than three and a half times and with a varying profile that always presents generally the same overall blade area to the wind.
  • both the cross-sectional shape of the outer airfoils, and their operational distance from the inner helical blades, can be altered for the same reasons.
  • the inner helical blades can be alternatively formed as generally smooth-walled blades, i.e., formed via an edge-abutting or slightly overlapping series of flat panel segments but that in either case do not have edge separation during rotational operation.
  • the present hybrid wind turbine is of universal axis such that it can be mounted horizontally, vertically, or at any other near vertical or angular operational orientation as desired, and as specific mounting surface conditions may require. It can be used in urban settings, such as a single generation point with minimal transmission loss, such as for a so-called “zero energy” building.
  • the overall shape of the present hybrid wind turbine can be cylindrical, conical, frustro-conical, or other shape.
  • a belt-drive or direct-drive type permanent magnet alternator, a belt-drive or direct-drive type generator, or alternatively, a belt-drive or direct-drive type air motor can be used to harness and convert the wind-generated power from the hybrid wind turbine.
  • FIG. 1 is a front elevation view of the hybrid wind turbine of the present invention, showing certain blade and some protective cage components;
  • FIG. 2 is a top plan view of the hybrid turbine of FIG. 1 ;
  • FIG. 3 is similar to FIG. 1 , but showing the various turbine blades as having been rotated 45 degrees from their position in FIG. 1 ;
  • FIG. 4 is a left end view of the hybrid turbine of FIG. 2 ;
  • FIG. 5 is a perspective view of the hybrid blade configuration of the hybrid turbine of FIG. 1 ;
  • FIGS. 6 , 7 , and 8 are similar to FIGS. 1 , 2 and 4 , respectively, showing for the turbine blade components, but with cage structure removed for better viewing;
  • FIG. 9 is a perspective view of the hybrid turbine of FIG. 1 , as mounted horizontally, with partial cage, frame mounting, and power generation structure;
  • FIG. 10 is similar to the hybrid turbine of FIG. 9 , but with segmented inner helical blades, less certain cage components, and as mounted in a vertical orientation;
  • FIG. 10A is similar to the hybrid turbine of FIG. 10 , as mounted in a vertical orientation, and showing an air motor and air storage tank;
  • FIG. 11 is a graph representing performance characteristics (comparing wind speed versus blade tip speed) for both the present invention and known prior wind turbine designs;
  • FIG. 12 is an enlarged cross-section of the present invention's airfoil blade, as taken along the lines 12 - 12 in FIG. 7 ;
  • FIG. 13 is a cross-sectional view, similar to FIG. 12 , but of a modified airfoil blade design for different wind applications;
  • FIGS. 14 a , 14 b , and 14 c are similar to FIGS. 6 , 7 and 8 , but show one type of helical vane segmentation structure for certain operational applications;
  • FIGS. 15 a , 15 b , and 15 c are additional enlarged cross-sectional views, similar to
  • FIGS. 14 a , 14 b , and 14 c but of a different inner helical blade configuration showing modified vane segmentation structure for different operational applications;
  • FIG. 16 a is an enlarged end view of a segmented turbine blade assembly, similar to
  • FIG. 15 c but partially rotated, to better depict certain segmented vane blades and separation aspects
  • FIG. 16 b is a further enlarged end view of one helical half wing, showing vane segments and support structure;
  • FIG. 17 depicts, as an exploded assembly view, how the individual curved flat panels attach to a helical half wing frame to form one of the modified smooth-walled inner helical blade assemblies;
  • FIG. 18 is a perspective view of the hybrid turbine of FIG. 9 , as mounted in a modular combination with a second hybrid turbine, and showing a shared battery storage unit.
  • FIGS. 1 through 5 an illustration of a hybrid wind turbine device forming one embodiment of the present invention, namely a non-segmented blade version, as generally denoted by reference numeral 20 .
  • Hybrid turbine 20 includes an outer protective safety frame or cage generally denoted by reference number 22 , and a combination turbine blade assembly 23 comprising a pair of non-segmented (generally smooth-walled) helically twisted inner turbine blades, namely helical half wing blades 24 a , 24 b , and a pair of diametrically opposed outer airfoil blades 26 a , 26 b .
  • Each of the helically twisted inner turbine blades and the outer airfoil blades cooperates in wind conditions to drive the operation of the other type blade. Further, each of the helically twisted inner turbine blades and the outer airfoil blades cooperates to form an inherent structural geometry which guards against over-speeding run away conditions.
  • the cage 22 comprises a pair of generally concave hub ends 28 a , 28 b , each comprising a rigid outer support ring member 30 . There is also a similar central cage support ring member 32 . Each of hub ends 28 a , 28 b has a central journal hub 34 and outwardly-extending support arms 36 connected to ring 30 .
  • the helically twisted inner turbine blades may be journaled for rotation about a common axis and having an outer diameter 31 ( FIG. 4 ).
  • a main turbine mast 38 with reduced shaft ends 40 , may be rotatably journaled within each journal hub 34 .
  • each journal hub 34 carries suitable self-lubricating ball bearing bushings (not shown) to help reduce rotational friction, vibration, and noise.
  • a suitable alternator such as, for example, a direct drive permanent magnet alternator, see reference numeral 35 in FIGS. 9 and 10 , as attached to a shaft end 40 , can be used to collect and convert the “rotational energy” power harnessed by the present wind turbine 20 .
  • Safety cage 22 also comprises a series of elongated tie members 42 , all of which are rigidly affixed, such as by threaded fasteners or welding, to the respective end and central support ring members 30 , 32 .
  • the outer cylindrical surface of safety cage 22 is preferably covered with a suitable protective wire mesh 45 , such as formed of commercially available rectangular-mesh wire fencing material (see FIGS. 9 and 10 ).
  • the protective mesh 45 may be made of any suitable material, including for example, a plastic, or other durable material.
  • the protective mesh 45 is constructed of a sufficiently strong material, the safety cage 22 may be significantly reduced, if not eliminated completely, as long as the turbine mast 38 is supported and journaled for rotation by the protective mesh.
  • the protective mesh 45 allows the swirling wind regimes present about turbine 20 to reach both sets of the inner helical blades 24 a , 24 b , and outer airfoil blades 26 a , 26 b , yet otherwise prevent unwanted entry of human limbs, birds in flight, or other large objects that might otherwise undesirably impinge upon the respective turning blades.
  • an even finer mesh screen can be used for the protective mesh 45 ; it can be formed with sufficiently small enough gage screen wire to prevent children's hands, broomsticks, metal rods, and other smaller objects from being inserted through the wire mesh.
  • an open (e.g., 2 inch by 2 inch) heavy wire mesh (not shown) can be used alone to structurally support the axial cage structure for the present hybrid wind turbine's uses.
  • the elongated airfoil blades 26 a , 26 b are formed as straight length blades, of a symmetrical cross section, with ends 25 that extend beyond the length of the inner helical blades 24 a , 24 b .
  • the overall length of the airfoil blades 26 a , 26 b is preferably with the range of some 105% to 150% greater than the overall length of the helical blades 24 a , 24 b , and more preferably, some 120% greater. This allows a substantial percentage of the available wind energy, especially at higher wind speeds, to be harnessed by the more efficient airfoil blades 26 a , 26 b .
  • the somewhat shorter length of the helical blades allows for use of concave-shaped hub ends 28 a , 28 b , which in turn allows room to house an associated energy transformation, power conversion and/or power generation unit, namely, for example a direct drive permanent magnet alternator 35 which may be attached directly to an electrical circuit (not shown), may be attached to a battery 37 for electrical storage, or the like.
  • a direct drive permanent magnet alternator 35 which may be attached directly to an electrical circuit (not shown), may be attached to a battery 37 for electrical storage, or the like.
  • any suitable generator may be used as the alternator 35 , including, for example, a belt-drive or direct-drive type permanent magnet alternator, a belt-drive or direct-drive type generator, or alternatively, a belt-drive or direct-drive type air motor.
  • a series of transverse blade support struts extend radially from turbine mast 38 , and rotate therewith, to appropriately support, at each end as well as in the central area, the two helical half wing blades 24 a , 24 b , as well as the outer airfoil blades 26 a , 26 b . More specifically, these supports include pairs of end support struts 46 , 48 , and central support struts 50 . As shown in FIG.
  • traverse blade support struts may radially extend from the central axis without extending from the turbine mast 38 , thereby allowing the turbine mast 38 to not necessarily continuously extend through the two helical half wing blades 24 a , 24 b .
  • the turbine mast 38 may be constructed of a pair of non-contiguous mast sections which cooperate to support the helical half wing blades 24 a , 24 b . If needed, even additional auxiliary support struts can be used, as seen in FIGS. 9 , 10 , and 17 with intermediate support struts 52 , giving a total of five support struts for each helical half wing 24 a , 24 b . The latter is preferred when, as seen in FIG.
  • each smooth-walled helical half wing blade 24 a , 24 b is formed of four distinct flexible panels 84 a , 84 b , 84 c , and 84 d , and then assembled in abutting or overlapping edge fashion (via fastening with pop rivets or other connector—not shown—to the respective struts on mast 38 ) to create the respective generally smooth-walled helical half wing blades.
  • the intermediate supports struts 52 may be detached from the turbine mast 38 allowing the mast and supports to be disassembled for shipment and reassembled at a distant location.
  • FIG. 9 depicts a horizontal mounting for the hybrid wind turbine 20 of the present invention, where the hybrid wind turbine 20 has its protective cage 22 mounted upon a low-lying support stand 51 .
  • a direct drive permanent magnet alternator 35 can be used, as mounted within the concave hub end 28 b .
  • the horizontal mounting arrangement of hybrid wind turbine 20 shown in FIG. 9 is suitable for roof-top mounting applications, such as in urban buildings, or mounted at ground level.
  • FIG. 10 There is shown in FIG. 10 , however, a more preferred vertical-mounted orientation for hybrid wind turbine 20 .
  • the helical half wings are depicted as being formed of multiple vane segments.
  • the support stand 53 is modified from that of stand 51 of the horizontal mounting depicted in FIG. 9 , but is otherwise the same.
  • a low RPM direct drive permanent magnet alternator 35 is again used.
  • a chain drive-type or belt drive-type generator (not shown) could be alternatively utilized.
  • the vertical mounting arrangement shown in FIG. 10 is preferred because, regardless of which direction the wind is blowing from, such a vertically-aligned turbine 20 is able to harness wind from essentially all the swirling, gusty wind regimes being presented against it.
  • FIG. 10A there is illustrated an embodiment of the hybrid turbine 20 wherein a direct-drive type air motor 39 is used as an associated energy transformation, power conversion and/or power generation unit.
  • the air motor 39 may be, for example, an air motor marketed by Gast Manufacturing, Inc., of Benton Harbor, Mich.
  • the air motor 39 which converts rotational energy into pressurized air, operates to pressurize an air storage tank 41 .
  • the pressurized air in the tank 41 may then be utilized by an air motor driven generator 43 to produce an electric current (i.e., an air-to electric generator) as desired, and whether continuously, on-demand, or during peak energy demand periods.
  • an electric current i.e., an air-to electric generator
  • FIG. 12 there is shown the cross-sectional shape of the airfoil blades 26 a , 26 b .
  • generally symmetrical airfoil blade shapes are used, although non-symmetrical airfoil blade shapes may also be used. They can be formed of extruded or molded aluminum, molded or extruded plastic, or similar materials. More specifically, and as particularly chosen for use in lower height applications, where generally lower wind speed conditions will normally occur, or otherwise in urban buildings under 50 stories (i.e., generally under 500 feet or approximately 152.5 meters in height), a low-speed design of airfoil blade is selected. That is, for such lower widespread operational settings the preferred airfoil blade shape, per FIG.
  • NACA 12 is selected as a low-speed National Advisory Committee for Aeronautics (“NACA”), NACA 0015 airfoil-type design blade.
  • NACA National Advisory Committee for Aeronautics
  • NACA 0015 airfoil blade design has generally a wide thickness T and a squat parabolic length L of the blade in cross-section.
  • the airfoil blades 26 a , 26 b were formed of extruded aluminum, where T was approximately 0.9004 inch, and L was approximately 6 (six) inches.
  • FIG. 13 a modified cross-sectional shape of the outer airfoil blades, 26 a ′, 26 b ′, namely for use in a combination turbine blade assembly 23 in high wind speed applications, or otherwise for use in higher urban building elevations (generally from 500 feet or 152.5 meters high and above).
  • a different and higher speed airfoil blade design is preferred, namely a high-speed NACA 0012 airfoil blade design.
  • such a modified airfoil design for generally higher wind speeds generally has a long length L, and thin thickness T.
  • T was chosen as 0.7202 inch and L was chosen as 6 (six) inches.
  • any suitable material may be used to construct the airfoil blades 26 a , 26 b , including, for example, extruded aluminum, a aluminum sheet cladding over foam plastic, molded or extruded plastic material such as PVC, polystyrene or polycarbonate, a combination of the above, or other similar material.
  • the shape of the outer airfoil blades can be adjusted as needed depending on the given wind power generation requirements. Even other shapes of airfoil blades, including non-symmetrical blade designs, can be utilized, depending on the annual wind conditions expected for a given installation. That is, for extreme wind conditions, and for very high elevations (e.g., over 50 stories and generally over 500 feet or approximately 152.5 meters in height), the airfoil blades 26 a , 26 b can be greatly modified as needed. In that way, the combination turbine blade assembly 23 can be customized within the dimensional confines of a given hybrid wind turbine 20 , yet without requiring changes to the turbine's other component parts.
  • the respective inner helical half wings 24 a , 24 b have preferably been twisted through 180 degrees, i.e., from one end to the other.
  • that helical blade twist can fall within the range of end-to-end twist from as little as approximately 45 degrees to as much as approximately 270 degrees, while still achieving the operational efficiencies of the hybrid wind turbine 20 of the present invention.
  • smooth-surfaced inner helical half wing blades 24 a , 24 b can each be formed of one continuous wing member, or more preferably, for ease of manufacture and shipping purposes and as explained above, be formed of four or more individual flat-curved panel segments whose edges abut or slightly overlap one another, and are mounted to the respective support struts via rivet fasteners, or other connector, i.e., to form each overall smooth-surfaced helical half wing.
