US1820529A - Wind motor - Google Patents

Wind motor Download PDF

Info

Publication number
US1820529A
US1820529A US287520A US28752028A US1820529A US 1820529 A US1820529 A US 1820529A US 287520 A US287520 A US 287520A US 28752028 A US28752028 A US 28752028A US 1820529 A US1820529 A US 1820529A
Authority
US
United States
Prior art keywords
blades
blade
wind
speed
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US287520A
Inventor
Darrieus Georges Jean Marie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LEBLANC VICKERS MAURICE SA
Original Assignee
LEBLANC VICKERS MAURICE SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LEBLANC VICKERS MAURICE SA filed Critical LEBLANC VICKERS MAURICE SA
Application granted granted Critical
Publication of US1820529A publication Critical patent/US1820529A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/221Rotors for wind turbines with horizontal axis
    • F05B2240/2213Rotors for wind turbines with horizontal axis and with the rotor downwind from the yaw pivot axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • Thisinvention relates to fluid motors and ifnore particularly v to propeller blades. thereor. V
  • impeller having propeller. blades, vane wheels or thelike, with a tail vane or auxiliary directing vane Wheel pivoted thereto.
  • pellers, the blades or vane wheel were, themselves, often pivotally positioned so that they could be partially or wholly Withdrawn from the thrust of the wind when its velocity exceededa given amount. This wasaccom: plished by means of springscompressed by the increased thrust ofthe actuating fluid.
  • Still another object of my invention has been to provide impeller blades having substantially like angles of incidence alongtheir entire length orradius.
  • a further object of my invention has been to provide an impeller than can be designed to operate at a substantially constant speed
  • a still further-object ofvmyinvention been'to provide an impellerhaving blades of extreme narrowness but of suitable strength and tangential rigidity.
  • i r Y A still further object of my invention has been to provide a more simple, positive,and eflicient impeller blade.
  • I 7 V M Fig. 1 is a plot of propeller characteristic curves used in the design of my invention.
  • Fig. 2 is a sideview of a device constructed in accordance with a form of my invention.
  • Fig. 4 is a perspective view of a further embodiment of my invention.
  • k Fig. 5 is. a sectional View of member 15 on line VV of Fig. 3;'and 1 a Fig. 6 shows sectional views on lines VI-'VI and VIVI (b) of member 29 ofFig.4.
  • J l I Although a preferred form of my inven tion is shown in Fig. 4, yet impellers 10, such as shown in Figs. 2 and 3 may be employed, provided that the requirements of torque, speed, and strength are within certain limits.
  • the impellers shown in Figs. 2 and 3 include aalurality of propeller blades or vanes 11, rigi ly secured to a common axis 13.
  • Fig. 5 illustrates the stream line form of the brace 15; and, the structure 14 has a similar stream line sec tion, differing from the brace 15 only in relative width.
  • the several acre-foils may be staggered with respect to each other in this tangential direetron so as to constitute a frame of a sort of pylon having a great moment of inertia in all directions and substantially braced with re- Spect to shearing forces (see Fig. 4).
  • the blade 21 in Fig. 4 can be employed in place of the blades 11 of Figs. 2 and 3 in connection with the impeller construction shown. Although any suitable type of impeller and drive mechanism can be employed, yet, it follows that the peculiar construction of the blade 21 needs specific description here.
  • each of the acre-foils 22 at one end 24 merges with the others to form the apex of a pylon; from the apex 24, each aerofoil slopes outward towards its :;;upport ing end, where it is rigidly and securely fixed to a common axis 26 in any suitable manner.
  • Fig. 6 shows the stream line construction of the aeroioil 22.
  • the axis 26 may be provided with slots of relatively shallow depth for receiving each supporting end of the blade 21.
  • a plurality of shelves or stays 28 are positioned to be clamped between the plurality of aerofoils 22, substantially parallel to the blade axis 26, for tying them together at points along their length.
  • oblique tie structure 29 of wire or other suitable material is rigidly secured so as t cross brace one acre-foil 22 with respect to the others of a given blade along the length thereof in a manner shown in Fig. 4:.
  • the wind motor 10, itself, including the blades 21 and their common axis 26, may be positioned as shown in Figs. 2 and 3, or in any other suitable manner, so that the common axis 26 may rotate about a stationary support 9 or the like and that agenerator or the. like can be positioned to rotate with the axis 26 by the employment of suitable gearing, belt, shaft or the like (not shown)
  • suitable gearing, belt, shaft or the like not shown
  • the vanes or blades of the impeller orwind may be positioned as shown in Figs. 2 and 3, or in any other suitable manner, so that the common axis 26 may rotate about a stationary support 9 or the like and that agenerator or the. like can be positioned to rotate with the axis 26 by the employment of suitable gearing, belt, shaft or the like (not shown)