  • FIGS. 14 a , 14 b , and 14 c there is shown another and the preferred form of the invention, namely one having a segmented-type hybrid turbine blade assembly, generally denoted by reference number 54 .
  • Segmented turbine blade assembly 54 utilizes the same end struts 46 , 48 , central strut 50 , turbine mast 38 with reduced ends 40 , and same outer airfoil blades 26 a , 26 b .
  • the modified type blade assembly 54 utilizes elongated segmented-type helical inner turbine blades 56 a , 56 b .
  • each such helical half wings 56 a , and 56 b is respectively formed of, for example, six separate vane segments, denoted by reference numerals 58 a , 58 b , 58 c , 58 d , 58 e , and 58 f .
  • reference numerals 58 a , 58 b , 58 c , 58 d , 58 e , and 58 f a separate six (6)-vane segment design (for each helical half wing 56 a , 56 b ) results in a total of twelve (12) vane segments.
  • That type segmented helical blade design would preferably be used in higher heights, and greater wind speed installations, such as when used in a hybrid wind turbine 20 mounted atop a high rise building, whether mounted horizontally or vertically.
  • the number of vane segments may vary according to design considerations and may do so from as little as two vane segments (for lower speed wind installations) to as many as may be manufactured and fastened to the turbine blade assembly.
  • FIGS. 15 a , 15 b , and 15 c a modified form of segmented type combination turbine blade assembly, generally denoted by reference numeral 60 .
  • modified segmented turbine blade assembly 60 utilizes the same support struts 46 , 48 , and 50 , central mast 38 with reduced ends 40 , and straight airfoil blades 26 a , 26 b .
  • each segmented helical halfwing 62 a , 62 b is respectively formed of only three vane segments 64 a , 64 b , 64 c , for a total of six (6) such vane segments across modified blade assembly 60 .
  • each respective vane segment 64 a , 64 b , and 64 c has a first longitudinal or fixed edge 66 that is affixed via a fastener 68 (such as a pop rivet) to the support frame 70 .
  • a fastener 68 such as a pop rivet
  • the overlap distance OD can be in the range of from approximately zero to 2 inches.
  • one vane segment overlaps and cascades over the next adjacent outer vane segment.
  • the free longitudinal edge of vane segment 64 b is free floating and separated by a separation distance SD from the first or fixed longitudinal edge 66 of adjacent vane segment 64 c .
  • the free edge 72 may substantially abut, rather than overlap the affixed edge 66 of the next adjacent vane segment.
  • the free edge 72 may be separated from the affixed edge 66 of the next adjacent vane segment forming a permanent air slot with the separation distance SD.
  • Each vane segment is preferable formed of tubular galvanized steel material.
  • Each vane segment is preferable formed of an ultraviolet light-inhibiting plastic, such as ultraviolet light-resistive polycarbonate material or ultraviolet light-resistive polyvinyl chloride (PVC) material, fiber glass sheeting, aluminum, light steel sheeting, Kevlar, polyurethane, rubber sheeting material, or the like.
  • ultraviolet light-inhibiting plastic such as ultraviolet light-resistive polycarbonate material or ultraviolet light-resistive polyvinyl chloride (PVC) material, fiber glass sheeting, aluminum, light steel sheeting, Kevlar, polyurethane, rubber sheeting material, or the like.
  • the separation distance SD can vary greatly depending on the material used for each respective vane segment, the running width W of each vane segment, the flexibility present in a given vane segment between its fixed longitudinal edge 66 and its free edge 72 , and the given wind speeds (i.e., air pressure) being encountered by the wind turbine at any given moment.
  • prototype units were made in accordance with the present invention, where the overall blade length for airfoil blades 26 a , 26 b was approximately 9.5 feet, the overall length of the helical half wings 62 a , 62 b was approximately 8 feet, the diameter of joined helical half wings (designated as D H in FIG. 16 a ), was approximately 50 inches, the respective vane segments 64 a , 64 b , and 64 c were formed of a flexible material, with a vane width W of approximately 9 inches, a vane thickness of some 0.2 inches, and there was an approximately 2 inch gap present between the outer edge of the helical half wings and the innermost edge of the respective airfoil blades.
  • the separation distance SD created was somewhat greater for the outermost vane segments, e.g. vane segments 58 a and 58 b in FIG. 14 c , and somewhat lesser for the inner vane segments, e.g., segments 58 c through 58 f.
  • the diameter of the outer airfoil blades 26 a , 26 b may be in the range of approximately 4 to 24 inches greater than that of the outermost edge of the inner half wing blades 24 a , 24 b
  • the length of the turbine mast 38 may be in the range of approximately 8 to 10 feet
  • the length of each half wing blade 24 a , 24 b may be in the range of approximately 6 to 9 feet
  • the length of each airfoil blade 26 a , 26 b may be in the range of approximately 9.5 to 11.5 feet.
  • each vane segment 58 a , 58 b , 58 c , 58 d , 58 e , 58 f may have a width in the range of approximately 3 to I 1 inches
  • the diameter of the half wing blades 24 a , 24 b may be in the range of approximately 24 to 50 inches
  • the cross sectional thickness of each airfoil blade 24 a , 24 b may be in the range of approximately 0.5 to 1.5 inches.
  • segmentation-type combination turbine blade assemblies 54 and 60 have distinct advantages over the smooth surface-type blade assembly 23 (where the helical half wings are formed of only a generally smooth surface, or of edge-abutting flat panel sections creating a generally smooth surface, and without any segmentations and without otherwise having separate flexible vane segments with free-floating edges).
  • the elongated segmentation of the helical half wings in the present invention which is the preferred embodiment, results in a substantial reduction in the air drag, contrary to what was previously present with Savonius type blade systems, including the twisted S-type helical versions thereof.
  • oncoming swirling wind is allowed to simply filter through air slots present in the back side of the cascading, overlapping, and segmented helical vane segments (e.g., vane segments 64 a , 64 b , 64 c ). This occurs due to the presence of the air slots provided via segmentation distances SD. (To visualize, this is not unlike the slots formed among and between the edges of a series of Venetian blinds as helically twisted 180° from end-to-end.) This allows one vane segment to create a vacuum effect to lift the free edge of the next adjacent vane.
  • the respective vanes of the helically twisted blades of the present hybrid wind turbine 20 tend to close on one another as they take in air, and then slightly open on the backside or leeward side of a cycle, i.e., the non-wind gathering side, to create elongated air slots and thereby reduce air drag by letting air through.
  • the separation distances SD created between vane segments essentially stay constant throughout the full rotational cycle, i.e., during both the wind gathering and non-wind gathering cycle portions.
  • the presence of the vane segments in the helical half wings helps substantially overcome the prior art problem of so-called “blade profile differentiation”, as was common with most Savonius blade systems.
  • the segmented vane structure helps substantially increase the performance capability for the respective helical half wing portions of the segmented combination blade assemblies 54 , 60 , particularly in high speed winds, e.g., over 45 mph.
  • the vane segments even when in their wind-gathering condition, have the tendency to “open up”. This allows yet even more wind to flow through the air slots formed by the segmentation distances SD. This, in turn, results in allowing the segmented helical half wings to rotate even faster than they normally would, because they are under the rotational influence of the much higher operational speed airfoil blades 26 a , 26 b .
  • the normally slower inner Savonius-type turbine blades have the tendency to get out of their own way, i.e., to increase overall hybrid turbine performance and efficiencies at higher wind speeds.
  • the vane segments actually act as an “airbrake”, relative to the airfoil blades, helping to prevent runaway conditions when operational safety might otherwise be of concern for the turbine 20 . That is, under extreme wind conditions, the segmented helical half wings, even though the vane segments thereof are opened up with air slots, tend to continuously brake or slow down the otherwise excessively freely-rotating outer airfoil blades 26 a , 26 b , to keep the entire hybrid blade assembly 23 from over-speeding.
  • segmented helical vanes tend to, in effect, “standardize” the turbulent air within any given gusty wind regime blowing through them, which has the result of greatly assisting the outer airfoil blades' performance. That is, as believed and understood, the segmented twisted vanes tend to organize (or perhaps better stated as “regularize”) the wind currents before they reach the respective outer straight airfoil blades. This has the effect of yet further increasing the efficiency of the hybrid wind turbine 20 , as especially noted along the outer ends thereof, i.e., by maximizing the efficiency of the outer airfoil blades via standardizing the amount and flow pattern of wind currents that reach them.
  • the operational diameter for the respective airfoil blades 26 a , 26 b can be chosen to be as little as say 36 inches and as much as 74 inches, with the diameter of the helical half wing blades then proportionally varied.
  • Such a selected change in the radial positioning for the respective outer straight airfoil blades is quite advantageous. This is because the positioning of the outer airfoil blades 26 a , 26 b , can be customized for a given installation, all depending upon the expected available wind conditions and regimes. For example, when winds are normally of generally higher speeds, the airfoil blades are formed to have a smaller operating diameter. But when installed where wind conditions are normally of only modest speeds, the airfoil blades 26 a , 26 b can be positioned at a more outermost position. This approach recognizes that, while airfoil blades in the outermost positions can supply more angular momentum to the hybrid wind turbine, they can also tend to increase chances for unwanted vibration for the overall hybrid wind turbine.
  • the smooth surface helical half wings 24 a , 24 b of combination blade assembly 23 are formed, whether as one piece or several abutting flat panel sections, of a material that will readily withstand the outdoor elements, e.g., rain and snow, and high and low temperatures, such as an ultraviolet light-inhibited polycarbonate material, or a similar UV-light inhibited PVC (polyvinyl chloride) material, or any other suitable flexible material that can take the shape of frame 70 and be formed into the helical blades 24 a , 24 b .
  • a material that will readily withstand the outdoor elements e.g., rain and snow, and high and low temperatures
  • an ultraviolet light-inhibited polycarbonate material or a similar UV-light inhibited PVC (polyvinyl chloride) material, or any other suitable flexible material that can take the shape of frame 70 and be formed into the helical blades 24 a , 24 b .
  • PVC polyvinyl chloride
  • the elongated vane segments such as vanes 58 a through 58 f , or 64 a through 64 c , can be formed of the same type of material. In any event, such vane segments should be formed of a relatively flexible material, so that the separation distance SD created between vanes can be maximized during normal rotation.
  • each respective vane segment is captured and held within an aerodynamically-shaped vane nose bracket 82 .
  • the various nose brackets with attached vanes then can be respectively fastened along their length to the support frame 70 , by way of a series of fasteners 68 , such as pop rivets.
  • This aerodynamically shaped nose bracket 82 may help reduce air drag at the leading fixed edge 66 of the respective vane segment.
  • FIG. 11 Seen in FIG. 11 is a graphical chart of the respective performance efficiencies, over various wind speeds, of different types of wind turbine designs as listed, including the hybrid wind turbine design of the present invention. More specifically, FIG. 11 depicts graphically the relationship of turbine efficiency percentage in the form of the ratio of blade tip speed to wind speed, for numerous different types of prior wind turbine blade designs (see dotted lines). That is, as seen in FIG. 11 , the hybrid wind rotor turbine of the present invention (see solid line), which is self starting, is very efficient over a larger range of blade tip to wind speed ratios. Then, as shown in solid line, the efficiency performance of the hybrid wind turbine of the present invention reflects that the initial performance at lower wind speeds performs at the expected output efficiency of normal Savonius-type turbine units. However, at higher wind speeds, the present hybrid unit's performance becomes closer to what is found with traditional Darrieus-type straight-blade turbine units.
  • FIG. 11 depicts that the hybrid wind turbine of the present invention runs no faster than approximately 31 ⁇ 2 wing tip speed versus wind speed, and thus, minimizes any chance of runaway conditions. That is, FIG. 11 shows graphically that as wind speeds move higher, the present hybrid turbine advantageously is progressively constrained by the typical air drag effects common to helical Savonius-type turbine units, thus resulting in the controlled performance unique to the present hybrid wind turbine design.
  • the helical halfwing blades of the present hybrid turbine blade invention commence rotation quickly, i.e., with as little as 4 to 6 mph wind.
  • the inner helical half wing blades 24 a , 24 b quickly start the overall hybrid wind turbine 20 into rotation.
  • the straight airfoil blades 26 a , 26 b begin rotating, again as initially powered by the helical blades, and then at higher wind speeds they start harnessing wind and generating power at their much higher efficiency level, i.e. at their higher blade-tip-velocity-to-wind velocity ratio.
  • the airfoil blades 26 a , 26 b may be radially positionally adjustable relative to the half wing blades 24 a , 24 b to thereby help maximize wind harvesting depending upon the local wind conditions and the mounting height of the turbine blade assembly 23 . Still further, it will be appreciated that the number and position of airfoil blades may be varied, including, for example, having three or more airfoil blades. Thus, as seen, the present hybrid turbine can be readily customized for a given wind-harvesting application.
  • each hybrid wind turbine 20 - 1 , 20 - 2 may be mounted in a separate support stand 51 - 1 , 51 - 2 , and the support stands 51 - 1 , 51 - 2 may be then assembled in abutting or overlapping edge fashion (via fastening with bolts or other connector—not shown—to the respective outer support ring member 30 - 1 , 30 - 2 ) to create the combined hybrid wind turbine.
  • Each hybrid wind turbine 20 - 1 , 20 - 2 may further have its own respective direct-drive permanent magnet alternator 35 - 1 , 35 - 2 , or other suitable energy transformation unit, connected to an energy storage unit (battery) 37 - 1 , 37 - 2 . If desired, the two storage units 37 - 1 , 37 - 2 may be electrically combined to enhance their storage capacity.
  • the two hybrid wind turbines 20 - 1 and 20 - 2 may be combined in a number of different ways, and in a number of different configurations. While it is preferable that the turbine mast of each hybrid wind turbine 20 - 1 and 20 - 2 be mounted so as to operate separately and independently, it will be understood that the two masts may be joined so as to form a combined, elongated central mast. Similarly, the various components associated with the hybrid wind turbines 20 - 1 and 20 - 2 , may be combined or separated as desired, including having a single alternator, a single battery, or the like.