  • the vanes or blades of the impeller orwind may be positioned as shown in Figs. 2 and 3, or in any other suitable manner, so that the common axis 26 may rotate about a stationary support
  • the wind motor system which is the sub ject of thisinven'tion, is based upon the following technical considerations.
  • Sections finely stream lined and with great transversz-il elongation. employed in aviation have the property that, as long as the angle of incidence with re pect to the chord of the section does not exceed a limit of a few degrees, the thrust of the fluid varies nearly proportional to this angle incidence and moreover remains almost exactly normal or perpendicular, not to the chord of the section, but to the direction of the relative speed. On the contrary, beyond a certain critical angle oi.
  • the wind motorsystem of: thepr-csent invention includes wings, blades or vanes of very fine section, that is to say, having a very small ratio of drag for a given thrust of the actuating fluid.
  • the blades can be very little inclined to'the plane of rotation, that is,-tl1cy can have a very small ratio of pitch to'diam'eter, without a corresponding reduction of the tangential or useful component of the actuating fluid thrust and an increase of the drag.
  • This ratio of pitch to diameter may be 3 ;,'and, the purpose of. employing such a ratio will be explainedjf f v
  • the ratio of 10 to 1] is employed in order that the relative sped Of the blades will iyt substantially depend upon the velocity of the I actuating fluid Iwithin' the: widest limits of variation of the latter anticipated underno'rg mal operation conditions. :Of" course,the
  • a blade having a suitable angle of ineidence can'fbe provided by keeping the'ratio of surfa e p tQisur-facle of blades at'substa'ntially 10'jt'o 11 This ratio, foundedonthe stream line section" of the blade, lays the foundation fora'high tangenw tial speed of the'blade, "In other words,the ratio of the tangential speed of blade to. ab-
  • solute velocityof actuating fluid will also be substantially 1O to'l.
  • a suitable angle of incidence having a desired poinuwill be provided when the'ratio of blade pitch to di'- ameteristaken as 1 to 3.
  • the curves are chosen so that a straight line, indicatedby.ein Fig. 1, can be drawn through theirpoints of contact, and further, so that thea'ngular speed of each portion of the blade is such that the, equation of wind exceeds a value corresponding to.
  • a fluid motor having a plurality of blades mounted on" a common hub, each of said blades having the form of a pylon of triangular section, said pylon cons sting of three aerofoils rigidly secured to the hub.
  • a fluid motor substantially as specified in claim 1' whose blades are bent in the direction of flow of the actuating fluid, so that the centrifugal force of the blades of said motor when rotating will tend to counterbalance the shearing and twisting forces exerted by the actuating fluid.
  • the surface area of said aerofoils of the blades having a ratio of not more than 1 to to the area'sweptout b said aerofoils during rotation of the bl a'des,so that a high ratio of tangential speed of the blades to the velocity of the actuating fluid will be maintained.
  • a fluid motor having a rotating hub and a 'plurality 'of blades mounted thereon
  • each of said blades having the form of a 1'? p lon of triangulargsection, said-pylon inc uding a gluralityof aerofoils rigidly cured to, t e hub, stays disposed between said aerofoilsfor tying them together at: portions alongtheir length, and oblique ties L j;
  • a a I 8 Ina fluid motor the combination of a plurality ofblades' mounted on a common 5 hub, each of said bladeshaving the form of a pylon of. triangular section, said pylon including three aerofoils rigidly secured to the'hub, each of said aerofoils having a pitch which decreases, and a width which decreases with portions of increasing distance from the hub thereof, so thatrbladcs,
  • actuating fluid will be separated for pro-- venting further increaseof the rotative speed of the blades, and so thatthe vangle of incidence will be. transcended simultaneously along the entire length of the blades,
  • a fluid motor having a plurality 5r bladesmounted on a; common ub,.each of said blades havingthe form of a pylon of trian 'ular section, said pylon including plural ub and merging atone end to form a co n monaex.”
  • fluid motor having a plurality of blades mounted on a common hub,.--each of ity of aerofoils rigidly secured tothe J said blades having the form of apylon of 1 f triangular section, said, pylon. including a plurality of aerofoils rigidly securedto thev hub and oblique ties for crossvbracing one aerofoil with respect to each of the others along the length of'each of said blades, 11.
  • a fluidmotor having a plurality of blades mounted on a common hub, each of said blades having the form of a pylon of triangular section, said pylon including a plurality of areofoils rigidly secured to the hub, stays disposed between said aerofoils for tying them together at portions along their length.

Description

1931- G. .1. M. DARRIEUS i,820,529
WIND MOTOR Filed June 22, 1928 Patented Aug. 25, 1931 UNITED. STATES PATENT, o FFicET-jJ."
enonens JEAN MARIE DARBIEUS, or PAR-IS, FRANCE, ASSIGNOR 'ro soorn'rn ANQNYME POUR LEXPLOITATION nus ,PROCEDES MAURICE LEBLANC-VICKERS, or A IS,
FRANCE 1 WIVND MOTOR Application filed June 22,1928, Serial No. 287,520, and in France June 2?,1927.
Thisinvention relates to fluid motors and ifnore particularly v to propeller blades. thereor. V
The use of a fluid such asthe Wind for the production of electric energy involves many problems. Theideal for which all have been striving is apparatus therefor having completely automatic operation, and in which,
successful operation is not hindered by needless multiplicity of parts. But, one of the difficulties limiting this ideal has arisen from the need of some additional means compeni sating for the resultant increase of speed and torque produced by av high wind velocity.
actuating fluidsuch as the wind for a given days operation is seldom of constant value, and varies between certain high and low limits, it follows that some means must be provided that is sensitive to'thesevariations in the wind velocity and that Will-withhold and resist an increase of speed of the blades or vanes of a fluid motor. Apparatus has been designed for this purpose.
1 Some have providedan impeller having propeller. blades, vane wheels or thelike, with a tail vane or auxiliary directing vane Wheel pivoted thereto. pellers, the blades or vane wheel were, themselves, often pivotally positioned so that they could be partially or wholly Withdrawn from the thrust of the wind when its velocity exceededa given amount. This wasaccom: plished by means of springscompressed by the increased thrust ofthe actuating fluid.
Another suggested solution consisted in providing the impeller with auxiliary surfaces thatqWere brought into opposition to i forward thrust of the fluid, as by'means of I one has provided an impeller having rigidly mounted blades, vane wheels or the like, that ofthemselves, without the aid of auxiliary equipment or attachments, compensate for, If and suppress unfavorable results produced In other Words, since the velocity of the For larger size im-- by an increase of fluid velocity above the normal varlations of operation. 1 Y L It has been one object of my invention'to provide an impeller that without the of; auxiliary apparatus, can be designed to automatic-ally operate below a certain predeter-s mined speed.
Another object of to provide an impeller that withoutthe aid of auxiliary apparatus, can be designedto keep Within certain limits of torque even my invention has been 7 thoughthe fluid velocity suddenly increases.
Still another object of my invention has been to provide impeller blades having substantially like angles of incidence alongtheir entire length orradius.
A further object of my invention has been to provide an impeller than can be designed to operate at a substantially constant speed,
and to produce a substantially constant torque, governed by the thrust impressed upon its blades for a givenfluid or Wind Velocity. l
A still further-object ofvmyinvention been'to provide an impellerhaving blades of extreme narrowness but of suitable strength and tangential rigidity. i r Y A still further object of my invention has been to provide a more simple, positive,and eflicient impeller blade. v I
These and many other objects 'ofthis in vention will appear to those skilled inthe art" from the following description "taken in con-- j unctionwith theaccompanying drawings in which: I 7 V M Fig. 1 is a plot of propeller characteristic curves used in the design of my invention.
Fig. 2 is a sideview of a device constructed in accordance with a form of my invention.
Flg. 3 1s aslde view of .a deviceconstructed in accordance wlth another formof my 1nvention. I
Fig. 4 is a perspective view of a further embodiment of my invention. k Fig. 5 is. a sectional View of member 15 on line VV of Fig. 3;'and 1 a Fig. 6 shows sectional views on lines VI-'VI and VIVI (b) of member 29 ofFig.4. J l I Although a preferred form of my inven tion is shown in Fig. 4, yet impellers 10, such as shown in Figs. 2 and 3 may be employed, provided that the requirements of torque, speed, and strength are within certain limits. The impellers shown in Figs. 2 and 3 include aalurality of propeller blades or vanes 11, rigi ly secured to a common axis 13. The acre-foils 12 of the blade 11 overlap each other substantial]. in the direction of the axis 13, so as to provide a light but strong compound girder blade. Structure 14 and braces 15, both stream lined to reduce resistance to forward movement may be provided to strengthen the blade 11. Fig. 5 illustrates the stream line form of the brace 15; and, the structure 14 has a similar stream line sec tion, differing from the brace 15 only in relative width.
But, the preferred form of my invention shown in Fig. 4, is designed to meet substantially all the torque, speed, dimension, and strength requirements of nori'nal field service. The operating basis for these requirements is hereafter set forth.
In cases where the extreme narrowness of the blades would induce fear of an insuflioient strength in the tangential direction, the several acre-foils may be staggered with respect to each other in this tangential direetron so as to constitute a frame of a sort of pylon having a great moment of inertia in all directions and substantially braced with re- Spect to shearing forces (see Fig. 4). The blade 21 in Fig. 4 can be employed in place of the blades 11 of Figs. 2 and 3 in connection with the impeller construction shown. Although any suitable type of impeller and drive mechanism can be employed, yet, it follows that the peculiar construction of the blade 21 needs specific description here.
In the preferred embodiment of a propeller blade 21, to which the principles of my in-' vention are particularly adaptable, a plurality of stream line acre-foils have been provided, each of the acre-foils 22 at one end 24 merges with the others to form the apex of a pylon; from the apex 24, each aerofoil slopes outward towards its :;;upport ing end, where it is rigidly and securely fixed to a common axis 26 in any suitable manner. Fig. 6 shows the stream line construction of the aeroioil 22.