Abstract

A hybrid blade wind turbine device formed of at least a pair of straight outer airfoil blades, and a pair of inner helical wing blades, as supported for rotation within a safety protective cage structure, which wind turbine can be mounted in the vertical, horizontal, or other aligned operational positions. The inner helical half wing blades, being preferably somewhat shorter than the length of the outer airfoil blades, act to “regularize” the swirling wind regime flowing through the hybrid wind turbine, so as to maximize the efficiency of the outer airfoil blades. The helical half wing blades can be formed of individual segmented vane segments to provide improved operational capabilities for the overall hybrid wind turbine. To best harness annualized available wind conditions, the hybrid wind turbine can be customized, through modification of the number of vane segments, the selection of the specific shape of the outer airfoil blades, and the specific operational positioning of the outer airfoil blades. Alternatively, the helical halfwing blades can be formed as generally smooth-walled blades.

Description

    I. RELATED PATENT APPLICATION
  • This patent application is a divisional of prior U.S. patent application Ser. No. 11/529,854, filed Sep. 29, 2006, still pending, and which is a divisional of prior U.S. patent application Ser. No. 10/629,370, filed Jul. 29, 2003, now U.S. Pat. No. 7,132,760.
  • II. FIELD OF THE INVENTION
  • This invention relates to wind turbine devices, and more particularly to a universal-axis wind turbine device having a combination of multiple blade designs and a surrounding safety cage structure.
  • III. BACKGROUND OF THE INVENTION
  • Various known designs of wind turbine structures include the common propeller blade type turbine, the so-called Darrieus blade type turbine, and the so-called Savonius blade type turbine.
  • Several Savonius or “S”-rotor blade designs are known, including those typified in Canadian Patent No. 1,236,030, EPO Publication No. 0040193 B1, French No. 961,999, German No. 187865, Japanese Publication No. 60-090992, Swedish No. 65,940, WIPO No. WO/99/04164, and U.S. Pat. Nos. 1,697,574 and 4,293,274. Each of those various Savonius-type blade designs have inherent limitations, including the limitation of noise during operation, excessive vibration during operation, a tendency to “run away” during elevated wind speed operations and often excessive drag created during rotation of the leeward or non-wind-gathering portion of the blade's movement.
  • Further, various Darrieus-type turbine blade designs are disclosed in U.S. Pat. Nos. 1,835,018, 2,020,900, 4,112,311, 4,204,805 and 4,334,823. However, these Darrieus-type designs also have inherent deficiencies, including that only the middle one-third of their blade length (at least for curved Darrieus blade versions) efficiently creates power; that the farther the distance from a curved blade to its axis of rotation, the greater the likelihood, especially in large scale power generation units, of a Darrieus type unit going into harmonic vibration and self-destructing; that all such Darrieus-blade type units are not self-starting, but need assistance in starting; and that in many wind conditions they can, on a periodic basis, use up more energy than they actually produce. Without proper controls and/or mechanical braking systems, Darrieus type units (like Savonius units) have been known to “run away” during elevated wind speed conditions.
  • Further yet, there have been attempts at combining a bucket-shaped Savonius-type drag blade system with a Darrieus-type curved lift blade system, as found in U.S. Pat. No. 3,918,839, and in Tanzawa, et al., “Dynamic Characteristics of the self-controlled Darrieus-Savonius Hybrid Wind Turbine System,” Proceedings of the CSPE-JSME-ASME International Conference on Power Engineering, Vol. 1, (1995), pp. 115-121 (“Tanzawa”). Yet in U.S. Pat. No. 3,918,839, significant difficulties arose relative to the operational, i.e., rotational, stability of the unit at high wind speeds. In Tanzawa, the addition of a Savonius bucket rotor to start the Darrieus rotor resulted in a reduction in the total turbine power and high braking torque at higher rotational rates. There were also the above-noted inherent problems present in all separate Darrieus and Savonius-type blade systems.
  • Most available wind turbine designs have problems of excessive noise and vibration, often self-destruct in high wind conditions, some require separate start-up, braking or stopping mechanisms, and many are not considered safe, readily insurable or building-code permitted, at least not for use in congested urban settings.
  • Thus, there has been an ongoing need for a wind turbine design that can be successfully incorporated into various building and tower structures, that produces minimal noise and vibration during operation, is capable of starting up and operating in each of low speed, steady, gusty, and high speed wind conditions, has a built-in self-regulation via an inherent structural geometry against over-speeding runaway conditions, is formed of blade designs that operate in essentially all wind conditions and produce moderate drag during full rotational operation, which is easy to manufacture and ship, and which can be housed in a safe operating package for use in crowded urban settings.
  • IV. SUMMARY OF THE INVENTION
  • The present invention comprises in one form a hybrid wind turbine formed of both an inner helical screw-type blade design, with the individual helical blades formed of flexible segmented vane members operable as an air valve to allow air to pass between them when in their leeward (non-wind-gathering) position relative to the wind so as to reduce blade drag, and at least a pair of outer generally straight airfoil blades, which are of greater overall length than the inner helical blades. The entire hybrid blade combination is mounted for rotation within a protective cage structure to prevent unwanted entry of humans, birds and other objects in the blade path, and to help with secure, low vibration mounting, safety and insurability for urban settings.
  • The inner segmented helical screw-type S blades permit early start up of the hybrid turbine at low wind speeds. They also act as wind brakes at unduly high wind speeds to prevent runaway conditions. The outer airfoil blades enable the hybrid wind turbine to achieve high rotational speeds and resultant high energy production efficiencies at upper wind speeds. Together the helical and airfoil blades help maximize harvesting of wind energy. The present hybrid wind turbine operates with minimal noise and vibration, particularly since the segmented helical vane members operate at a rotational (varying torque) rate that does not exceed the speed of the wind by more than three and a half times and with a varying profile that always presents generally the same overall blade area to the wind. (This is in distinct contrast to standard “non-twisted” “S” rotors which, in essence, offer a alternating high- or wide- and then a low- or narrow-profile to the wind as they rotate.) This acts to substantially eliminate the “banging” noise and harmful action, especially in the support bearings, as found in many non-helical, non-twisted prior art Savonius-type turbine blades. The segmented helical screw blades, formed into two helical half wing blades, can be selectively formed with different numbers, and hence widths, of elongated vane segments, and with different spacing between such vane segments, depending upon the operational height at which the hybrid wind turbine will be mounted, and also upon the average annual wind speed available at that operational height. Additionally, both the cross-sectional shape of the outer airfoils, and their operational distance from the inner helical blades, can be altered for the same reasons. The inner helical blades can be alternatively formed as generally smooth-walled blades, i.e., formed via an edge-abutting or slightly overlapping series of flat panel segments but that in either case do not have edge separation during rotational operation.
  • The present hybrid wind turbine is of universal axis such that it can be mounted horizontally, vertically, or at any other near vertical or angular operational orientation as desired, and as specific mounting surface conditions may require. It can be used in urban settings, such as a single generation point with minimal transmission loss, such as for a so-called “zero energy” building. The overall shape of the present hybrid wind turbine can be cylindrical, conical, frustro-conical, or other shape. Further, a belt-drive or direct-drive type permanent magnet alternator, a belt-drive or direct-drive type generator, or alternatively, a belt-drive or direct-drive type air motor can be used to harness and convert the wind-generated power from the hybrid wind turbine.
  • V. BRIEF DESCRIPTION OF THE DRAWINGS
  • The means by which the foregoing and other aspects of the present invention are accomplished and the manner of their accomplishment will be readily understood from the following specification upon reference to the accompanying drawings, in which:
  • FIG. 1 is a front elevation view of the hybrid wind turbine of the present invention, showing certain blade and some protective cage components;
  • FIG. 2 is a top plan view of the hybrid turbine of FIG. 1;
  • FIG. 3 is similar to FIG. 1, but showing the various turbine blades as having been rotated 45 degrees from their position in FIG. 1;
  • FIG. 4 is a left end view of the hybrid turbine of FIG. 2;
  • FIG. 5 is a perspective view of the hybrid blade configuration of the hybrid turbine of FIG. 1;
  • FIGS. 6, 7, and 8 are similar to FIGS. 1, 2 and 4, respectively, showing for the turbine blade components, but with cage structure removed for better viewing;
  • FIG. 9 is a perspective view of the hybrid turbine of FIG. 1, as mounted horizontally, with partial cage, frame mounting, and power generation structure;
  • FIG. 10 is similar to the hybrid turbine of FIG. 9, but with segmented inner helical blades, less certain cage components, and as mounted in a vertical orientation;
  • FIG. 10A is similar to the hybrid turbine of FIG. 10, as mounted in a vertical orientation, and showing an air motor and air storage tank;
  • FIG. 11 is a graph representing performance characteristics (comparing wind speed versus blade tip speed) for both the present invention and known prior wind turbine designs;
  • FIG. 12 is an enlarged cross-section of the present invention's airfoil blade, as taken along the lines 12-12 in FIG. 7;
  • FIG. 13 is a cross-sectional view, similar to FIG. 12, but of a modified airfoil blade design for different wind applications;
  • FIGS. 14 a, 14 b, and 14 c are similar to FIGS. 6, 7 and 8, but show one type of helical vane segmentation structure for certain operational applications;
  • FIGS. 15 a, 15 b, and 15 c are additional enlarged cross-sectional views, similar to
  • FIGS. 14 a, 14 b, and 14 c, but of a different inner helical blade configuration showing modified vane segmentation structure for different operational applications;
  • FIG. 16 a is an enlarged end view of a segmented turbine blade assembly, similar to
  • FIG. 15 c, but partially rotated, to better depict certain segmented vane blades and separation aspects;
  • FIG. 16 b is a further enlarged end view of one helical half wing, showing vane segments and support structure;
  • FIG. 17 depicts, as an exploded assembly view, how the individual curved flat panels attach to a helical half wing frame to form one of the modified smooth-walled inner helical blade assemblies; and
  • FIG. 18 is a perspective view of the hybrid turbine of FIG. 9, as mounted in a modular combination with a second hybrid turbine, and showing a shared battery storage unit.
  • VI. DETAILED DESCRIPTION OF THE INVENTION
  • Having reference to the drawings, wherein like reference numerals indicate corresponding elements, there is shown in FIGS. 1 through 5 an illustration of a hybrid wind turbine device forming one embodiment of the present invention, namely a non-segmented blade version, as generally denoted by reference numeral 20. Hybrid turbine 20 includes an outer protective safety frame or cage generally denoted by reference number 22, and a combination turbine blade assembly 23 comprising a pair of non-segmented (generally smooth-walled) helically twisted inner turbine blades, namely helical half wing blades 24 a, 24 b, and a pair of diametrically opposed outer airfoil blades 26 a, 26 b. Each of the helically twisted inner turbine blades and the outer airfoil blades cooperates in wind conditions to drive the operation of the other type blade. Further, each of the helically twisted inner turbine blades and the outer airfoil blades cooperates to form an inherent structural geometry which guards against over-speeding run away conditions.
  • The cage 22 comprises a pair of generally concave hub ends 28 a, 28 b, each comprising a rigid outer support ring member 30. There is also a similar central cage support ring member 32. Each of hub ends 28 a, 28 b has a central journal hub 34 and outwardly-extending support arms 36 connected to ring 30. The helically twisted inner turbine blades may be journaled for rotation about a common axis and having an outer diameter 31 (FIG. 4). For example, in one embodiment, a main turbine mast 38, with reduced shaft ends 40, may be rotatably journaled within each journal hub 34. Preferably, each journal hub 34 carries suitable self-lubricating ball bearing bushings (not shown) to help reduce rotational friction, vibration, and noise. A suitable alternator, such as, for example, a direct drive permanent magnet alternator, see reference numeral 35 in FIGS. 9 and 10, as attached to a shaft end 40, can be used to collect and convert the “rotational energy” power harnessed by the present wind turbine 20.
  • Safety cage 22 also comprises a series of elongated tie members 42, all of which are rigidly affixed, such as by threaded fasteners or welding, to the respective end and central support ring members 30, 32. Although omitted from FIGS. 1-5 for better viewing, the outer cylindrical surface of safety cage 22 is preferably covered with a suitable protective wire mesh 45, such as formed of commercially available rectangular-mesh wire fencing material (see FIGS. 9 and 10). It will be appreciated that the protective mesh 45 may be made of any suitable material, including for example, a plastic, or other durable material. It will be further appreciated that if the protective mesh 45 is constructed of a sufficiently strong material, the safety cage 22 may be significantly reduced, if not eliminated completely, as long as the turbine mast 38 is supported and journaled for rotation by the protective mesh. The protective mesh 45 allows the swirling wind regimes present about turbine 20 to reach both sets of the inner helical blades 24 a, 24 b, and outer airfoil blades 26 a, 26 b, yet otherwise prevent unwanted entry of human limbs, birds in flight, or other large objects that might otherwise undesirably impinge upon the respective turning blades. If desired and where considered necessary, and particularly for use on a congested urban rooftop, high-rise, and other building-attached applications, an even finer mesh screen can be used for the protective mesh 45; it can be formed with sufficiently small enough gage screen wire to prevent children's hands, broomsticks, metal rods, and other smaller objects from being inserted through the wire mesh. On the other hand, in some special applications, an open (e.g., 2 inch by 2 inch) heavy wire mesh (not shown) can be used alone to structurally support the axial cage structure for the present hybrid wind turbine's uses.
  • Preferably, the elongated airfoil blades 26 a, 26 b are formed as straight length blades, of a symmetrical cross section, with ends 25 that extend beyond the length of the inner helical blades 24 a, 24 b. Further, the overall length of the airfoil blades 26 a, 26 b is preferably with the range of some 105% to 150% greater than the overall length of the helical blades 24 a, 24 b, and more preferably, some 120% greater. This allows a substantial percentage of the available wind energy, especially at higher wind speeds, to be harnessed by the more efficient airfoil blades 26 a, 26 b. Advantageously, the somewhat shorter length of the helical blades (vs. larger airfoil blades) allows for use of concave-shaped hub ends 28 a, 28 b, which in turn allows room to house an associated energy transformation, power conversion and/or power generation unit, namely, for example a direct drive permanent magnet alternator 35 which may be attached directly to an electrical circuit (not shown), may be attached to a battery 37 for electrical storage, or the like. It will be appreciated by one of ordinary skill in the art that any suitable generator may be used as the alternator 35, including, for example, a belt-drive or direct-drive type permanent magnet alternator, a belt-drive or direct-drive type generator, or alternatively, a belt-drive or direct-drive type air motor.
  • As best seen in FIGS. 5, 6, 8, and 17 (the latter an exploded assembly view), a series of transverse blade support struts extend radially from turbine mast 38, and rotate therewith, to appropriately support, at each end as well as in the central area, the two helical half wing blades 24 a, 24 b, as well as the outer airfoil blades 26 a, 26 b. More specifically, these supports include pairs of end support struts 46, 48, and central support struts 50. As shown in FIG. 6, traverse blade support struts may radially extend from the central axis without extending from the turbine mast 38, thereby allowing the turbine mast 38 to not necessarily continuously extend through the two helical half wing blades 24 a, 24 b. In other words, the turbine mast 38 may be constructed of a pair of non-contiguous mast sections which cooperate to support the helical half wing blades 24 a, 24 b. If needed, even additional auxiliary support struts can be used, as seen in FIGS. 9, 10, and 17 with intermediate support struts 52, giving a total of five support struts for each helical half wing 24 a, 24 b. The latter is preferred when, as seen in FIG. 17, particularly for ease of manufacture and shipping in a small container in a flat condition, each smooth-walled helical half wing blade 24 a, 24 b is formed of four distinct flexible panels 84 a, 84 b, 84 c, and 84 d, and then assembled in abutting or overlapping edge fashion (via fastening with pop rivets or other connector—not shown—to the respective struts on mast 38) to create the respective generally smooth-walled helical half wing blades. It will be further appreciated that the intermediate supports struts 52 may be detached from the turbine mast 38 allowing the mast and supports to be disassembled for shipment and reassembled at a distant location.
  • FIG. 9 depicts a horizontal mounting for the hybrid wind turbine 20 of the present invention, where the hybrid wind turbine 20 has its protective cage 22 mounted upon a low-lying support stand 51. As seen, a direct drive permanent magnet alternator 35 can be used, as mounted within the concave hub end 28 b. The horizontal mounting arrangement of hybrid wind turbine 20 shown in FIG. 9 is suitable for roof-top mounting applications, such as in urban buildings, or mounted at ground level.
  • There is shown in FIG. 10, however, a more preferred vertical-mounted orientation for hybrid wind turbine 20. As shown there and as later described, the helical half wings are depicted as being formed of multiple vane segments. The support stand 53 is modified from that of stand 51 of the horizontal mounting depicted in FIG. 9, but is otherwise the same. As typically used in low power electrical situations, a low RPM direct drive permanent magnet alternator 35 is again used. However, a chain drive-type or belt drive-type generator (not shown) could be alternatively utilized. The vertical mounting arrangement shown in FIG. 10 is preferred because, regardless of which direction the wind is blowing from, such a vertically-aligned turbine 20 is able to harness wind from essentially all the swirling, gusty wind regimes being presented against it.
  • As shown in FIG. 10A, there is illustrated an embodiment of the hybrid turbine 20 wherein a direct-drive type air motor 39 is used as an associated energy transformation, power conversion and/or power generation unit. The air motor 39 may be, for example, an air motor marketed by Gast Manufacturing, Inc., of Benton Harbor, Mich. The air motor 39, which converts rotational energy into pressurized air, operates to pressurize an air storage tank 41. The pressurized air in the tank 41 may then be utilized by an air motor driven generator 43 to produce an electric current (i.e., an air-to electric generator) as desired, and whether continuously, on-demand, or during peak energy demand periods.
  • Turning to FIG. 12, there is shown the cross-sectional shape of the airfoil blades 26 a, 26 b. As seen, generally symmetrical airfoil blade shapes are used, although non-symmetrical airfoil blade shapes may also be used. They can be formed of extruded or molded aluminum, molded or extruded plastic, or similar materials. More specifically, and as particularly chosen for use in lower height applications, where generally lower wind speed conditions will normally occur, or otherwise in urban buildings under 50 stories (i.e., generally under 500 feet or approximately 152.5 meters in height), a low-speed design of airfoil blade is selected. That is, for such lower widespread operational settings the preferred airfoil blade shape, per FIG. 12, is selected as a low-speed National Advisory Committee for Aeronautics (“NACA”), NACA 0015 airfoil-type design blade. As seen, such a NACA 0015 airfoil blade design has generally a wide thickness T and a squat parabolic length L of the blade in cross-section. In one prototype made in accordance with this invention, the airfoil blades 26 a, 26 b were formed of extruded aluminum, where T was approximately 0.9004 inch, and L was approximately 6 (six) inches.
  • On the other hand, there is seen in FIG. 13 a modified cross-sectional shape of the outer airfoil blades, 26 a′, 26 b′, namely for use in a combination turbine blade assembly 23 in high wind speed applications, or otherwise for use in higher urban building elevations (generally from 500 feet or 152.5 meters high and above). In those potentially more extreme wind applications, a different and higher speed airfoil blade design is preferred, namely a high-speed NACA 0012 airfoil blade design. As seen in FIG. 13, and as contrasted to the airfoil blade profile of FIG. 12, such a modified airfoil design for generally higher wind speeds, generally has a long length L, and thin thickness T. In a different prototype made in accordance with this invention, again formed of extruded aluminum, T was chosen as 0.7202 inch and L was chosen as 6 (six) inches. It will be appreciated by one of ordinary skill in the art that any suitable material may be used to construct the airfoil blades 26 a, 26 b, including, for example, extruded aluminum, a aluminum sheet cladding over foam plastic, molded or extruded plastic material such as PVC, polystyrene or polycarbonate, a combination of the above, or other similar material.
  • As seen when comparing FIGS. 12 and 13, the shape of the outer airfoil blades can be adjusted as needed depending on the given wind power generation requirements. Even other shapes of airfoil blades, including non-symmetrical blade designs, can be utilized, depending on the annual wind conditions expected for a given installation. That is, for extreme wind conditions, and for very high elevations (e.g., over 50 stories and generally over 500 feet or approximately 152.5 meters in height), the airfoil blades 26 a, 26 b can be greatly modified as needed. In that way, the combination turbine blade assembly 23 can be customized within the dimensional confines of a given hybrid wind turbine 20, yet without requiring changes to the turbine's other component parts.
  • As shown in FIGS. 1-8 (and as will be further described relative to FIGS. 14 a-14 c, and 15 a-15 c), the respective inner helical half wings 24 a, 24 b have preferably been twisted through 180 degrees, i.e., from one end to the other. However, that helical blade twist can fall within the range of end-to-end twist from as little as approximately 45 degrees to as much as approximately 270 degrees, while still achieving the operational efficiencies of the hybrid wind turbine 20 of the present invention. Further, the smooth-surfaced inner helical half wing blades 24 a, 24 b can each be formed of one continuous wing member, or more preferably, for ease of manufacture and shipping purposes and as explained above, be formed of four or more individual flat-curved panel segments whose edges abut or slightly overlap one another, and are mounted to the respective support struts via rivet fasteners, or other connector, i.e., to form each overall smooth-surfaced helical half wing.
  • Turning to FIGS. 14 a, 14 b, and 14 c, there is shown another and the preferred form of the invention, namely one having a segmented-type hybrid turbine blade assembly, generally denoted by reference number 54. Segmented turbine blade assembly 54 utilizes the same end struts 46, 48, central strut 50, turbine mast 38 with reduced ends 40, and same outer airfoil blades 26 a, 26 b. However, instead of utilizing the generally smooth-surfaced helical inner turbine blades 24 a, 24 b (of combination blade assembly 23 per FIG. 6), the modified type blade assembly 54 utilizes elongated segmented-type helical inner turbine blades 56 a, 56 b. More specifically, as seen in FIGS. 14 a, 14 b, and 14 c, each such helical half wings 56 a, and 56 b is respectively formed of, for example, six separate vane segments, denoted by reference numerals 58 a, 58 b, 58 c, 58 d, 58 e, and 58 f. Thus, such a separate six (6)-vane segment design (for each helical half wing 56 a, 56 b) results in a total of twelve (12) vane segments. That type segmented helical blade design would preferably be used in higher heights, and greater wind speed installations, such as when used in a hybrid wind turbine 20 mounted atop a high rise building, whether mounted horizontally or vertically. Of course, it will be understood that the number of vane segments may vary according to design considerations and may do so from as little as two vane segments (for lower speed wind installations) to as many as may be manufactured and fastened to the turbine blade assembly.
  • On the other hand, such as for use in lower height and lower speed wind installations, there is shown in FIGS. 15 a, 15 b, and 15 c a modified form of segmented type combination turbine blade assembly, generally denoted by reference numeral 60. Again, modified segmented turbine blade assembly 60 utilizes the same support struts 46, 48, and 50, central mast 38 with reduced ends 40, and straight airfoil blades 26 a, 26 b. However, this time each segmented helical halfwing 62 a, 62 b is respectively formed of only three vane segments 64 a, 64 b, 64 c, for a total of six (6) such vane segments across modified blade assembly 60.
  • The attachment of the respective vane segments to a tubular support frame 70 will now be described. The support frame may be formed of tubular metal, plastic, or similar material. As depicted in FIGS. 16 a and 16 b, relative to modified assembly 60, each respective vane segment 64 a, 64 b, and 64 c has a first longitudinal or fixed edge 66 that is affixed via a fastener 68 (such as a pop rivet) to the support frame 70. There is also a second longitudinal or free edge 72 which is free floating, i.e., not affixed to any structure, and, which overlaps, by an overlap distance OD, the affixed edge 66 of the next adjacent vane segment. It has been found that the overlap distance OD can be in the range of from approximately zero to 2 inches. Thus, one vane segment overlaps and cascades over the next adjacent outer vane segment. For example, as seen in FIG. 16 a, the free longitudinal edge of vane segment 64 b is free floating and separated by a separation distance SD from the first or fixed longitudinal edge 66 of adjacent vane segment 64 c. It will be appreciated that in another embodiment, the free edge 72 may substantially abut, rather than overlap the affixed edge 66 of the next adjacent vane segment. It will be further appreciated that in yet another embodiment, the free edge 72 may be separated from the affixed edge 66 of the next adjacent vane segment forming a permanent air slot with the separation distance SD. Frame is preferable formed of tubular galvanized steel material. Each vane segment is preferable formed of an ultraviolet light-inhibiting plastic, such as ultraviolet light-resistive polycarbonate material or ultraviolet light-resistive polyvinyl chloride (PVC) material, fiber glass sheeting, aluminum, light steel sheeting, Kevlar, polyurethane, rubber sheeting material, or the like.
  • During rotation of the hybrid wind turbine formed with a segmented blade assembly, the separation distance SD can vary greatly depending on the material used for each respective vane segment, the running width W of each vane segment, the flexibility present in a given vane segment between its fixed longitudinal edge 66 and its free edge 72, and the given wind speeds (i.e., air pressure) being encountered by the wind turbine at any given moment.
  • For example, prototype units were made in accordance with the present invention, where the overall blade length for airfoil blades 26 a, 26 b was approximately 9.5 feet, the overall length of the helical half wings 62 a, 62 b was approximately 8 feet, the diameter of joined helical half wings (designated as DH in FIG. 16 a), was approximately 50 inches, the respective vane segments 64 a, 64 b, and 64 c were formed of a flexible material, with a vane width W of approximately 9 inches, a vane thickness of some 0.2 inches, and there was an approximately 2 inch gap present between the outer edge of the helical half wings and the innermost edge of the respective airfoil blades. In the presence of a 15 mph wind, it was found that the separation distance SD, and hence elongated air slot, created between the vane segments was in the range of approximately ⅛ to ¾ inch, and generally about ⅜ inch. Moreover, it was also found that, in winds generally above 25 mph, and where the vane segments were formed of a substantially flexible material, such as rubber sheeting, and regardless if a given portion of a helical half wing was in a wind-gathering or non-wing gathering condition, the respective free floating edge 72 was maintained at a substantially constant separation distance SD. In effect, the presence of vane segmentation allowed the helical half wings to have air slots that cooperatively act as an “air valve”, i.e., between respective vane segments. On the other hand, when the vane segments were formed of a somewhat stiffer, yet flexible, sheeting material such as ultraviolet light-resistive polycarbonate, it was found that for the same prototype unit, the separation distance SD created was somewhat greater for the outermost vane segments, e.g. vane segments 58 a and 58 b in FIG. 14 c, and somewhat lesser for the inner vane segments, e.g., segments 58 c through 58 f.