The axis 26 may be provided with slots of relatively shallow depth for receiving each supporting end of the blade 21. In order to reinforce the blade 21, a plurality of shelves or stays 28 are positioned to be clamped between the plurality of aerofoils 22, substantially parallel to the blade axis 26, for tying them together at points along their length. To further reinforce against shearing, centrifugal, twisting and other forces inherent in propeller blade action, oblique tie structure 29 of wire or other suitable material is rigidly secured so as t cross brace one acre-foil 22 with respect to the others of a given blade along the length thereof in a manner shown in Fig. 4:.
The wind motor 10, itself, including the blades 21 and their common axis 26, may be positioned as shown in Figs. 2 and 3, or in any other suitable manner, so that the common axis 26 may rotate about a stationary support 9 or the like and that agenerator or the. like can be positioned to rotate with the axis 26 by the employment of suitable gearing, belt, shaft or the like (not shown) In addition, the vanes or blades of the impeller orwind. mill shown in F 2, 3 and i are inclined in the direction of the flow of the wind or actiiating fluid as indicated by the arrows, so that under the action of centriiiu al force, these vanes or blades being of reiatively thin section, tend to straighten themselves, and thus counterbalance the shearing and twisting YfOfCt-bzj exerted by the wind. I
The wind motor system which is the sub ject of thisinven'tion, is based upon the following technical considerations. Sections finely stream lined and with great transversz-il elongation. employed in aviation have the property that, as long as the angle of incidence with re pect to the chord of the section does not exceed a limit of a few degrees, the thrust of the fluid varies nearly proportional to this angle incidence and moreover remains almost exactly normal or perpendicular, not to the chord of the section, but to the direction of the relative speed. On the contrary, beyond a certain critical angle oi. incidence, the drag or resistance to blade advancement, that is'to say the component of the force oi": the fluid parallel to, but in opposite direction to, the relative speed of the blade section, increase-a rapidly, so that a vector representing the resultant blade actuating thrust, departs slightly towards the chord ofthe blade section, from its normal or pGl'iifilldlClllitI' position with respect to the relative speed. From this instant, the thrust of the blade section and its vector component in any direction Whatever now 1 ireciably depend on nothing except the square of the relative speed of this section with respect tothc speed of its actuating fluid. I The wind motorsystem of: thepr-csent invention includes wings, blades or vanes of very fine section, that is to say, having a very small ratio of drag for a given thrust of the actuating fluid.
Due to this feature, the blades can be very little inclined to'the plane of rotation, that is,-tl1cy can have a very small ratio of pitch to'diam'eter, without a corresponding reduction of the tangential or useful component of the actuating fluid thrust and an increase of the drag. This ratio of pitch to diameter may be 3 ;,'and, the purpose of. employing such a ratio will be explainedjf f v In the present invention it is necessary that the tangential or useful speed of'the' blade should be "maintained at a value hi,r ;her"than the velocityoftheactuating fluid, and, for
the form" bf a blade shown in "Fig. which has beendesigned to meet normal working conditions, the ratio should be substantially to 1. j Inother wordsfthefrat'io of the tangentialfspeed'of the blades to the'absolute velocit of the wind should equal l0 tolj. To acconip ish this it isnecessary toprovide blades ofi very fine, stream line section and havingalri'gh ratio ofsurface sweep to blade surface; this latter ratio. is substantially. pro
portional to the ratio of the tangentialv'eloc} ity to the absolute velocity of the wind. But, the diflicult arises in the design and con-, struction 0 a propeller blade that has the necessary properties strength even though of fine, stream-line section; to accomplish this purpose, the inventor has provided a blade comprising three aerofoilsforrn'ed' into a sortof pylon, asbefore explained,
The ratio of 10 to 1] is employed in order that the relative sped Of the blades will iyt substantially depend upon the velocity of the I actuating fluid Iwithin' the: widest limits of variation of the latter anticipated underno'rg mal operation conditions. :Of" course,the
speed of rotation of 'the blades must: remain substantially constant to ensurethe above condition. But, the latter condition ism aintained, sinc e, a given {increase 'inthe wind ve- 'lOOltY Wlll cause a transcendence of the cr1t1,-"
cal valueof'a chosen werking'angle of'incidence that corresponds to a given maximum thrust of fluidj and this transcendence gives rise to the appearance ofa'n' important drag I as the torque or couple and the power stop increase; and also at'fthis point the stream lines of the actuating fluid are then separated; Thus, it follows, a blade having a suitable angle of ineidence can'fbe provided by keeping the'ratio of surfa e p tQisur-facle of blades at'substa'ntially 10'jt'o 11 This ratio, foundedonthe stream line section" of the blade, lays the foundation fora'high tangenw tial speed of the'blade, "In other words,the ratio of the tangential speed of blade to. ab-
solute velocityof actuating fluid willalso be substantially 1O to'l. Employing the above ratios, it has been found that a suitable angle of incidencehaving a desired poinuwill be provided when the'ratio of blade pitch to di'- ameteristaken as 1 to 3. And. further, in
his choice ofbladesections and of their position along the radius ofthe commona'xis, the H inventor, has taken. sirnilarsections having widths inversely proportional to the relative speed of the blades with respect to theirjactuating fluid; or, after a certain distance'jroni' theaxis of rotation, nearly in inverse proportion to their corresponding radiusjor length,
so that the angleof incidence for each portion ofthe'blade along its entire lengthof radius is kept at 'a substantially 'constantjvalue, and that thetranscendence;thereof caused by a highvelocity' of the actuating fluidwill occur simultaneously along theentire radius or lengthof each blade. This gives to' one of I the edges ofthe blade the shape bolaif the other edge is straight. I Another reason for keeping the ratioot pitch'to diameter of a small value, say 1:3, is, in order that the actuating fluid thrust shall have a relatively largevalue in respect to the drag,"and that the wind motorshaH have a high efliciency. 7 l 1 In Fig. 1 is shown a diagram of hipsof a system soiss'a'and the couple or torque as-ordinants. A set of curves have been plotted, each corresponding to f a certain definite value of the velocity of the Wind.