  • It will be appreciated by one of ordinary skill in the art that even though specific examples of measurements are giving in illustrated embodiment above, various modifications in the dimensions of the components may be made without deviating from the teachings of the present invention. For example, the diameter of the outer airfoil blades 26 a, 26 b may be in the range of approximately 4 to 24 inches greater than that of the outermost edge of the inner half wing blades 24 a, 24 b, the length of the turbine mast 38 may be in the range of approximately 8 to 10 feet, the length of each half wing blade 24 a, 24 b may be in the range of approximately 6 to 9 feet, and the length of each airfoil blade 26 a, 26 b may be in the range of approximately 9.5 to 11.5 feet. Similarly, the half wing blades 24 a, 24 b may have a thickness in the range of approximately 0.03 to 0.25 inches, each vane segment 58 a, 58 b, 58 c, 58 d, 58 e, 58 f may have a width in the range of approximately 3 to I 1 inches, the diameter of the half wing blades 24 a, 24 b may be in the range of approximately 24 to 50 inches, and the cross sectional thickness of each airfoil blade 24 a, 24 b may be in the range of approximately 0.5 to 1.5 inches.
  • Thus, the segmentation-type combination turbine blade assemblies 54 and 60 have distinct advantages over the smooth surface-type blade assembly 23 (where the helical half wings are formed of only a generally smooth surface, or of edge-abutting flat panel sections creating a generally smooth surface, and without any segmentations and without otherwise having separate flexible vane segments with free-floating edges). For example, the elongated segmentation of the helical half wings in the present invention, which is the preferred embodiment, results in a substantial reduction in the air drag, contrary to what was previously present with Savonius type blade systems, including the twisted S-type helical versions thereof. By way of explanation, as the rear or leeward side of a non-segmented Savonius blade rotates into position against the wind, i.e., after just being in a wind gathering mode, it enters a non-gathering wind position. In that condition, the blade's concave back side presents a substantial drag against performance.
  • However, with the present invention's preferred segmentation structure, oncoming swirling wind is allowed to simply filter through air slots present in the back side of the cascading, overlapping, and segmented helical vane segments (e.g., vane segments 64 a, 64 b, 64 c). This occurs due to the presence of the air slots provided via segmentation distances SD. (To visualize, this is not unlike the slots formed among and between the edges of a series of Venetian blinds as helically twisted 180° from end-to-end.) This allows one vane segment to create a vacuum effect to lift the free edge of the next adjacent vane. For example, it has been noted that at start up and at lower speed rotations, the respective vanes of the helically twisted blades of the present hybrid wind turbine 20, formed as having vane segments, tend to close on one another as they take in air, and then slightly open on the backside or leeward side of a cycle, i.e., the non-wind gathering side, to create elongated air slots and thereby reduce air drag by letting air through. However, as described above, when at full rotational speeds and particularly with very flexible vane material (e.g., rubber sheeting), the separation distances SD created between vane segments essentially stay constant throughout the full rotational cycle, i.e., during both the wind gathering and non-wind gathering cycle portions. In effect, the presence of the vane segments in the helical half wings helps substantially overcome the prior art problem of so-called “blade profile differentiation”, as was common with most Savonius blade systems. Thus, the segmented vane structure helps substantially increase the performance capability for the respective helical half wing portions of the segmented combination blade assemblies 54, 60, particularly in high speed winds, e.g., over 45 mph.
  • Then, during high operational, i.e., higher wind speed, conditions, the vane segments, even when in their wind-gathering condition, have the tendency to “open up”. This allows yet even more wind to flow through the air slots formed by the segmentation distances SD. This, in turn, results in allowing the segmented helical half wings to rotate even faster than they normally would, because they are under the rotational influence of the much higher operational speed airfoil blades 26 a, 26 b. Thus, the normally slower inner Savonius-type turbine blades have the tendency to get out of their own way, i.e., to increase overall hybrid turbine performance and efficiencies at higher wind speeds.
  • Then, further still, in extremely high rotational speed conditions, the vane segments actually act as an “airbrake”, relative to the airfoil blades, helping to prevent runaway conditions when operational safety might otherwise be of concern for the turbine 20. That is, under extreme wind conditions, the segmented helical half wings, even though the vane segments thereof are opened up with air slots, tend to continuously brake or slow down the otherwise excessively freely-rotating outer airfoil blades 26 a, 26 b, to keep the entire hybrid blade assembly 23 from over-speeding.
  • It has been found that in normal operation, the more segmented (i.e., more individual vane segments) the helical half wings are, the less efficient they are. This is because with such a segmented hybrid turbine, it takes more wind at start up to commence turbine rotation. However, once reaching higher operational speeds, the presence of the extra number of vane segments helps the inner helical turbine blades to, in effect, get out of their own way, thereby helping minimize their own drag effect on the more efficient outer airfoil blades. Thus, it will be appreciated that the choice of individual vane segmentation will depend on the projected operating conditions of the hybrid turbine. For example, in places with traditionally lower wind speeds, a smaller number, for example two vane segments with one air slot per helical half wing, segments may be utilized, while at locations with traditionally higher wind speeds, a greater number of segments may be utilized.
  • Further yet, it has been noted in smoke-type testing that the segmented helical vanes tend to, in effect, “standardize” the turbulent air within any given gusty wind regime blowing through them, which has the result of greatly assisting the outer airfoil blades' performance. That is, as believed and understood, the segmented twisted vanes tend to organize (or perhaps better stated as “regularize”) the wind currents before they reach the respective outer straight airfoil blades. This has the effect of yet further increasing the efficiency of the hybrid wind turbine 20, as especially noted along the outer ends thereof, i.e., by maximizing the efficiency of the outer airfoil blades via standardizing the amount and flow pattern of wind currents that reach them.
  • Still further, it has been found via testing that by using straight length blades, rather than curved length blades, for airfoils 26 a, 26 b, when in combination with the inner helical blades 56 a, 56 b (or 62 a, 62 b), the overall efficiency and operational speed of the present hybrid wind turbine, in any given speed wind, is greatly improved. As to the form of attachment for the respective outer straight airfoil blades 26 a, 26 b, those blades, as preferably formed of a suitable extruded aluminum material, are welded via welds 75 into the end of the respective metal support struts 46, 48, 50 (see, for example, FIG. 16 a) which are part of support frame 70. Depending upon given wind speeds, the operational diameter for the respective airfoil blades 26 a, 26 b can be chosen to be as little as say 36 inches and as much as 74 inches, with the diameter of the helical half wing blades then proportionally varied.
  • Such a selected change in the radial positioning for the respective outer straight airfoil blades is quite advantageous. This is because the positioning of the outer airfoil blades 26 a, 26 b, can be customized for a given installation, all depending upon the expected available wind conditions and regimes. For example, when winds are normally of generally higher speeds, the airfoil blades are formed to have a smaller operating diameter. But when installed where wind conditions are normally of only modest speeds, the airfoil blades 26 a, 26 b can be positioned at a more outermost position. This approach recognizes that, while airfoil blades in the outermost positions can supply more angular momentum to the hybrid wind turbine, they can also tend to increase chances for unwanted vibration for the overall hybrid wind turbine.
  • Preferably, the smooth surface helical half wings 24 a, 24 b of combination blade assembly 23 (per FIGS. 1-8) are formed, whether as one piece or several abutting flat panel sections, of a material that will readily withstand the outdoor elements, e.g., rain and snow, and high and low temperatures, such as an ultraviolet light-inhibited polycarbonate material, or a similar UV-light inhibited PVC (polyvinyl chloride) material, or any other suitable flexible material that can take the shape of frame 70 and be formed into the helical blades 24 a, 24 b. Further, the elongated vane segments, such as vanes 58 a through 58 f, or 64 a through 64 c, can be formed of the same type of material. In any event, such vane segments should be formed of a relatively flexible material, so that the separation distance SD created between vanes can be maximized during normal rotation.
  • As seen in FIG. 16 b, the fixed edge 66 of each respective vane segment is captured and held within an aerodynamically-shaped vane nose bracket 82. The various nose brackets with attached vanes then can be respectively fastened along their length to the support frame 70, by way of a series of fasteners 68, such as pop rivets. This aerodynamically shaped nose bracket 82 may help reduce air drag at the leading fixed edge 66 of the respective vane segment.
  • Seen in FIG. 11 is a graphical chart of the respective performance efficiencies, over various wind speeds, of different types of wind turbine designs as listed, including the hybrid wind turbine design of the present invention. More specifically, FIG. 11 depicts graphically the relationship of turbine efficiency percentage in the form of the ratio of blade tip speed to wind speed, for numerous different types of prior wind turbine blade designs (see dotted lines). That is, as seen in FIG. 11, the hybrid wind rotor turbine of the present invention (see solid line), which is self starting, is very efficient over a larger range of blade tip to wind speed ratios. Then, as shown in solid line, the efficiency performance of the hybrid wind turbine of the present invention reflects that the initial performance at lower wind speeds performs at the expected output efficiency of normal Savonius-type turbine units. However, at higher wind speeds, the present hybrid unit's performance becomes closer to what is found with traditional Darrieus-type straight-blade turbine units.
  • Further, FIG. 11 depicts that the hybrid wind turbine of the present invention runs no faster than approximately 3½ wing tip speed versus wind speed, and thus, minimizes any chance of runaway conditions. That is, FIG. 11 shows graphically that as wind speeds move higher, the present hybrid turbine advantageously is progressively constrained by the typical air drag effects common to helical Savonius-type turbine units, thus resulting in the controlled performance unique to the present hybrid wind turbine design.
  • In operation, the helical halfwing blades of the present hybrid turbine blade invention (whether of smooth-walled or vane segment type) commence rotation quickly, i.e., with as little as 4 to 6 mph wind. Thus, the inner helical half wing blades 24 a, 24 b quickly start the overall hybrid wind turbine 20 into rotation. Thereafter, the straight airfoil blades 26 a, 26 b begin rotating, again as initially powered by the helical blades, and then at higher wind speeds they start harnessing wind and generating power at their much higher efficiency level, i.e. at their higher blade-tip-velocity-to-wind velocity ratio.
  • Through testing it has been found that there is an optimum ratio of the width WT (see FIG. 6) of the combination hybrid blade assembly 23 (or alternatively, of the modified segmented combination turbine blade assemblies 54, 60) of the present invention, versus the length LT of those blade assemblies. That is, for generally higher speed winds, that so-called turbine aspect ratio, including the “reach” or “pitch” relative to the overall swept area, optimally and preferably is approximately a ratio of 1:3. On the other hand, for generally lower speed winds, the optimal turbine aspect ratio is instead lower and approximately 3:5. Furthermore, it will be appreciated that the airfoil blades 26 a, 26 b may be radially positionally adjustable relative to the half wing blades 24 a, 24 b to thereby help maximize wind harvesting depending upon the local wind conditions and the mounting height of the turbine blade assembly 23. Still further, it will be appreciated that the number and position of airfoil blades may be varied, including, for example, having three or more airfoil blades. Thus, as seen, the present hybrid turbine can be readily customized for a given wind-harvesting application.
  • Turning to FIG. 18, there is depicted pair of horizontally mounted hybrid wind turbines 20-1 and 20-2, of the present invention, wherein the hybrid wind turbines 20-1 and 20-2 are mounted in a modular configuration. As seen, each hybrid wind turbine 20-1, 20-2 may be mounted in a separate support stand 51-1, 51-2, and the support stands 51-1, 51-2 may be then assembled in abutting or overlapping edge fashion (via fastening with bolts or other connector—not shown—to the respective outer support ring member 30-1, 30-2) to create the combined hybrid wind turbine. Each hybrid wind turbine 20-1, 20-2 may further have its own respective direct-drive permanent magnet alternator 35-1, 35-2, or other suitable energy transformation unit, connected to an energy storage unit (battery) 37-1, 37-2. If desired, the two storage units 37-1, 37-2 may be electrically combined to enhance their storage capacity.
  • It will be appreciated that the two hybrid wind turbines 20-1 and 20-2 may be combined in a number of different ways, and in a number of different configurations. While it is preferable that the turbine mast of each hybrid wind turbine 20-1 and 20-2 be mounted so as to operate separately and independently, it will be understood that the two masts may be joined so as to form a combined, elongated central mast. Similarly, the various components associated with the hybrid wind turbines 20-1 and 20-2, may be combined or separated as desired, including having a single alternator, a single battery, or the like.
  • From the foregoing, it is believed that those skilled in the art will readily appreciate the unique features and advantages of the present invention over previous types and designs of wind turbines and blades therefore. Further, it is to be understood that while the present invention has been described in relation to particular preferred and alternate embodiments as set forth in the accompanying drawings and as above-described, the same nevertheless is susceptible to change, variation and substitution of equivalents without the pressure from the spirit and scope of this invention. It is therefore intended that the present invention be unrestricted by the foregoing description and drawings, except as may appear in the following appended claims.

Claims (36)

1-89. (canceled)
90. A method of overcoming blade profile differentiation in a helical wind turbine blade having a windward side and a leeward side, comprising the steps of:
forming a rotatably supported helically twisted blade to comprise a plurality of flexible elongated vane segments, wherein each vane segment has a fixed edge and a free edge, and the free edge of one segment at least one of partially overlaps and substantially abuts the fixed edge of the next adjacent vane segment; and
raising the free edge of at least one vane segment up from the fixed edge of the next adjacent vane segment during rotation of the rotatably supported helically twisted blade, thereby providing an air valve opening to reduce air drag when the leeward side surfaces of the helically twisted blade are being periodically presented against the wind.
91. The method of claim 90, wherein during rotation, the free edge of each vane segment is adapted to rise up from the fixed edge of the next adjacent vane segment by a variable separation distance in the range of between approximately ⅛″ to ¾″.
92. The method of claim 91, wherein during rotational operation, the variable separation distance between the radially-outermost mounted vane segments is greater than the variable separation distance between the radially-innermost mounted vane segments.
93. The method of claim 90, further comprising the step of mounting the helically twisted blade to a substantially vertically aligned rotatable turbine mast.
94. The method of claim 90, further comprising the step of converting rotational energy of the rotatably supported helically twisted blade into electrical energy.
95. The method of claim 94, further comprising the step of converting rotational energy of the rotatably supported helically twisted blade into electrical energy utilizing one of a direct drive permanent magnet alternator, a belt drive permanent magnet alternator, a direct drive generator, a belt drive generator, a direct drive air motor and a belt drive air motor.
96. The method of claim 90, wherein the helically twisted blade is twisted from one end to the other end, through a twist rotation of one of approximately 45°, 90°, 180°, and 270°.
97. The method of claim 90, further comprising the step of mounting a plurality of substantially straight airfoil blades fixed for rotation with the helically twisted blade and rotatably supported therewith.
98. The method of claim 97, wherein the airfoil blades are longer than the helically twisted blade.
99. The method of claim 97, further comprising the step of converting rotational energy of the rotatably supported helically twisted blade and airfoil blades into electrical energy.
100. The method of claim 97, wherein the converting step comprises utilizing one of a direct drive permanent magnet alternator, a belt drive permanent magnet alternator, a direct drive generator, a belt drive generator, a direct drive air motor and a belt drive air motor.
101. The method of claim 97, wherein the helically twisted blade is twisted from one end to the other end, through a twist rotation of one of approximately 45°, 90°, 180°, and 270°.
102. The method of claim 90, further comprising the steps of lowering the free edges of the respective vane segments towards the respective fixed edges of adjacent vane segments when the leeward side is in position of taking in air, and raising the free edges up from adjacent fixed edges of adjacent vane segments as an air valve when the windward side is in position of being forced against wind, thereby creating reduced air drag by letting air flow from the leeward side through the separation air slots as formed between the respective raised free edges and fixed edges of the vane segments.
103. A wind turbine apparatus for harvesting wind energy, comprising:
a helical blade journaled for rotation;
the helical blade being separated into a plurality of lengthwise blade segments, each blade segment having a radially inward fixed edge, and a radially outward free edge, the respective free edges being adapted, during wind turbine operation, to rise up through a separation distance away from the respective fixed edges, the free edges thereby moving from a normal rest position to a full operating position.
104. The apparatus of claim 102, further comprising a turbine mast journaled for rotation and wherein the helical blade is carried by the turbine mast;
105. The apparatus of claim 102, wherein the free edge of a given blade segment radially overlaps the fixed edge of the next adjacent blade segment.
106. The apparatus of claim 102, and an aerodynamically shaped nose element mounted on the fixed edge of the respective blade segments so as to help reduce air drag.
107. The apparatus of claim 102, and at least a pair of airfoil blades fixed with and located radially outward of the helical blade.
108. The apparatus of claim 107, wherein the overall length of the airfoil blades is in the range of approximately 105% to 150% of the overall length of the helical blade.
109. The apparatus of claim 107, wherein two airfoil blades are carried by the turbine mast at diametrically opposed positions.
110. The apparatus of claim 107, wherein a plurality of airfoil blades are carried by the turbine mast at circumferentially symmetrical positions.
111. The apparatus of claim 107, wherein the airfoil blades are substantially straight.
112. The apparatus of claim 107, wherein the airfoil blades are radially positionally adjustable relative to the helical blade, to thereby help maximize wind harvesting depending upon the local wind conditions and the mounting height of the wind turbine apparatus.
113. The apparatus of claim 107, and a protective cage enclosing the helical blade and airfoil blades.
114. The apparatus of claim 102, wherein the helical blade is mounted in one of substantially horizontal, vertical, and angular alignment.
115-122. (canceled)
123. A method of maximizing wind energy harvesting by a wind turbine while minimizing air drag and over-speed conditions, comprising the steps of:
mounting a helically twisted blade supported for rotation;
mounting a plurality of substantially straight airfoil blades for rotation, wherein the substantially straight airfoil blades are mounted radially outwardly of the helically twisted blade and rotate with the helically twisted blade;
wherein the helically twisted blade is adapted to operate in low wind speed conditions to start the rotation of the airfoil blades,
wherein the airfoil blades and the helically twisted blade cooperate in mid-range wind speed conditions to rotate both the airfoil blades and the helically twisted blade,
and wherein the helically twisted blade is adapted to operate in high speed conditions to produce an air drag to prevent the over-speed rotation of the airfoil blades and the helically twisted blade.
124. The method of claim 123, wherein the helically twisted blade comprises a plurality of flexible elongated vane segments, wherein each vane segment has a fixed edge and a free edge, and wherein in low speed conditions the free edge of at least one vane segment at least one of partially overlaps and substantially abuts the fixed edge of the next adjacent vane segment, to thereby assist in starting the rotation of the airfoil blades.
125. The method of claim 124, wherein in mid-range wind speed conditions the free edge of at least one vane segment variably raises away from the fixed edge of the next adjacent vane segment thereby providing an air valve opening to reduce air drag when the leeward side surfaces of the helically twisted blade are being periodically presented against the wind.
126. The method of claim 124, wherein in high speed conditions the free edge of at least one vane segment raises away from the fixed edge of the next adjacent vane segment thereby providing air drag to help prevent the over-speed rotation of the airfoil blades.
127. The method of claim 124, wherein during rotation, the free edge of each vane segment is adapted to rise up from the fixed edge of the next adjacent vane segment by a variable separation distance in the range of between approximately ⅛″ to ¾″.
128. The method of claim 124, wherein during rotational operation, the variable separation distance between the radially-outermost mounted vane segments is greater than the variable separation distance between the radially-innermost mounted vane segments.
129. The method of claim 123, further comprising the step of converting rotational energy of the rotatably supported helically twisted blade and airfoil blade into electrical energy.
130. The method of claim 129, further comprising the step of converting rotational energy of the rotatably supported helically twisted blade into electrical energy utilizing one of a direct drive permanent magnet alternator, a belt drive permanent magnet alternator, a direct drive generator, a belt drive generator, a direct drive air motor and a belt drive air motor.
131. The method of claim 123, wherein the helically twisted blade is twisted from one end to the other end, through a twist rotation of one of approximately 45°, 90°, 180°, and 270°.
US12/070,677 2003-07-29 2008-02-19 Wind turbine device Abandoned US20080273974A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/070,677 US20080273974A1 (en) 2003-07-29 2008-02-19 Wind turbine device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/629,370 US7132760B2 (en) 2002-07-31 2003-07-29 Wind turbine device
US11/529,854 US7362004B2 (en) 2003-07-29 2006-09-29 Wind turbine device
US12/070,677 US20080273974A1 (en) 2003-07-29 2008-02-19 Wind turbine device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/529,854 Division US7362004B2 (en) 2003-07-29 2006-09-29 Wind turbine device

Publications (1)

Publication Number Publication Date
US20080273974A1 true US20080273974A1 (en) 2008-11-06

Family

ID=37678397

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/529,854 Expired - Fee Related US7362004B2 (en) 2003-07-29 2006-09-29 Wind turbine device
US12/070,677 Abandoned US20080273974A1 (en) 2003-07-29 2008-02-19 Wind turbine device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/529,854 Expired - Fee Related US7362004B2 (en) 2003-07-29 2006-09-29 Wind turbine device

Country Status (1)

Country Link
US (2) US7362004B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080191487A1 (en) * 2007-02-13 2008-08-14 New Earth, Llc Wind-driven electricity generation device with savonius rotor
US20090261595A1 (en) * 2008-04-17 2009-10-22 Hao-Wei Poo Apparatus for generating electric power using wind energy
WO2011011018A1 (en) * 2009-07-24 2011-01-27 Ari Green Technology, Llc Portable cylindrical and conical spiral wind turbine
US20110211956A1 (en) * 2010-02-26 2011-09-01 Chin-Lien Tseng Parallel-connected matrix integrated wind power generation system
US20110211966A1 (en) * 2010-02-02 2011-09-01 Philip Watts Wind power generation system
US20110236216A1 (en) * 2010-03-29 2011-09-29 Konopacki Jeffrey M Wind turbine mounting system for non-turbine purpose built structures
US8134246B1 (en) * 2009-05-20 2012-03-13 Lois William A Fluid driven generator
US20120261924A1 (en) * 2011-04-12 2012-10-18 Kim Christensen System, Method and Apparatus for Capturing Kinetic Energy
US20130039755A1 (en) * 2011-08-12 2013-02-14 Norman Holley Generation of renewable energy from mass airflow in underground tunnels
US8378518B2 (en) 2009-03-26 2013-02-19 Terra Telesis, Inc. Wind power generator system, apparatus, and methods
US20130272894A1 (en) * 2012-04-11 2013-10-17 Charles Martin Sieger Archimedean Modular / Multi-Axis Rotor (AMR)
US8564148B1 (en) * 2011-05-11 2013-10-22 John J. Novak AC energy generator
US20140021723A1 (en) * 2009-02-21 2014-01-23 Frank L. Christy Solar Tree with Optional Wind Turbine Generator
US20140196446A1 (en) * 2011-08-12 2014-07-17 Norman Holley Generation of renewable energy from mass air flow
US8864440B2 (en) 2010-11-15 2014-10-21 Sauer Energy, Incc. Wind sail turbine
WO2014192664A1 (en) * 2013-05-25 2014-12-04 Tamatsu Yoshiji Vertical axis water/wind turbine motor using flight feather opening/closing wing system
US8905704B2 (en) 2010-11-15 2014-12-09 Sauer Energy, Inc. Wind sail turbine
JP2015113775A (en) * 2013-12-12 2015-06-22 日本クリーンシステム株式会社 Vertical shaft wind turbine
US9103321B1 (en) * 2012-09-13 2015-08-11 Jaime Mlguel Bardia On or off grid vertical axis wind turbine and self contained rapid deployment autonomous battlefield robot recharging and forward operating base horizontal axis wind turbine
US9404476B2 (en) 2012-04-11 2016-08-02 Charles Martin Sieger Modular multi-axial rotor
US9705446B1 (en) 2012-04-11 2017-07-11 Charles Martin Sieger Modular multi-axial rotor
WO2023204765A1 (en) * 2022-04-22 2023-10-26 Nanyang Technological University Turbine device and system for harvesting tidal energy from water currents