' The generalp th of each of the curves for so of co-ordinants having angular speed as ab-. 7
a certain velocity of the ;Wind, at first.in
creases for a given increase of angularf ve-i lOCltY of speed of the blades, and then,.de-
creases. This condition follows when the ra tio ofthe' pitch to'the diameter and the ratio of the surfaceof the blades to the 'air surface swept is kept at a veryjsm all value. Accord ingtO the present invention such conditions are chosen solthat all the curves representing a certain value of the vel'ocityfof the wind:
touch each other'alonga-c'ommon envelope theneighborhood of which they are very close together. In mathematical language this result is represented by the'ratio' I Tl;
for the points of contact of these curves with their envelope. ,T represents the torque or couple and "V, the velocity of the actuating fluid,'and d represents the derivative. In
other Words, the curves are chosen so that a straight line, indicatedby.ein Fig. 1, can be drawn through theirpoints of contact, and further, so that thea'ngular speed of each portion of the blade is such that the, equation of wind exceeds a value corresponding to. the
normal working speed of the blade,-the critical angleof incidence is exceeded almost simultaneously at practically all points of the radius or 7 length thereof. 1 Thus, there is a sudden increase of drag that for these sections separates the streamlines at the back of the blade or wing and compensates for the slight increase of thrust. Of course, the sections nearer the axis are more sensitive to an increaseof the velocity ofthe wind owing to their less tangentials eed, but as before explained, the choice of e Width and pitch of the blade portions has onset the effect if thereof upon the chosen critical angle of incidence. Further, still in accordance with the inven tion, another safeguard of constancy of the eed beyond the point of normal working is :3 o tained by giving to the electric generator asuitable characteristic; illustrated as (see Fig. 1) according to which, the resisting cou le or torque will increase more rapidly ast e function of the speed since it does not correspond to the slope e of the envelope at its point of operation. This characteristic crosses the envelope in the direction shown inFig. 1 and may representa synchronous alternator running in parallel on a supply system and therefore at constant speed, or t e shunt characteristic of an asynchronous machine with slight slippage. The invention is not limited to these articular constructions (see Figs. 2, 3 an 4), but extends to any method or combination of known elements of stream line section which, b suitable choice of speed and number of lades, of their relative Width, pitch, etc., produces the rticular characteristics of working whic has heretofore been described.
What I claim is:
1. A fluid motor having a plurality of blades mounted on" a common hub, each of said blades having the form of a pylon of triangular section, said pylon cons sting of three aerofoils rigidly secured to the hub.
2. A fluid motor substantially as specified in claim 1' whose blades are bent in the direction of flow of the actuating fluid, so that the centrifugal force of the blades of said motor when rotating will tend to counterbalance the shearing and twisting forces exerted by the actuating fluid.
3. The combination in a fluid motor of a rotating hub, a plurality of radially extending blades of tapered profile rigidly mounted on said hub, said blades being formed so that the pitch at every point of the radius thereof the said blades, so that the tangential speed of said blades will be greater than the velocity of the actuating fluid.
including aplurality-of areofoils rigidly 23;
secured to thehub, the surface area of said aerofoils of the blades having a ratio of not more than 1 to to the area'sweptout b said aerofoils during rotation of the bl a'des,so that a high ratio of tangential speed of the blades to the velocity of the actuating fluid will be maintained.
7. A fluid motor having a rotating hub and a 'plurality 'of blades mounted thereon,
each of said blades having the form of a 1'? p lon of triangulargsection, said-pylon inc uding a gluralityof aerofoils rigidly cured to, t e hub, stays disposed between said aerofoilsfor tying them together at: portions alongtheir length, and oblique ties L j;
for cross bracing one acro foil. withrespect to each of the others along the length of each of said blades. A a I 8. Ina fluid motor the combination of a plurality ofblades' mounted on a common 5 hub, each of said bladeshaving the form of a pylon of. triangular section, said pylon including three aerofoils rigidly secured to the'hub, each of said aerofoils having a pitch which decreases, and a width which decreases with portions of increasing distance from the hub thereof, so thatrbladcs,
will be eprovidedlhaving .a certain definite critical angle ofincldence upon the transcendence of which the stream; lines of, the
actuating fluid will be separated for pro-- venting further increaseof the rotative speed of the blades, and so thatthe vangle of incidence will be. transcended simultaneously along the entire length of the blades,
9. A fluid motor having a plurality 5r bladesmounted on a; common ub,.each of said blades havingthe form of a pylon of trian 'ular section, said pylon including plural ub and merging atone end to form a co n monaex." v
10. fluid motor having a plurality of blades mounted on a common hub,.--each of ity of aerofoils rigidly secured tothe J said blades having the form of apylon of 1 f triangular section, said, pylon. including a plurality of aerofoils rigidly securedto thev hub and oblique ties for crossvbracing one aerofoil with respect to each of the others along the length of'each of said blades, 11. A fluidmotor having a plurality of blades mounted on a common hub, each of said blades having the form of a pylon of triangular section, said pylon including a plurality of areofoils rigidly secured to the hub, stays disposed between said aerofoils for tying them together at portions along their length.
In testimony whereof I have signed my name to this. specification at Paris, France, this 8th day of J une. 1928.
GEORGES JEAN MARIE DARRIEUS. j
US287520A 1927-06-27 1928-06-22 Wind motor Expired - Lifetime US1820529A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR292953X 1927-06-27

Publications (1)

Publication Number Publication Date
US1820529A true US1820529A (en) 1931-08-25

Family

ID=8887879

Family Applications (1)

Application Number Title Priority Date Filing Date
US287520A Expired - Lifetime US1820529A (en) 1927-06-27 1928-06-22 Wind motor

Country Status (5)

Country Link
US (1) US1820529A (en)
DE (1) DE577917C (en)
FR (1) FR636615A (en)
GB (1) GB292953A (en)
NL (1) NL24839C (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081221A (en) * 1976-12-17 1978-03-28 United Technologies Corporation Tripod bladed wind turbine
EP0009767A2 (en) * 1978-10-11 1980-04-16 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Single-bladed wind-turbine rotor and a method for starting and stopping same
US4329116A (en) * 1978-10-06 1982-05-11 Olle Ljungstrom Wind turbine of cross-flow type
US4329115A (en) * 1981-02-02 1982-05-11 Grumman Aerospace Corporation Directionally stabilized wind turbine
US4525124A (en) * 1982-06-07 1985-06-25 Watson Thomas A Balanced stress vertical axis wind turbine
US4533297A (en) * 1982-09-15 1985-08-06 Bassett David A Rotor system for horizontal axis wind turbines
US4993348A (en) * 1987-08-20 1991-02-19 Wald Leonard H Apparatus for harvesting energy and other necessities of life at sea
US5161952A (en) * 1990-09-24 1992-11-10 Rann, Inc. Dual-plane blade construction for horizontal axis wind turbine rotors
US5509866A (en) * 1994-06-28 1996-04-23 Univerg Research Netwerg, Ltd. Epicyclical galactic cluster gearing system
EP0937893A3 (en) * 1998-02-20 2001-10-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Rotor blade for wind turbine
US6327957B1 (en) 1998-01-09 2001-12-11 Wind Eagle Joint Venture Wind-driven electric generator apparatus of the downwind type with flexible changeable-pitch blades
EP2006537A2 (en) 2007-06-21 2008-12-24 Manuel Torres Martinez Blade for a horizontal-axis wind generator
US20090232656A1 (en) * 2005-10-17 2009-09-17 Peter Grabau Blade for a wind Turbine Rotor
US20100303631A1 (en) * 2009-05-29 2010-12-02 Vestas Wind Systems A/S Wind Turbine Rotor Blade Having Segmented Tip
US20110223034A1 (en) * 2010-12-15 2011-09-15 General Electric Company Wind turbine rotor blade
US20120328434A1 (en) * 2010-02-25 2012-12-27 The Regents Of The University Of California Integrated wind turbine
WO2016048221A1 (en) * 2014-09-25 2016-03-31 Winfoor Ab Rotor blade for wind turbine
EP1596063B1 (en) 2004-05-11 2016-09-28 Senvion GmbH Wind turbine with bent rotor blades
DK178849B1 (en) * 2008-06-06 2017-03-27 Gen Electric ROTOR UNIT FOR A WINDMILL AND METHOD FOR INSTALLING THE SAME
EP2906819B1 (en) 2012-10-12 2017-05-03 Joint Blade Rotor A/S Joined blade wind turbine rotor
EP3222846A1 (en) 2016-03-24 2017-09-27 Winfoor AB Wind turbine rotor blade
USD822602S1 (en) 2015-10-29 2018-07-10 Winfoor Ab Triblade
CN108368823A (en) * 2015-12-08 2018-08-03 赢富尔股份公司 Rotor blade for wind turbine
EP3412906A1 (en) 2017-06-08 2018-12-12 Winfoor AB A wind turbine rotor blade, a section thereof and an interconnecting member
US20190101128A1 (en) * 2017-10-01 2019-04-04 Papa Abdoulaye MBODJ Wing or blade design for wingtip device, rotor, propeller, turbine, and compressor blades with energy regeneration
US20200262551A1 (en) * 2019-02-19 2020-08-20 United States Of America As Represented By The Secretary Of The Army Bi-Planer Rotor Blade

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE742242C (en) * 1939-10-26 1943-11-26 Licht Und Kraft Ag Electric wind power plant
DE3234170C2 (en) * 1981-10-26 1985-04-11 Öko-Energie AG, Zürich Wind power plant with at least one wing that can be rotated about an axis of rotation
DE3249939C2 (en) * 1982-10-22 1991-07-18 Istvan 6482 Bad Orb De Horvath
DE3239087A1 (en) 1982-10-22 1984-04-26 István 6482 Bad Orb Horváth Installation for harnessing wind energy
EP0295353B1 (en) * 1987-06-13 1991-04-17 Khammas, Achmed Adolf Wolfgang Rotorblade
GB2467745A (en) 2009-02-11 2010-08-18 Vestas Wind Sys As Wind turbine blade with tension element(s) to increase edgewise stiffness

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081221A (en) * 1976-12-17 1978-03-28 United Technologies Corporation Tripod bladed wind turbine
US4329116A (en) * 1978-10-06 1982-05-11 Olle Ljungstrom Wind turbine of cross-flow type
EP0009767A2 (en) * 1978-10-11 1980-04-16 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Single-bladed wind-turbine rotor and a method for starting and stopping same
EP0009767A3 (en) * 1978-10-11 1980-06-11 Messerschmitt-Bolkow-Blohm Gesellschaft Mit Beschrankter Haftung Single-bladed wind-turbine rotor
US4329115A (en) * 1981-02-02 1982-05-11 Grumman Aerospace Corporation Directionally stabilized wind turbine
US4525124A (en) * 1982-06-07 1985-06-25 Watson Thomas A Balanced stress vertical axis wind turbine
US4533297A (en) * 1982-09-15 1985-08-06 Bassett David A Rotor system for horizontal axis wind turbines
US4993348A (en) * 1987-08-20 1991-02-19 Wald Leonard H Apparatus for harvesting energy and other necessities of life at sea
US5161952A (en) * 1990-09-24 1992-11-10 Rann, Inc. Dual-plane blade construction for horizontal axis wind turbine rotors
US5509866A (en) * 1994-06-28 1996-04-23 Univerg Research Netwerg, Ltd. Epicyclical galactic cluster gearing system
US6327957B1 (en) 1998-01-09 2001-12-11 Wind Eagle Joint Venture Wind-driven electric generator apparatus of the downwind type with flexible changeable-pitch blades
EP0937893A3 (en) * 1998-02-20 2001-10-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Rotor blade for wind turbine
EP1596063B1 (en) 2004-05-11 2016-09-28 Senvion GmbH Wind turbine with bent rotor blades
US20090232656A1 (en) * 2005-10-17 2009-09-17 Peter Grabau Blade for a wind Turbine Rotor
US8177517B2 (en) * 2005-10-17 2012-05-15 Lm Glasfiber A/S Blade for a wind turbine rotor
US8469672B2 (en) 2005-10-17 2013-06-25 Lm Glasfiber A/S Blade for a wind turbine rotor
EP2006537A2 (en) 2007-06-21 2008-12-24 Manuel Torres Martinez Blade for a horizontal-axis wind generator
US20080317599A1 (en) * 2007-06-21 2008-12-25 Manuel Torres Martinez Blade for a horizontal-axis wind generator
ES2322423A1 (en) * 2007-06-21 2009-06-19 Manuel Torres Martinez Blade for a horizontal-axis wind generator
DK178849B1 (en) * 2008-06-06 2017-03-27 Gen Electric ROTOR UNIT FOR A WINDMILL AND METHOD FOR INSTALLING THE SAME
US20100303631A1 (en) * 2009-05-29 2010-12-02 Vestas Wind Systems A/S Wind Turbine Rotor Blade Having Segmented Tip
US20120328434A1 (en) * 2010-02-25 2012-12-27 The Regents Of The University Of California Integrated wind turbine
US9228564B2 (en) * 2010-02-25 2016-01-05 The Regents Of The University Of California Integrated wind turbine
US8317483B2 (en) * 2010-12-15 2012-11-27 General Electric Company Wind turbine rotor blade
US20110223034A1 (en) * 2010-12-15 2011-09-15 General Electric Company Wind turbine rotor blade
EP2906819B2 (en) 2012-10-12 2020-07-29 Joint Blade Rotor A/S Joined blade wind turbine rotor
EP2906819B1 (en) 2012-10-12 2017-05-03 Joint Blade Rotor A/S Joined blade wind turbine rotor
EP3597901A1 (en) 2014-09-25 2020-01-22 Winfoor AB Rotor blade for wind turbine
US10253753B2 (en) 2014-09-25 2019-04-09 Winfoor Ab Rotor blade for wind turbine
WO2016048221A1 (en) * 2014-09-25 2016-03-31 Winfoor Ab Rotor blade for wind turbine
CN107076108A (en) * 2014-09-25 2017-08-18 赢富尔股份公司 Rotor blade for wind turbine
USD822602S1 (en) 2015-10-29 2018-07-10 Winfoor Ab Triblade
CN108368823A (en) * 2015-12-08 2018-08-03 赢富尔股份公司 Rotor blade for wind turbine
US20190024629A1 (en) * 2015-12-08 2019-01-24 Winfoor Ab Rotor Blade for a Wind Turbine
CN108368823B (en) * 2015-12-08 2020-06-26 赢富尔股份公司 Rotor blade for a wind turbine
EP3222846A1 (en) 2016-03-24 2017-09-27 Winfoor AB Wind turbine rotor blade
WO2017162824A1 (en) 2016-03-24 2017-09-28 Winfoor Ab Wind turbine rotor blade
WO2018224582A1 (en) 2017-06-08 2018-12-13 Winfoor Ab A wind turbine rotor blade, a section thereof and an interconnecting member
EP3412906A1 (en) 2017-06-08 2018-12-12 Winfoor AB A wind turbine rotor blade, a section thereof and an interconnecting member
US20190101128A1 (en) * 2017-10-01 2019-04-04 Papa Abdoulaye MBODJ Wing or blade design for wingtip device, rotor, propeller, turbine, and compressor blades with energy regeneration
US20200262551A1 (en) * 2019-02-19 2020-08-20 United States Of America As Represented By The Secretary Of The Army Bi-Planer Rotor Blade
US10875639B2 (en) * 2019-02-19 2020-12-29 United States Of America As Represented By The Secretary Of The Army Bi-planer rotor blade

Also Published As

Publication number Publication date
NL24839C (en)
GB292953A (en) 1928-12-27
FR636615A (en) 1928-04-13
DE577917C (en) 1933-06-07

Similar Documents

Publication Publication Date Title
US1820529A (en) Wind motor
US2650752A (en) Boundary layer control in blowers
US5518367A (en) Cross-wind-axis wind turbine
CA1059031A (en) Rotary device driven by a moving fluid
US4150301A (en) Wind turbine
US4917332A (en) Wingtip vortex turbine
CN106536921B (en) To extract wind energy and hydrokinetic turbine rotor
US3822105A (en) Helicopter blade
US20180038341A1 (en) Wind turbine blade, wind turbine rotor, wind turbine power generating apparatus, and method of mounting vortex generator
US4550259A (en) Device for converting wind energy into another form of energy
US10815968B2 (en) Concentric wing turbines
EP0181363A1 (en) Wind turbine blades
US4093402A (en) Propeller or a set of wings for a wind mill
US1997506A (en) Guide vane for rotary machines
US9273666B2 (en) Magnus type wind power generator
US3173490A (en) Propeller blade for vtol aircraft
US4537559A (en) Venturi rotor apparatus for the generation of power
US4540333A (en) TARP Rotor system thrust, yaw and load control
US1432700A (en) Propeller
US1537401A (en) Controlling or regulating device for propellers
CA1045038A (en) Vertical axis wind turbine
GB1308023A (en) Bladed rotors
US2369049A (en) Rotary wing aircraft
Loth et al. Induced drag reduction with wing tip mounted propellers
US2120168A (en) Aerodynamic rotor