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2432491C2 (en) * 2005-12-29 2011-10-27 Георг ХАМАНН Device and system for production of regenerative and renewable wind energy
US8251662B2 (en) 2007-01-22 2012-08-28 Parker Daniel B Wind turbine blade assembly and apparatus
CA2701756A1 (en) * 2007-10-07 2009-04-16 Daniel Farb Support of flow deflection devices in wind turbines
US8439859B2 (en) 2007-10-08 2013-05-14 Ais Gmbh Aachen Innovative Solutions Catheter device
US8393853B2 (en) * 2007-11-19 2013-03-12 Ocean Renewable Power Company, Llc High efficiency turbine and method of generating power
WO2009097055A2 (en) * 2007-12-13 2009-08-06 Alliance For Sustainable Energy, Llc Wind turbine blade testing system using base excitation
FR2926623B1 (en) * 2008-01-22 2014-09-12 Expansion Dev LIGHTING SYSTEM
WO2009093922A1 (en) * 2008-01-24 2009-07-30 Srdjan Ceramilac Three wing radial wind-turbine
WO2009110020A2 (en) * 2008-03-04 2009-09-11 Giovanni Teglia Description of industrial invention
EP2267299B1 (en) * 2008-03-04 2016-12-07 Nanjing Yuneng New Energy Technology Co.,Ltd A wind power generating system
DE102008022139A1 (en) * 2008-04-29 2009-11-05 Ap Aero Power Ltd. Device for generating electrical energy
WO2009135136A2 (en) * 2008-05-02 2009-11-05 Alliance For Sustainable Energy, Llc Base excitation testing system using spring elements to pivotally mount wind turbine blades
US20100090474A1 (en) * 2008-07-05 2010-04-15 Michael Anguelo Modular, collapsible-sail windmill tower system
GB2461711A (en) * 2008-07-08 2010-01-13 Cypress Wind Turbines Oy Vertical axis wind turbine with direct-drive coupling between shaft and generator
KR100933790B1 (en) * 2008-07-31 2009-12-24 주식회사 시그너스파워 Vertical axis type darrieus windmill
US20100140950A1 (en) * 2008-08-22 2010-06-10 Natural Power Concepts, Inc. Decorative wind turbine having flame-like appearance
DE102008052182A1 (en) * 2008-10-17 2010-04-22 Debus, Martin Savonius wind turbine, has rotor blades closed above by circular disk, opened down, and connected with common shaft, where wind turbine is guided into lattice cage or H-frame and spins around specific value
FR2937384B1 (en) * 2008-10-22 2011-08-05 Georges Rinjonneau VERTICAL WHEELED ENGINE WITH ARTICULATED BLADES
CN101749176B (en) * 2008-11-28 2013-05-15 财团法人工业技术研究院 Wind driven device and composite set thereof
US8096750B2 (en) * 2009-03-30 2012-01-17 Ocean Renewable Power Company, Llc High efficiency turbine and method of generating power
FR2944834A1 (en) * 2009-04-24 2010-10-29 Emmanuel Robert Lucien Porcher Savonius and Darrieus hybrid vertical axis wind turbine for use by e.g. small/average industrial/commercial structure, has baffles symmetrical with respect to each other or slightly asymmetrical to faces of blades
US9004864B2 (en) 2009-06-22 2015-04-14 Kean W. Stimm Wind turbine
GB0912695D0 (en) * 2009-07-22 2009-08-26 Power Collective The Ltd A generator
ITCO20090026A1 (en) * 2009-07-28 2011-01-28 Windesign S R L "HYBRID TURBINE WITH VERTICAL TREE FOR ELECTRIC ENERGY GENERATORS"
US8317480B2 (en) * 2009-07-30 2012-11-27 Scarpelli Tadd M Turbine assembly and energy transfer method
IT1395071B1 (en) 2009-08-11 2012-09-05 Enatek S R L ELECTRIC TYPE ALTERNATOR FOR WIND GENERATORS
US8562298B2 (en) * 2009-09-22 2013-10-22 Roberto VALLEJO Vertical-axis wind turbine
US8790069B2 (en) * 2009-10-14 2014-07-29 No Fossil Energy, Llc Enclosed vertical axis fluid rotor
US20110089701A1 (en) * 2009-10-16 2011-04-21 Blake Vincent M Methods and apparatus for generating electrical energy based on waste air flow
ITRM20090551A1 (en) * 2009-10-28 2011-04-29 Giampaolo Cetraro VERTICAL WIND TURBINE WITH VARIABLE GEOMETRY
WO2011072402A1 (en) * 2009-12-14 2011-06-23 Habeco S.A. Multi-purpose vertical axis wind turbine
US8872375B2 (en) * 2010-03-05 2014-10-28 Deka Products Limited Partnership Wind turbine apparatus, systems and methods
US8461730B2 (en) 2010-05-12 2013-06-11 Science Applications International Corporation Radial flux permanent magnet alternator with dielectric stator block
US7976267B2 (en) * 2010-08-10 2011-07-12 Burrell Iv James W Helix turbine system and energy production means
US20120070293A1 (en) * 2010-09-17 2012-03-22 Eric Cwiertnia Wind turbine apparatus, wind turbine system and methods of making and using the same
CO6460078A1 (en) 2010-12-02 2012-06-15 Ecopetrol Sa SYSTEM FOR ELECTRICAL GENERATION FROM LOW SPEED WIND ENERGY WITH TWO DRIVING WING SYSTEMS
US9051918B1 (en) 2011-02-25 2015-06-09 Leidos, Inc. Vertical axis wind turbine with tensile support structure having rigid or collapsible vanes
US8358030B2 (en) * 2011-03-17 2013-01-22 Via Verde Limited Wind turbine apparatus
US9133815B1 (en) 2011-05-11 2015-09-15 Leidos, Inc. Propeller-type double helix turbine apparatus and method
US8866328B1 (en) 2011-06-07 2014-10-21 Leidos, Inc. System and method for generated power from wave action
MA33875B1 (en) * 2011-06-24 2013-01-02 Univ Hassan Ii Ain Chock Vertical axis wind turbine, convertible, self-regulating, combining a soapius and a darrieus, with foldable blade.
TWI653390B (en) * 2012-01-25 2019-03-11 何尼格 瑪麗亞 Wind power installation
US9331535B1 (en) 2012-03-08 2016-05-03 Leidos, Inc. Radial flux alternator
TW201410969A (en) * 2012-09-01 2014-03-16 Yin-Shang Soong A subsurface intelligent cluster of current energy converters
CN103670912A (en) * 2012-09-11 2014-03-26 北京航空航天大学 Novel lift-to-drag combination phi-S type vertical shaft wind machine
US10099761B2 (en) 2012-12-07 2018-10-16 Richard Hayman Water turbine propeller
DE102013010223B4 (en) * 2013-06-18 2022-06-23 Georg Schönwies generator device
ITAN20130118A1 (en) * 2013-06-28 2014-12-29 Del Vicario Engineering Srl DEVICE FOR THE CAPTURE OF WIND ENERGY AND CONVERSION IN ELECTRICITY
ITPI20130067A1 (en) * 2013-07-12 2015-01-13 Treecube S R L WIND TURBINE WITH VERTICAL AXIS
EP3097307B1 (en) * 2013-10-04 2018-02-21 Velica Marchetti Wind Flow-er Generators Srls Multi-blade vertical-axis wind turbine with continuous or truncated wings
ITLT20130007A1 (en) * 2013-10-04 2015-04-05 Velica Marchetti Wind Flow Er Gener Ators Srls VERTICAL WIND TURBINE PLURIVELA WITH ALA TRONCA
ITLT20130006A1 (en) * 2013-10-04 2015-04-05 Velica Marchetti Wind Flow Er Gener Ators Srls PLURIVELA VERTICAL WIND TURBINE WITH CONTINUOUS WING
GR1008546B (en) * 2014-02-07 2015-08-24 Wind+Sol Μ.Ε.Π.Ε., Multi-blade wind generator characterised by low revs, low noise and vertical or horizontal operational position
CN107250531A (en) * 2014-08-12 2017-10-13 蒋素芳 A kind of wind power generation plant and system
WO2016176352A1 (en) 2015-04-28 2016-11-03 Chris Bills Vortex propeller
WO2017195210A1 (en) * 2016-05-09 2017-11-16 Tripathi Raghavendra Electrically self-powered windmill system
US10054107B2 (en) * 2016-06-06 2018-08-21 Bowie State University Omni-directional shaftless wind turbine
USD818414S1 (en) 2016-11-30 2018-05-22 Chris Bills Vortex propeller
USD805474S1 (en) * 2016-11-30 2017-12-19 Chris Bills Vortex propeller
KR102054509B1 (en) * 2017-11-16 2019-12-10 이낙영 high altitude energy storage apparatus
US10975839B2 (en) * 2018-05-23 2021-04-13 William Olen Fortner Vertical axis wind turbines with V-cup shaped vanes, multi-turbine assemblies and related methods and systems
US10938274B2 (en) * 2019-01-31 2021-03-02 Robert David Sauchyn Devices and methods for fluid mass power generation systems
US11859716B2 (en) 2019-04-17 2024-01-02 University Of Maryland, Baltimore County Time-delay closed-loop control of an infinitely variable transmission system for tidal current energy converters
US11313348B2 (en) 2019-04-17 2022-04-26 University Of Maryland, Baltimore County Hybrid vertical axis turbine apparatus
RU2730569C1 (en) * 2019-10-10 2020-08-24 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Wind-wheel

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US302769A (en) * 1884-07-29 pallausch
US591962A (en) * 1897-10-19 Windmill
US953891A (en) * 1909-07-26 1910-04-05 John H Atkins Current-motor.
US974995A (en) * 1909-10-15 1910-11-08 Internat Aerial Power Company Wind-motor.
US1015695A (en) * 1910-07-21 1912-01-23 Ralph Liston Wind-wheel.
US1100332A (en) * 1912-09-03 1914-06-16 James B Smith Windmill.
US1586914A (en) * 1925-01-29 1926-06-01 Per W Palm Wind motor
US1652022A (en) * 1927-08-17 1927-12-06 Lemke William Wind motor
US1697574A (en) * 1924-12-12 1929-01-01 Savonius Sigurd Johannes Rotor adapted to be driven by wind or flowing water
US1744924A (en) * 1925-04-13 1930-01-28 Charles E Sargent Wind motor
US1835018A (en) * 1925-10-09 1931-12-08 Leblanc Vickers Maurice Sa Turbine having its rotating shaft transverse to the flow of the current
US2020900A (en) * 1934-01-18 1935-11-12 Wilbur E Methvin Stream motor
US3856432A (en) * 1973-09-27 1974-12-24 Us Army Self-governing turbine speed limiter
US3918839A (en) * 1974-09-20 1975-11-11 Us Energy Wind turbine
US4004861A (en) * 1975-06-13 1977-01-25 Charl Soules Wind driven prime mover
US4112311A (en) * 1975-12-18 1978-09-05 Stichting Energieonderzoek Centrum Nederland Windmill plant for generating energy
US4168439A (en) * 1977-11-28 1979-09-18 Palma F Neto Wind turbine
US4204805A (en) * 1978-03-28 1980-05-27 Bolie Victor W Vertical axis wind turbine
US4293274A (en) * 1979-09-24 1981-10-06 Gilman Frederick C Vertical axis wind turbine for generating usable energy
US4334823A (en) * 1980-12-16 1982-06-15 Sharp Peter A Wind or fluid current turbine
US4551631A (en) * 1984-07-06 1985-11-05 Trigilio Gaetano T Wind and solar electric generating plant
US4642026A (en) * 1983-07-26 1987-02-10 Ruff John D Centrifugal compressor with adjustable diffuser
US4659940A (en) * 1982-04-27 1987-04-21 Cognitronics Corporation Power generation from high altitude winds
US4684817A (en) * 1985-03-11 1987-08-04 Goldwater John M Valvular sail power plant
US5463257A (en) * 1993-11-23 1995-10-31 Yea; Ton A. Wind power machine
US20060198724A1 (en) * 2002-01-10 2006-09-07 Joseph Bertony Vertical axis turbine
US20080095631A1 (en) * 2004-10-20 2008-04-24 Vortech Energy & Power Pty Limited Vertical Axis Wind Turbine With Twisted Blade or Auxiliary Blade
US20090129928A1 (en) * 2007-11-19 2009-05-21 Sauer Christopher R High efficiency turbine and method of generating power
US7550865B2 (en) * 2006-06-27 2009-06-23 Jonsson Stanley C Wind turbine having variable pitch airfoils that close when moving against the direction of the wind

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE187865C (en)
FR961999A (en) 1950-05-26
US1334485A (en) * 1918-03-25 1920-03-23 Wind Electric Corp Windmill
US1835016A (en) * 1929-05-30 1931-12-08 Dardelet Threadlock Corp Container with detachable closure
FR1021619A (en) 1950-07-07 1953-02-20 Wind turbine improvements
FR2295259A1 (en) 1974-07-26 1976-07-16 Simion Jean Wind driven turbine with fixed pitch blades - and speed control by varying angle of inclination of rotor axis
US4039849A (en) * 1975-03-31 1977-08-02 Milton H. Mater Wind powered generating systems
ES454192A1 (en) * 1976-12-13 1977-12-01 Zapata Martinez Valentin System for the obtainment and the regulation of energy starting from air, sea and river currents
US4142822A (en) * 1977-05-05 1979-03-06 Herbert Frank P Panemone windmill
GB1604388A (en) 1977-08-03 1981-12-09 Bfg Glassgroup Fire screening panels
SE7909537L (en) 1979-11-19 1981-05-20 Risto T Joutsiniemi WIND CREW-WIND ROTOR
FI67919C (en) 1982-10-14 1985-06-10 Risto Joutsiniemi ROTOR CONSTRUCTION FOR VINDROTORANORDNING
JPS6090992A (en) 1983-10-26 1985-05-22 Hitachi Ltd Spiral blade type vertical shaft windmill
USD300932S (en) 1985-04-11 1989-05-02 Sikes George W Windmill
GR910200234U (en) * 1990-05-31 1992-07-30 Mihail Valsamidis Turbine wind machine with a vertical axis
US5425619A (en) 1993-10-26 1995-06-20 Aylor; Elmo E. Self governing fluid energy turbine
GB9407695D0 (en) 1994-04-19 1994-06-15 Burns David J Electrical power generating apparatus and an electrical vehicle including such apparatus
FI972806A (en) 1997-06-30 1998-12-31 Shield Oy Spiral wind rotor and method of manufacturing the same
PL59680Y1 (en) 1998-01-16 2003-04-30 Albi Sp Z Oo Jv Objects carrying bag, in particular that for carrying objects of substantial value
US6097104A (en) * 1999-01-19 2000-08-01 Russell; Thomas H. Hybrid energy recovery system
US6242818B1 (en) 1999-11-16 2001-06-05 Ronald H. Smedley Vertical axis wind turbine
US6246125B1 (en) 2000-07-25 2001-06-12 Robert C. Axtell Portable wind and hydro electric generating system
US7040859B2 (en) * 2004-02-03 2006-05-09 Vic Kane Wind turbine
US7344353B2 (en) * 2005-05-13 2008-03-18 Arrowind Corporation Helical wind turbine
US20070029807A1 (en) * 2005-08-08 2007-02-08 Clayton Kass Methods and systems for generating wind energy

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US591962A (en) * 1897-10-19 Windmill
US302769A (en) * 1884-07-29 pallausch
US953891A (en) * 1909-07-26 1910-04-05 John H Atkins Current-motor.
US974995A (en) * 1909-10-15 1910-11-08 Internat Aerial Power Company Wind-motor.
US1015695A (en) * 1910-07-21 1912-01-23 Ralph Liston Wind-wheel.
US1100332A (en) * 1912-09-03 1914-06-16 James B Smith Windmill.
US1697574A (en) * 1924-12-12 1929-01-01 Savonius Sigurd Johannes Rotor adapted to be driven by wind or flowing water
US1586914A (en) * 1925-01-29 1926-06-01 Per W Palm Wind motor
US1744924A (en) * 1925-04-13 1930-01-28 Charles E Sargent Wind motor
US1835018A (en) * 1925-10-09 1931-12-08 Leblanc Vickers Maurice Sa Turbine having its rotating shaft transverse to the flow of the current
US1652022A (en) * 1927-08-17 1927-12-06 Lemke William Wind motor
US2020900A (en) * 1934-01-18 1935-11-12 Wilbur E Methvin Stream motor
US3856432A (en) * 1973-09-27 1974-12-24 Us Army Self-governing turbine speed limiter
US3918839A (en) * 1974-09-20 1975-11-11 Us Energy Wind turbine
US4004861A (en) * 1975-06-13 1977-01-25 Charl Soules Wind driven prime mover
US4112311A (en) * 1975-12-18 1978-09-05 Stichting Energieonderzoek Centrum Nederland Windmill plant for generating energy
US4168439A (en) * 1977-11-28 1979-09-18 Palma F Neto Wind turbine
US4204805A (en) * 1978-03-28 1980-05-27 Bolie Victor W Vertical axis wind turbine
US4293274A (en) * 1979-09-24 1981-10-06 Gilman Frederick C Vertical axis wind turbine for generating usable energy
US4334823A (en) * 1980-12-16 1982-06-15 Sharp Peter A Wind or fluid current turbine
US4659940A (en) * 1982-04-27 1987-04-21 Cognitronics Corporation Power generation from high altitude winds
US4642026A (en) * 1983-07-26 1987-02-10 Ruff John D Centrifugal compressor with adjustable diffuser
US4551631A (en) * 1984-07-06 1985-11-05 Trigilio Gaetano T Wind and solar electric generating plant
US4684817A (en) * 1985-03-11 1987-08-04 Goldwater John M Valvular sail power plant
US5463257A (en) * 1993-11-23 1995-10-31 Yea; Ton A. Wind power machine
US20060198724A1 (en) * 2002-01-10 2006-09-07 Joseph Bertony Vertical axis turbine
US20080095631A1 (en) * 2004-10-20 2008-04-24 Vortech Energy & Power Pty Limited Vertical Axis Wind Turbine With Twisted Blade or Auxiliary Blade
US7550865B2 (en) * 2006-06-27 2009-06-23 Jonsson Stanley C Wind turbine having variable pitch airfoils that close when moving against the direction of the wind
US20090129928A1 (en) * 2007-11-19 2009-05-21 Sauer Christopher R High efficiency turbine and method of generating power

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7948110B2 (en) * 2007-02-13 2011-05-24 Ken Morgan Wind-driven electricity generation device with Savonius rotor
US20110121580A1 (en) * 2007-02-13 2011-05-26 Ken Morgan Wind-driven electricity generation device with segmented rotor
US20080191487A1 (en) * 2007-02-13 2008-08-14 New Earth, Llc Wind-driven electricity generation device with savonius rotor
US8779616B2 (en) * 2007-02-13 2014-07-15 Ken Morgan Wind-driven electricity generation device with segmented rotor
US8084881B2 (en) * 2007-02-13 2011-12-27 Helix Wind, Incorporated Wind-driven electricity generation device with segmented rotor
US20120068467A1 (en) * 2007-02-13 2012-03-22 Ken Morgan Wind-driven electricity generation device with segmented rotor
US20090261595A1 (en) * 2008-04-17 2009-10-22 Hao-Wei Poo Apparatus for generating electric power using wind energy
US9151273B2 (en) * 2009-02-21 2015-10-06 Frank L. Christy Solar tree with optional wind turbine generator
US20140021723A1 (en) * 2009-02-21 2014-01-23 Frank L. Christy Solar Tree with Optional Wind Turbine Generator
US8378518B2 (en) 2009-03-26 2013-02-19 Terra Telesis, Inc. Wind power generator system, apparatus, and methods
US8134246B1 (en) * 2009-05-20 2012-03-13 Lois William A Fluid driven generator
WO2011011018A1 (en) * 2009-07-24 2011-01-27 Ari Green Technology, Llc Portable cylindrical and conical spiral wind turbine
US9140233B2 (en) * 2010-02-02 2015-09-22 Garden Energy, Inc. Wind power generation system
US20110211966A1 (en) * 2010-02-02 2011-09-01 Philip Watts Wind power generation system
US20110211956A1 (en) * 2010-02-26 2011-09-01 Chin-Lien Tseng Parallel-connected matrix integrated wind power generation system
US20110236216A1 (en) * 2010-03-29 2011-09-29 Konopacki Jeffrey M Wind turbine mounting system for non-turbine purpose built structures
US8864440B2 (en) 2010-11-15 2014-10-21 Sauer Energy, Incc. Wind sail turbine
US8905704B2 (en) 2010-11-15 2014-12-09 Sauer Energy, Inc. Wind sail turbine
US20120261924A1 (en) * 2011-04-12 2012-10-18 Kim Christensen System, Method and Apparatus for Capturing Kinetic Energy
US8786125B2 (en) * 2011-04-12 2014-07-22 Kim Christensen System, method and apparatus for capturing kinetic energy
US8564148B1 (en) * 2011-05-11 2013-10-22 John J. Novak AC energy generator
US9541066B2 (en) * 2011-08-12 2017-01-10 Norman Holley Generation of renewable energy from mass airflow in underground tunnels
US20140196446A1 (en) * 2011-08-12 2014-07-17 Norman Holley Generation of renewable energy from mass air flow
US20130039755A1 (en) * 2011-08-12 2013-02-14 Norman Holley Generation of renewable energy from mass airflow in underground tunnels
US11506176B1 (en) 2012-04-11 2022-11-22 Charles Martin Sieger Modular multi-axial rotor
US9705446B1 (en) 2012-04-11 2017-07-11 Charles Martin Sieger Modular multi-axial rotor
US10367441B2 (en) 2012-04-11 2019-07-30 Charles Martin Sieger Modular multi-axial rotor
US8932005B2 (en) * 2012-04-11 2015-01-13 Charles Martin Sieger Archimedean modular / multi-axis rotor (AMR)
US9404476B2 (en) 2012-04-11 2016-08-02 Charles Martin Sieger Modular multi-axial rotor
US20130272894A1 (en) * 2012-04-11 2013-10-17 Charles Martin Sieger Archimedean Modular / Multi-Axis Rotor (AMR)
US9103321B1 (en) * 2012-09-13 2015-08-11 Jaime Mlguel Bardia On or off grid vertical axis wind turbine and self contained rapid deployment autonomous battlefield robot recharging and forward operating base horizontal axis wind turbine
US9677539B2 (en) 2013-05-25 2017-06-13 Yoshiji Tamatsu Vertical axis water/wind turbine motor using flight feather opening/closing wing system
EA030522B1 (en) * 2013-05-25 2018-08-31 Ёсидзи Тамацу Vertical axis water/wind turbine motor using flight feather opening/closing wing system
JP2015007417A (en) * 2013-05-25 2015-01-15 吉二 玉津 Vertical shaft type water/wind mill prime mover using wind face opening/closing wing system
WO2014192664A1 (en) * 2013-05-25 2014-12-04 Tamatsu Yoshiji Vertical axis water/wind turbine motor using flight feather opening/closing wing system
JP2015113775A (en) * 2013-12-12 2015-06-22 日本クリーンシステム株式会社 Vertical shaft wind turbine
WO2023204765A1 (en) * 2022-04-22 2023-10-26 Nanyang Technological University Turbine device and system for harvesting tidal energy from water currents

Also Published As

Publication number Publication date
US20070018464A1 (en) 2007-01-25
US7362004B2 (en) 2008-04-22

Similar Documents

Publication Publication Date Title
US7362004B2 (en) Wind turbine device
US7132760B2 (en) Wind turbine device
AU2006284845B2 (en) Multi-rotor wind turbine supported by continuous central driveshaft
US7896609B2 (en) Vertical axis wind turbine system
US4365929A (en) Vertical wind turbine power generating tower
US10612515B2 (en) Vertical axis wind turbine
US7329965B2 (en) Aerodynamic-hybrid vertical-axis wind turbine
US8905706B2 (en) Vortex propeller
US5553996A (en) Wind powered turbine
US20130343890A1 (en) Vertical axis turbine
US8226369B2 (en) Conical helicoid wind turbine
US20090180880A1 (en) Check valve turbine
US20110206526A1 (en) Vertical-axis wind turbine having logarithmic curved airfoils
US11236724B2 (en) Vertical axis wind turbine
WO2009068950A2 (en) Cross fluid-flow axis turbine
WO2006123951A1 (en) A wind turbine
US20130017084A1 (en) High efficiency verical axis wind turbine
US20110014038A1 (en) Wind turbine with skeleton-and-skin structure
US10495063B2 (en) Wind turbine
US9816383B2 (en) Power generation apparatus
CN112534130A (en) Vortex accelerating wind energy tower
US11156204B2 (en) Wind turbine
RU2531478C2 (en) Wind turbine
GB2476830A (en) Vertical axis wind powered generator
KR20130031818A (en) Vertical-axis wind rotor

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE