EP1114976A2 - Device for cooling a conduit wall provided with at least one fin element - Google Patents

Device for cooling a conduit wall provided with at least one fin element Download PDF

Info

Publication number
EP1114976A2
EP1114976A2 EP20000811044 EP00811044A EP1114976A2 EP 1114976 A2 EP1114976 A2 EP 1114976A2 EP 20000811044 EP20000811044 EP 20000811044 EP 00811044 A EP00811044 A EP 00811044A EP 1114976 A2 EP1114976 A2 EP 1114976A2
Authority
EP
European Patent Office
Prior art keywords
rib
flow channel
flow
cooling
rib element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20000811044
Other languages
German (de)
French (fr)
Other versions
EP1114976A3 (en
Inventor
Alexander Dr. Beeck
Bernhard Dr. Bonhoff
Sacha Dr. Parneix
Bernhard Prof. Dr. Weigand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Power Schweiz AG
Alstom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Power Schweiz AG, Alstom SA filed Critical Alstom Power Schweiz AG
Publication of EP1114976A2 publication Critical patent/EP1114976A2/en
Publication of EP1114976A3 publication Critical patent/EP1114976A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03045Convection cooled combustion chamber walls provided with turbolators or means for creating turbulences to increase cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/2087Means to cause rotational flow of fluid [e.g., vortex generator]
    • Y10T137/2093Plural vortex generators

Definitions

  • the invention relates to a device for cooling a flow channel surrounding flow channel wall with at least one, in a through the Flow medium passing through flow channel inducing flow eddies Rib element on the side of the flow channel wall facing the flow channel is appropriate and its shape and size under one certain heat transfer coefficients and a certain one by which Overflow of the rib element with the flow medium in this connected Pressure loss are selected.
  • the turbine blades, as well as the combustion chamber walls combined with cooling channels through which in the Relative to the temperatures of the hot gases, relatively cold air is fed in is branched off, for example, from the air compressor stage for cooling purposes.
  • the cooling air flow flowing through the cooling channels cools the cooling channel walls and is warmed up by them.
  • precautions have been taken by which the thermal coupling between Coolant and cooling channel wall can be optimized. So it is known that targeted by providing ribs on the inner wall of the cooling channel turbulent flow components within that passing through the cooling channel Coolant flow can be generated, the flow components perpendicular have on the cooling channel wall.
  • the proportion of the coolant mass flow which comes into direct thermal contact with the cooling channel walls, be significantly increased, which also significantly improves the cooling effect becomes.
  • straight ribs that are arranged obliquely to the main flow direction as is found has relatively stable and pronounced secondary flow vortices, which lead to increased mixing of the boundary layer near the cooling channel wall, through the increasingly cold cooling air can reach the hot cooling channel walls.
  • the invention has for its object a device for cooling a Flow channel wall surrounding the flow channel with at least one, in one fluid flowing through the flow channel inducing rib element, that on the, facing the flow channel Side of the flow channel wall is attached and its shape and size below Given a certain heat transfer coefficient and a certain by the flow medium flowing over the rib element in it associated pressure loss are chosen to develop such that the cooling effect of the flow medium passing through the flow channel is further increased should be done without, by optimizing shape and size of the fin element existing heat transfer coefficient between the cooling channel wall and flow medium and without increasing the connected by the overflow of the rib element with the flow medium Suffering from pressure loss. Measures to increase the cooling effect are said to also with regard to their manufacture with little effort and low manufacturing costs be connected.
  • a device according to the preamble of claim 1 is such trained that the rib element while largely maintaining its original shape and / or size its facing the flow channel Has surface enlarging contours.
  • the idea according to the invention is based on the optimization of the outer rib contour with the aim of increasing the heat transfer surface between the rib and flow medium, however the heat transfer coefficient defined by the spatial shape the rib and the pressure loss caused by the rib shape should remain essentially unaffected in the flow medium.
  • FIG. 1 A side of a cooling duct wall 1 is shown in cross section in FIG. on the flow channel inner wall two rib elements 2, 3 are provided are, which each have a rectangular cross section.
  • a cooling channel delimited by four side walls, two of which are opposite Side walls are provided with rib elements, each in the direction of flow are arranged one after the other in multiple succession.
  • Figure 1a is only in Longitudinal section of a half of a cooling channel 4 shown, the rib elements provided cooling channel walls are spaced from each other by the width H (shown is only the cooling channel up to H / 2).
  • H shown is only the cooling channel up to H / 2
  • the fin height e is approximately 10% of the cooling channel height H, which at the same time also corresponds to the hydraulic diameter of the cooling channel.
  • the ratio of the distance p between two rib elements 2, 3 arranged directly adjacent in the longitudinal direction of the cooling channel and the rib height e is approximately 10.
  • FIG. 2 shows a further embodiment of a rib element, which has a rectangular cross section and three grooves 6 for the purpose of enlarging the surface having. In addition, the edges are rounded.
  • FIGS. 3a-d other cross-sectional shapes can also be used can be used for the rib elements, with surface enlarging Measures are not based solely on indentations in the rib elements are limited.
  • FIG. 3a shows a conventional rectangular rib, which extends over its entire length has a constant cross-section.
  • the rectangular rib shown in Figure 3b has a along its extent increasing rectangular cross-section.
  • its cross-sectional shape is semicircular and a continuous in the longitudinal direction of the ribs has increasing semicircle diameter.
  • for a surface enlargement changes all geometry parameters of the rib element like rib height, rib width, distance between two adjacent ribs in relation to their height as well as the inclination of the rib axis.
  • FIGS. 4a-d there are combinations of grooves or grooves and specific changes in cross-section shown along the longitudinal axis of the ribs.
  • Figure 4a shows one Rectangular rib with a constant rib cross-section and one worked into it Groove.
  • Figure 4b shows a rib element with a rectangular groove and with in the longitudinal direction of the ribs increasing rectangular cross-section and one semicircular incorporated recess.
  • FIG. 4c shows a triangular cross-sectional shape Ribs on both side flanks of straight recesses are provided.
  • FIG. 4d has an original semicircular design Cross section on, in which a parabolic recess is incorporated.
  • Three-dimensional depressions can also be worked into the rib elements are, as is apparent from Figures 5a - 5c.
  • Figure 5a is a rectangular rib with a rectangular shape Wells shown.
  • Figure 5b shows a semicircular in cross section trained rib with cylindrical recesses.
  • Figure 5c instructs on its surface three-dimensional cubic body, through which a special large surface area enlargement is possible.

Abstract

The arrangement has at least one rib element (5) inducing turbulence in a flowing medium in the flow channel whose size and shape are selected to achieve a defined coefficient of thermal transfer and a defined pressure loss as the medium flows over the rib element. The rib element has contours that increase its area facing the flow channel whilst substantially maintaining its original shape and/or size.

Description

Technisches GebietTechnical field

Die Erfindung bezieht sich auf eine Vorrichtung zur Kühlung einer, einen Strömungskanal umgebenden Strömungskanalwand mit wenigstens einem, in ein durch den Strömungskanal hindurchtretendes Strömungsmedium Strömungswirbel induzierenden Rippenelement, das an der, dem Strömungskanal zugewandten Seite der Strömungskanalwand angebracht ist und dessen Form und Größe unter Massgaben eines bestimmten Wärmeübergangskoeffizienten sowie eines bestimmten, durch das Überströmen des Rippenelementes mit dem Strömungsmedium in diesem verbundenen Druckverlust gewählt sind.The invention relates to a device for cooling a flow channel surrounding flow channel wall with at least one, in a through the Flow medium passing through flow channel inducing flow eddies Rib element on the side of the flow channel wall facing the flow channel is appropriate and its shape and size under one certain heat transfer coefficients and a certain one by which Overflow of the rib element with the flow medium in this connected Pressure loss are selected.

Stand der TechnikState of the art

Auf dem Gebiet der Gasturbinentechnik werden große Anstrengungen unternommen den Wirkungsgrad derartiger Anlagen zu steigern. Es ist bekannt, dass eine Temperaturerhöhung in den, durch die Verbrennung eines Luft-/Brennstoffgemisches innerhalb der Brennkammer entstehenden Heißgasen zugleich mit einer Steigerung des Gasturbinenwirkungsgrad verbunden ist. Eine Erhöhung der Prozesstemperatur setzt allerdings voraus, dass all jene Anlagenkomponenten, die in unmittelbarem thermischen Kontakt mit den Heißgasen treten, eine hohe Hitzeresistenz besitzen. Die Hitzeresistenz ist jedoch auch selbst bei speziell hitzebeständigen Materialien auf der Temperaturskala nach oben hin begrenzt, so dass bei Überschreiten bestimmter materialspezifischer Grenztemperaturen eine Materialaufschmelzung unvermeidbar ist. Um derartige Aufschmelzvorgänge zu vermeiden und andererseits dennoch hohe Prozesstemperaturen innerhalb des Gasturbinensystems zu gewährleisten, sind Kühlungssysteme bekannt, die jene Anlagenkomponenten gezielt kühlen, die den Heißgasen unmittelbar ausgesetzt sind. So sind beispielsweise die Turbinenschaufeln, ebenso wie die Brennkammerwände mit Kühlkanälen kombiniert, durch die im Verhältnis zu den Temperaturen der Heissgase relativ kalte Luft eingespeist wird, die beispielsweise aus der Luftverdichterstufe zu Kühlzwecken abgezweigt wird. Der durch die Kühlkanäle hindurchströmende Kühlluftstrom kühlt die Kühlkanalwände und wird selbst durch diese aufgewärmt. Um den Kühleffekt und den damit verbundenen Wärmeübergang von den Kühlkanalwänden zum Kühlmedium Luft zu verbessern, sind Vorkehrungen getroffen worden, durch die die thermische Kopplung zwischen Kühlmedium und Külkanalwand optimiert werden kann. So ist es bekannt, dass durch Vorsehen von Rippenzügen an der Innenwand des Kühlkanals gezielte turbulente Strömungsanteile innerhalb des durch den Kühlkanal hindurchtretenden Kühlmittelstromes erzeugt werden können, die Strömungskomponenten senkrecht auf die Kühlkanalwand aufweisen. Hierdurch wird der Anteil des Kühlmittelmassenstromes, der mit dem Kühlkanalwänden in unmittelbaren thermischen Kontakt tritt, entscheidend erhöht werden, wodurch auch die Kühlwirkung erheblich verbessert wird. So bildet sich durch Vorsehen entsprechender Rippenzüge entlang der Kühlkanalwand neben der, durch den Kühlkanal hindurch strömenden Hauptströmung eine sogenannte Sekundärströmung aus, deren Strömungsanteile, wie vorstehend angedeutet, weitgehend senkrecht auf und von der Kühlkanalwand gerichtete Strömungsrichtungen aufweist. Insbesondere bei geradlinig ausgeformten Rippenzüge, die schräg zur Hauptströmungsrichtung angeordnet sind, bilden sich, wie man gefunden hat, verhältnismäßig stabile und stark ausgeprägte Sekundärströmungswirbel aus, die zu einer erhöhten Durchmischung der Kühlkanalwand nahen Grenzschicht führen, durch die vermehrt kalte Kühlluft an die heißen Kühlkanalwände gelangen kann.Great efforts are being made in the field of gas turbine technology to increase the efficiency of such systems. It is known that an increase in temperature in which, by the combustion of an air / fuel mixture within the hot gases generated in the combustion chamber at the same time as an increase in the Gas turbine efficiency is connected. An increase in the process temperature sets However, it is assumed that all those system components that are in direct thermal Contact with the hot gases, have a high heat resistance. The heat resistance is also on the even with specially heat-resistant materials Temperature scale limited upwards, so that when certain melting of the material is unavoidable is. In order to avoid such melting processes and, on the other hand, still high ones Process temperatures within the gas turbine system are to be ensured Known cooling systems that specifically cool those system components that the Hot gases are directly exposed. For example, the turbine blades, as well as the combustion chamber walls combined with cooling channels through which in the Relative to the temperatures of the hot gases, relatively cold air is fed in is branched off, for example, from the air compressor stage for cooling purposes. The cooling air flow flowing through the cooling channels cools the cooling channel walls and is warmed up by them. About the cooling effect and the associated To improve heat transfer from the cooling channel walls to the cooling medium air, precautions have been taken by which the thermal coupling between Coolant and cooling channel wall can be optimized. So it is known that targeted by providing ribs on the inner wall of the cooling channel turbulent flow components within that passing through the cooling channel Coolant flow can be generated, the flow components perpendicular have on the cooling channel wall. As a result, the proportion of the coolant mass flow, which comes into direct thermal contact with the cooling channel walls, be significantly increased, which also significantly improves the cooling effect becomes. This is done by providing appropriate ribs along the cooling channel wall next to the main flow flowing through the cooling channel so-called secondary flow, the flow components of which, as indicated above, flow directions directed largely perpendicular to and from the cooling channel wall having. Especially with straight ribs that are arranged obliquely to the main flow direction, as is found has relatively stable and pronounced secondary flow vortices, which lead to increased mixing of the boundary layer near the cooling channel wall, through the increasingly cold cooling air can reach the hot cooling channel walls.

Umfangreiche Studien sind im Zusammenhang mit den Rippenzügen innerhalb von Kühlkanälen und den damit verbundenen Einfluss auf den sich zwischen der Kühlwand und dem durch den Kühlkanal hindurchströmenden Kühlmedium einstellenden Wärmeübergangskoeffiezient durchgeführt worden. Insbesondere bezogen sich die Studien auf die Einflussnahme diverser, die Rippenzüge charakterisierende Parameter auf den Wärmeübergangskoeffizient sowie auch auf den, mit dem Überströmen eines Rippenzuges verbundenen Druckverlust, wie beispielsweise Rippenhöhe, Neigung der Rippenflanken oder Winkelausrichtung der geradlinig ausgebildeten Rippen relativ zur Hauptströmungsrichtung, Reynolds- oder Prandlzahl, das Aspektverhältnis des Kühlkanalquerschnittes oder die sich innerhalb der Strömung der Kühlluft ausbildenden Rotationswirbel, um nur einige Parameter zu nennen. Die meisten Optimierungsanstrengungen hinsichtlich Design und Anordnung der Rippenzügen innerhalb von Kühlkanälen beschränkten sich auf die Optimierung des Rippenquerschnittes.Extensive studies are related to the ribs within Cooling channels and the associated influence on the between the cooling wall and the cooling medium flowing through the cooling channel Heat transfer coefficient has been carried out. In particular, the Studies on the influence of various parameters characterizing the ribs on the heat transfer coefficient as well as on the one with overflow a pressure loss associated with a rib pull, such as rib height, Inclination of the rib flanks or angular orientation of the straight line Ribs relative to the main flow direction, Reynolds or Prandl number, the aspect ratio of the cooling channel cross section or which are within the flow of the Rotating vortices that form cooling air, to name just a few parameters. Most Efforts to optimize the design and arrangement of the ribs within cooling channels were limited to the optimization of the fin cross-section.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde eine Vorrichtung zur Kühlung einer, einen Strömungskanal umgebenden Strömungskanalwand mit wenigstens einem, in ein durch den Strömungskanal hindurchtretendes Strömungsmedium Strömungswirbel induzierenden Rippenelements, das an der, dem Strömungskanal zugewandten Seiten der Strömungskanalwand angebracht ist und dessen Form und Größe unter Maßgabe eines bestimmten Wärmeübergangskoeffizienten sowie eines bestimmten, durch das Überströmen des Rippenelementes mit dem Strömungsmedium in diesem verbundenen Druckverlust gewählt sind, derart weiter zu bilden, dass die Kühlwirkung des den Strömungskanal passierenden Strömungsmedium weiter gesteigert werden soll ohne dabei den, im Wege von Optimierungen durch Form und Größe des Rippenelementes bestehenden Wärmeübergangskoeffizienten zwischen Kühlkanalwand und Strömungsmedium zu beeinflussen sowie ohne eine Erhöhung des durch das Überströmen des Rippenelementes mit dem Strömungsmedium verbundenen Druckverlust zu erleiden. Die Kühlwirkung erhöhenden Maßnahmen sollen auch im Hinblick ihrer Herstellung mit geringem Aufwand sowie geringen Herstellungskosten verbunden sein.The invention has for its object a device for cooling a Flow channel wall surrounding the flow channel with at least one, in one fluid flowing through the flow channel inducing rib element, that on the, facing the flow channel Side of the flow channel wall is attached and its shape and size below Given a certain heat transfer coefficient and a certain by the flow medium flowing over the rib element in it associated pressure loss are chosen to develop such that the cooling effect of the flow medium passing through the flow channel is further increased should be done without, by optimizing shape and size of the fin element existing heat transfer coefficient between the cooling channel wall and flow medium and without increasing the connected by the overflow of the rib element with the flow medium Suffering from pressure loss. Measures to increase the cooling effect are said to also with regard to their manufacture with little effort and low manufacturing costs be connected.

Die Lösung der der Erfindung zugrunde liegenden Aufgabe ist im Anspruch 1 angegeben. Den Erfindungsgedanken vorteilhaft weiterbildenden Merkmale sind den Unteransprüchen sowie der Beschreibung nebst Figuren zu entnehmen. The solution to the problem underlying the invention is specified in claim 1. Features that further advantageously develop the inventive idea are the dependent claims as well as the description and figures.

Erfindungsgemäß ist eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 1 derart ausgebildet, dass das Rippenelement unter weitgehendem Beibehalten seiner ursprünglichen Form und/oder Größe seine, dem Strömungskanal zugewandte Oberfläche vergrößernde Konturen aufweist.According to the invention, a device according to the preamble of claim 1 is such trained that the rib element while largely maintaining its original shape and / or size its facing the flow channel Has surface enlarging contours.

So basiert die erfindungsgemäße Idee auf der Optimierung der äußeren Rippenkontur mit dem Ziel der Erhöhung der wärmeübertragenden Oberfläche zwischen Rippe und Strömungsmedium, gleichwohl der durch die Raumform definierte Wärmeübergangskoeffiezient der Rippe sowie der durch die Rippenform verursachte Druckverlust im Strömungsmedium im Wesentlichen unbeeinflusst bleiben soll.The idea according to the invention is based on the optimization of the outer rib contour with the aim of increasing the heat transfer surface between the rib and flow medium, however the heat transfer coefficient defined by the spatial shape the rib and the pressure loss caused by the rib shape should remain essentially unaffected in the flow medium.

So ist erkannt worden, dass durch die Oberfläche des Rippenelementes vergrößernde Maßnahmen, die weitgehend keinen Einfluss auf den Wärmeübergangskoeffizienten sowie den durch das Rippenelement verursachten Druckverlust haben, einen direkten und entscheidenden Einfluss auf eine deutliche Erhöhung des Wärmeübergangs zwischen der Kühlkanalwand und dem, durch den Kühlkanal hindurchtretenden Kühlmittelstrom. Insbesondere gilt es die Erzeugung von Sekundärwirbeln, bedingt durch die sich dem Kühlmittelstrom zumindest in seinen Randbereichen entgegenstehenden Rippenelementen weitgehend unbeeinflusst zu lassen, so dass die Oberflächen vergrößernden Maßnahmen lediglich durch eine leichte Modifikation an der Rippenoberflächen hervorgerufen werden kann.So it has been recognized that enlarging through the surface of the rib element Measures that largely have no influence on the heat transfer coefficient as well as the pressure loss caused by the rib element, one direct and decisive influence on a significant increase in heat transfer between the cooling channel wall and that which passes through the cooling channel Coolant flow. In particular, the generation of secondary vortices is conditional through which oppose the coolant flow at least in its edge areas To leave rib elements largely unaffected, so that Surface enlarging measures only by a slight modification the fin surfaces can be caused.

Mögliche Oberflächen vergrößernde Maßnahmen sollen unter Bezugnahme auf die nachstehenden Ausführungsbeispiele näher erläutert werden, die jedoch nicht den, der Erfindung zugrunde liegenden allgemeinen Gedanken einschränken sollen.Possible surface enlarging measures should be taken with reference to the the following exemplary embodiments are explained in more detail, but not the to limit the general idea underlying the invention.

Kurze Beschreibung der ErfindungBrief description of the invention

Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung exemplarisch. Es zeigen:

Fig. 1a, b
schematisierte Querschnittsdarstellungen zur Gegenüberstellung an sich bekannter Rechtecksrippen sowie erfindungsgemäße ausgebildeter Rechtecksrippen,
Fig. 2
schematisierte Querschnittdarstellung durch Rechtecksrippe mit Mehrfachrillen,
Fig. 3a - d
schematisierte Darstellungen verschiedener Rippengeometrien mit weitgehend gleichbleibender Querschnittsgeometrie entlang der Rippenlängsachse,
Fig. 4a - d
Rippengeometrien mit nutförmigen Ausnehmungen,
Fig. 5a - c
perspektivische Darstellung verschiedener Rippengeometrien mit dreidimensionalen Ausnehmungen sowie
Fig. 6
Rippenform mit angerauhter Oberfläche.
The invention is exemplified below without restricting the general inventive concept on the basis of exemplary embodiments with reference to the drawing. Show it:
Fig. 1a, b
schematic cross-sectional representations for comparison of known rectangular ribs and rectangular ribs designed according to the invention,
Fig. 2
schematic cross-sectional representation through rectangular rib with multiple grooves,
3a-d
schematic representations of different fin geometries with largely constant cross-sectional geometry along the longitudinal axis of the fin,
4a-d
Rib geometries with groove-shaped recesses,
5a-c
perspective view of various rib geometries with three-dimensional recesses and
Fig. 6
Rib shape with roughened surface.

Wege zur Ausführung der Erfindung, gewerbliche VerwendbarkeitWAYS OF CARRYING OUT THE INVENTION, INDUSTRIAL APPLICABILITY

In Figur 1a ist in Querschnittsdarstellung eine Seite einer Kühlkanalwand 1 dargestellt, an deren Strömungskanalinnenwand zwei Rippenelemente 2, 3 vorgesehen sind, die jeweils einen rechteckförmigen Querschnitt aufweisen. Typischerweise ist ein Kühlkanal durch vier Seitenwände begrenzt, von denen zwei gegenüberliegende Seitenwände mit Rippenelementen versehen sind, die jeweils in Strömungsrichtung in mehrfacher Abfolge hintereinander angeordnet sind. In Figur 1a ist lediglich im Längsschnitt eine Hälfte eines Kühlkanals 4 dargestellt, deren mit Rippenelementen versehene Kühlkanalwänden durch die Weite H voneinander beabstandet sind (dargestellt ist lediglich der Kühlkanal bis H/2). Aus strömungstechnischen Gründen und insbesondere für eine gezielte Ausbildung von sogenannten Sekundärwirbeln, schließt die Rippenlängsachse jedes einzelnen Rippenelementes mit der Hauptströmungsrichtung der, durch den Strömungskanal hindurchtretenden Kühlluft einen Winkel von etwa 45° ein.A side of a cooling duct wall 1 is shown in cross section in FIG. on the flow channel inner wall two rib elements 2, 3 are provided are, which each have a rectangular cross section. Typically a cooling channel delimited by four side walls, two of which are opposite Side walls are provided with rib elements, each in the direction of flow are arranged one after the other in multiple succession. In Figure 1a is only in Longitudinal section of a half of a cooling channel 4 shown, the rib elements provided cooling channel walls are spaced from each other by the width H (shown is only the cooling channel up to H / 2). For fluidic reasons and especially for the targeted formation of so-called secondary vertebrae, closes the longitudinal axis of the ribs of each individual rib element with the main flow direction of cooling air passing through the flow channel Angle of about 45 °.

Basierend auf Optimierungsberechnungen hinsichtlich eines gewünschten Wärmeübergangskoeffizienten sowie eines möglichst minimalen Druckverlustes, der sich bei Überströmen des Strömungsmediums über jedes einzelne Rippenelement ergibt, gelten für im Querschnitt rechteckförmig ausgebildete Rippenelemente folgende Dimensionierungsbedingungen: Die Rippenhöhe e beträgt in etwa 10% von der Kühlkanalhöhe H, die zugleich auch dem hydraulischen Durchmesser des Kühlkanals entspricht. Das Verhältnis aus dem Abstand p zweier unmittelbar in Kühlkanallängsrichtung benachbart angeordneter Rippenelemente 2, 3 und der Rippenhöhe e beträgt in etwa 10. Ausgehend von den vorstehend beschriebenen Dimensionierungen für die, im Kühlkanal angeordneten Rippenelemente sieht der erfindungsgemäße Gedanke vor, die Oberfläche jedes einzelnen Rippenelementes beispielsweise durch die in Figur 1b dargestellte Maßnahme, nämlich durch Einbringen einer Längsnut in jedes einzelne Rippenelement, gezielt zu vergrößern, wobei die strömungsdynamischen Eigenschaften jedes einzelnen Rippenelementes weitestgehend unverändert bleiben. Durch das Einbringen einer Rechtecksnut 5 innerhalb des Rippenelementes 2, 3 wird die Oberfläche des Rippenelementes deutlich vergrößert. Unter der Annahme, dass für die in Figur 1 b eingezeichneten Abstandsgrößen folgende Beziehungen gelten,
a = c = w/4
b = w/2
d = e/2 können folgende Feststellungen gemacht werden:
Der Oberflächenanteil, der durch-die Rippenelementoberflächen gebildet wird, im Verhältnis zur gesamten Wärmeübertragungsoberfläche innerhalb eines Kühlkanals beträgt, im Falle der Ausbildung eines Rippenelementes gemäß Figur 1a, 25%. Sind die Rippenelemente mit einer Nut gemäß dem Ausführungsbeispiel der Figur 1b versehen, so liegt ihr Oberflächenanteil gemessen an der gesamten Wärmeübertragungsoberfläche innerhalb eines Kühlkanals in der Größenordnung von 33%. Dies führt verglichen zum Ausführungsbeispiel gemäß Figur 1a zu einem Anstieg der gesamten Wärmeübergangsoberfläche innerhalb eines Kühlkanals um 8,3%. Unter der Annahme, dass die Oberfläche innerhalb der Nut in gleicher Weise zum Wärmeaustausch beiträgt, wie die übrige Oberfläche des Rippenelementes, beträgt die zu erwartende Zunahme des Wärmeübergangs durch die erfindungsgemäße Maßnahme 8,3%, also ebensoviel, um die die Wärmeübergangsoberfläche im Gesamtsystem zugenommen hat.
Based on optimization calculations with regard to a desired heat transfer coefficient and the lowest possible pressure loss, which results when the flow medium flows over each individual fin element, the following dimensioning conditions apply to fin elements with a rectangular cross-section: The fin height e is approximately 10% of the cooling channel height H, which at the same time also corresponds to the hydraulic diameter of the cooling channel. The ratio of the distance p between two rib elements 2, 3 arranged directly adjacent in the longitudinal direction of the cooling channel and the rib height e is approximately 10. Based on the dimensions described above for the rib elements arranged in the cooling channel, the idea according to the invention provides that the surface of each individual rib element, for example through the measure shown in FIG. 1b, namely by introducing a longitudinal groove in each individual rib element, to enlarge it in a targeted manner, the fluid dynamic properties of each individual rib element remaining largely unchanged. By introducing a rectangular groove 5 inside the rib element 2, 3, the surface of the rib element is significantly enlarged. Assuming that the following relationships apply to the distance quantities shown in FIG. 1b,
a = c = w / 4
b = w / 2
d = e / 2 the following statements can be made:
The surface portion which is formed by the fin element surfaces in relation to the total heat transfer surface within a cooling channel is 25% in the case of the formation of a fin element according to FIG. 1a. If the rib elements are provided with a groove in accordance with the exemplary embodiment in FIG. 1b, their surface fraction measured on the entire heat transfer surface within a cooling channel is of the order of magnitude of 33%. Compared to the exemplary embodiment according to FIG. 1a, this leads to an increase in the total heat transfer surface within a cooling duct by 8.3%. Assuming that the surface within the groove contributes to the heat exchange in the same way as the rest of the surface of the fin element, the expected increase in heat transfer due to the measure according to the invention is 8.3%, i.e. the same amount by which the heat transfer surface in the overall system increases Has.

In Figur 2 ist eine weitere Ausführungsform eines Rippenelementes dargestellt, das über einen rechteckigen Querschnitt verfügt und drei Rillen 6 zu Zwecken der Oberflächenvergrößerung aufweist. Überdies sind die Kanten abgerundet.FIG. 2 shows a further embodiment of a rib element, which has a rectangular cross section and three grooves 6 for the purpose of enlarging the surface having. In addition, the edges are rounded.

Wie aus den Figuren 3a - d zu entnehmen ist, können auch andere Querschnittsformen für die Rippenelemente verwendet werden, wobei Oberflächen vergrößernde Maßnahmen nicht allein auf das Einbringen von Vertiefungen in die Rippenelemente beschränkt sind.As can be seen from FIGS. 3a-d, other cross-sectional shapes can also be used can be used for the rib elements, with surface enlarging Measures are not based solely on indentations in the rib elements are limited.

In Figur 3a ist eine konventionelle rechteckförmige Rippe dargestellt, die über ihre gesamte Länge einen gleichbleibenden Querschnitt aufweist. Im Unterschied dazu weist die in Figur 3b dargestellte rechteckförmige Rippe einen längs ihrer Erstrekkung sich vergrößernden Rechtecksquerschnitt auf. Das gleiche gilt für die in Figur 3c dargestellte Dreiecksrippe sowie die in Figur 3d dargestellte Rippe, deren Querschnittsform halbkreisförmig ausgebildet ist und in Rippenlängsrichtung einen kontinuierlich zunehmenden Halbkreisdurchmesser aufweist. Grundsätzlich können für eine Oberflächenvergrößerung alle Geometrieparameter des Rippenelementes verändert werden, wie Rippenhöhe, Rippenbreite, Abstand zweier benachbarter Rippen im Verhältnis zu ihrer Höhe sowie die Neigung der Rippenachse.FIG. 3a shows a conventional rectangular rib, which extends over its entire length has a constant cross-section. In contrast to the rectangular rib shown in Figure 3b has a along its extent increasing rectangular cross-section. The same applies to those in Figure 3c shown triangular rib and the rib shown in Figure 3d, its cross-sectional shape is semicircular and a continuous in the longitudinal direction of the ribs has increasing semicircle diameter. Basically, for a surface enlargement changes all geometry parameters of the rib element like rib height, rib width, distance between two adjacent ribs in relation to their height as well as the inclination of the rib axis.

In den Figuren 4a - d sind Kombinationen aus Rillen bzw. Nuten und gezielten Querschnittsänderungen entlang der Rippenlängsachse dargestellt. Figur 4a zeigt eine Rechtecksrippe mit konstantem Rippenquerschnitt und einer darin eingearbeiteten Nut. Figur 4b zeigt ein Rippenelement mit einer Rechtecksnut sowie mit in Rippenlängsrichtung größer werdendem Rechtecksquerschnitt und einer halbkreisförmig eingearbeiteten Ausnehmung. Figur 4c zeigt eine in Querschnittsform dreieckig ausgebildete Rippe an deren beiden Seitenflanken geradlinig ausgebildete Ausnehmungen vorgesehen sind. Figur 4d weist einen ursprünglichen halbkreisförmig ausgebildeten Querschnitt auf, in dem eine parabolische Ausnehmung eingearbeitet ist. In FIGS. 4a-d there are combinations of grooves or grooves and specific changes in cross-section shown along the longitudinal axis of the ribs. Figure 4a shows one Rectangular rib with a constant rib cross-section and one worked into it Groove. Figure 4b shows a rib element with a rectangular groove and with in the longitudinal direction of the ribs increasing rectangular cross-section and one semicircular incorporated recess. FIG. 4c shows a triangular cross-sectional shape Ribs on both side flanks of straight recesses are provided. FIG. 4d has an original semicircular design Cross section on, in which a parabolic recess is incorporated.

Auch können dreidimensionale Vertiefungen in die Rippenelemente eingearbeitet werden, wie es aus den Figuren 5a - 5c hervorgeht.Three-dimensional depressions can also be worked into the rib elements are, as is apparent from Figures 5a - 5c.

In Figur 5a ist eine rechteckförmig ausgebildete Rippe mit rechteckförmig ausgebildeten Vertiefungen dargestellt. Figur 5b zeigt eine im Querschnitt halbkreisförmig ausgebildete Rippe mit zylinderförmig ausgebildeten Vertiefungen. Figur 5c weist an seiner Oberfläche dreidimensionale kubische Körper auf, durch die eine besonders große Oberflächenvergrößerung möglich ist.In Figure 5a is a rectangular rib with a rectangular shape Wells shown. Figure 5b shows a semicircular in cross section trained rib with cylindrical recesses. Figure 5c instructs on its surface three-dimensional cubic body, through which a special large surface area enlargement is possible.

Grundsätzlich können alle vorstehend beispielhaft aufgezeigten Maßnahmen zur Vergrößerung der Rippenoberfläche miteinander kombiniert werden.Basically, all of the measures outlined above as examples Enlargement of the rib surface can be combined.

Auch ist es möglich durch eine gezielte Oberflächenaufrauhung die Oberfläche des Rippenelementes zu vergrößern, um auf diese den Wärmeübergang zu steigern. Zwar verändert diese Massnahme die Form und Geometrie des Rippenzuges am aller wenigstens verglichen zu den vorstehend aufgezeigten Ausführungsbeispielen, doch ist der oberflächenvergrößernde Effekt eher begrenzt. It is also possible through a specific surface roughening of the surface of the To enlarge the rib element to increase the heat transfer to it. This measure changes the shape and geometry of the rib tension on the all at least compared to the exemplary embodiments shown above, however, the surface enlarging effect is rather limited.

BezugszeichenlisteReference list

11
KühlkanalCooling channel
2, 32, 3
RippenelementRib element
44th
KühlkanalwandCooling duct wall
55
RechtecksnutRectangular groove
66
Rillegroove

Claims (8)

Vorrichtung zur Kühlung einer, einen Strömungskanal (4) umgebenden Strömungskanalwand (1) mit wenigstens einem, in ein, durch den Strömungskanal (4) hindurchtretendes Strömungsmedium Strömungswirbel induzierenden Rippenelement (2,3),
das an der, dem Strömungskanal (4) zugewandten Seite der Strömungskanalwand (4) an gebracht ist und dessen Form und Größe unter Massgaben eines bestimmten Wärmeübergangskoeffizienten sowie eines bestimmten, durch das Überströmen des Rippenelementes (2,3) mit dem Strömungsmedium in diesem verbundenen Druckverlust gewählt sind,
dadurch gekennzeichnet, dass das Rippenelement (2,3) unter weitgehendem Beibehalten seiner ursprünglichen Form und/oder Größe seine, dem Strömungskanal (4) zugewandte Oberfläche vergrössernde Konturen aufweist.
Device for cooling a flow channel wall (1) surrounding a flow channel (4) with at least one rib element (2, 3) inducing flow vortices in a flow medium passing through the flow channel (4),
which is placed on the side of the flow channel wall (4) facing the flow channel (4) and its shape and size in accordance with a certain heat transfer coefficient and a certain pressure loss associated with the flow medium in the flow medium flowing over the rib element (2, 3) are chosen
characterized in that the rib element (2, 3), while largely maintaining its original shape and / or size, has contours which enlarge its surface facing the flow channel (4).
Vorrichtung nach Anbruch 1,
dadurch gekennzeichnet, dass die dem Strömungskanal (4) zugewandte Oberfläche vergrössernde Konturen derart ausgebildet sind, daß weder der Wärmeübergangskoeffizient des Rippenelementes (2,3) noch der, durch das Rippenelement (2,3) verursachte, strömungsbedingte Druckverlust wesentlich verändert wird.
Device after opening 1,
characterized in that the contours enlarging the surface facing the flow channel (4) are designed in such a way that neither the heat transfer coefficient of the fin element (2, 3) nor the flow-related pressure loss caused by the fin element (2, 3) is changed significantly.
Vorrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass die Oberfläche vergrößernde Konturen als Rillen (6) oder Nuten (5) ausgebildet sind, die in die Rippenelemente (2,3) eingearbeitet sind.
Device according to claim 1 or 2,
characterized in that the surface-enlarging contours are formed as grooves (6) or grooves (5) which are incorporated in the rib elements (2, 3).
Vorrichtung nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass das Rippenelement (2,3) einen quadratischen oder rechteckförmigen Querschnitt aufweist und als eine, seine Oberfläche vergrößernde Kontur eine Nut (5) an seiner, dem Strömungskanal (4) zugewandten Seite aufweist.
Device according to one of claims 1 to 3,
characterized in that the rib element (2, 3) has a square or rectangular cross-section and, as a contour that enlarges its surface, has a groove (5) on its side facing the flow channel (4).
Vorrichtung nach Anspruch 4,
dadurch gekennzeichnet, dass das Rippenelement (2,3) eine Rippenbreite w und eine Rippenhöhe e und die Nut (5) eine Nuttiefe d und eine Nutbreite b aufweisen und dass in etwa gilt: b = w/2 und d = e/2.
Device according to claim 4,
characterized in that the rib element (2, 3) has a rib width w and a rib height e and the groove (5) has a groove depth d and a groove width b and the following roughly applies: b = w / 2 and d = e / 2.
Vorrichtung nach Anspruch 3 oder 4,
dadurch gekennzeichnet, dass die Rillen (6) und/oder Nuten (5) kammartig an der Oberfläche des Rippenelements (2,3) angebracht sind.
Device according to claim 3 or 4,
characterized in that the grooves (6) and / or grooves (5) are comb-like on the surface of the rib element (2, 3).
Vorrichtung nach Anspruch 1',
dadurch gekennzeichnet, dass die Oberfläche vergrößernde Konturen Bohrungen oder Ausfräsungen sind, die in die Rippenelemente (2,3) eingearbeitet sind.
Device according to claim 1 ',
characterized in that the surface-enlarging contours are bores or cutouts which are incorporated in the rib elements (2, 3).
Vorrichtung nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, dass die Oberfläche des Rippenelementes (2,3) eine Oberflächenrauhigkeit aufweist.
Device according to one of claims 1 to 7,
characterized in that the surface of the rib element (2, 3) has a surface roughness.
EP20000811044 1999-12-28 2000-11-07 Device for cooling a conduit wall provided with at least one fin element Withdrawn EP1114976A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19963374 1999-12-28
DE1999163374 DE19963374B4 (en) 1999-12-28 1999-12-28 Device for cooling a flow channel wall surrounding a flow channel with at least one rib element

Publications (2)

Publication Number Publication Date
EP1114976A2 true EP1114976A2 (en) 2001-07-11
EP1114976A3 EP1114976A3 (en) 2001-10-31

Family

ID=7934745

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20000811044 Withdrawn EP1114976A3 (en) 1999-12-28 2000-11-07 Device for cooling a conduit wall provided with at least one fin element

Country Status (3)

Country Link
US (1) US6446710B2 (en)
EP (1) EP1114976A3 (en)
DE (1) DE19963374B4 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1500895A3 (en) * 2003-07-22 2005-04-06 Modine Manufacturing Company Conduit for heat exchanger
EP2284363A1 (en) * 2009-07-07 2011-02-16 Rolls-Royce plc Heat transfer passage
ITMI20110788A1 (en) * 2011-05-09 2012-11-10 Ansaldo Energia Spa GAS TURBINE SHOVEL
WO2014139738A1 (en) * 2013-03-13 2014-09-18 Siemens Aktiengesellschaft Jet burner with cooling duct in the base plate
EP2993403A1 (en) * 2014-09-05 2016-03-09 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine combustor
EP3276128A1 (en) * 2016-07-25 2018-01-31 Siemens Aktiengesellschaft Coolable wall element

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9916091A (en) * 1998-12-09 2001-09-04 Aloys Wobben Rotor blade for wind power installation, and wind power installation
DE10315662A1 (en) 2003-04-04 2004-10-14 Lucas Automotive Gmbh Method for operating a vehicle unit and electronic system for a motor vehicle
DE10347677A1 (en) * 2003-10-09 2005-05-04 Behr Industrietech Gmbh & Co Radiator block, especially for a charge air / coolant radiator
US7007482B2 (en) * 2004-05-28 2006-03-07 Power Systems Mfg., Llc Combustion liner seal with heat transfer augmentation
KR100611493B1 (en) * 2004-09-03 2006-08-10 엘지전자 주식회사 An cooling fin of magnetron
US7163373B2 (en) * 2005-02-02 2007-01-16 Siemens Power Generation, Inc. Vortex dissipation device for a cooling system within a turbine blade of a turbine engine
US20070201980A1 (en) * 2005-10-11 2007-08-30 Honeywell International, Inc. Method to augment heat transfer using chamfered cylindrical depressions in cast internal cooling passages
SE0600003L (en) * 2006-01-02 2007-07-03 Sven Melker Nilsson Duct
US20080295996A1 (en) * 2007-05-31 2008-12-04 Auburn University Stable cavity-induced two-phase heat transfer in silicon microchannels
JP4485583B2 (en) * 2008-07-24 2010-06-23 トヨタ自動車株式会社 Heat exchanger and manufacturing method thereof
US20120000072A9 (en) * 2008-09-26 2012-01-05 Morrison Jay A Method of Making a Combustion Turbine Component Having a Plurality of Surface Cooling Features and Associated Components
FR2938637B1 (en) * 2008-11-18 2013-01-04 Cie Mediterraneenne Des Cafes CIRCULATING CONDUIT OF A FLUID
US8894367B2 (en) * 2009-08-06 2014-11-25 Siemens Energy, Inc. Compound cooling flow turbulator for turbine component
US20110033311A1 (en) * 2009-08-06 2011-02-10 Martin Nicholas F Turbine Airfoil Cooling System with Pin Fin Cooling Chambers
JP5455962B2 (en) * 2011-04-06 2014-03-26 三菱重工業株式会社 Manufacturing method of cooling structure
US8807945B2 (en) 2011-06-22 2014-08-19 United Technologies Corporation Cooling system for turbine airfoil including ice-cream-cone-shaped pedestals
US9297532B2 (en) * 2011-12-21 2016-03-29 Siemens Aktiengesellschaft Can annular combustion arrangement with flow tripping device
JP6231114B2 (en) * 2012-10-24 2017-11-15 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Two-stage combustion with dilution gas mixer
US9869279B2 (en) * 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
EP3660401B1 (en) * 2013-05-23 2021-10-06 Raytheon Technologies Corporation Gas turbine engine combustor liner panel
JP6108982B2 (en) * 2013-06-28 2017-04-05 三菱重工業株式会社 Turbine blade and rotating machine equipped with the same
KR20160040682A (en) * 2013-09-09 2016-04-14 지멘스 악티엔게젤샤프트 Combustion chamber for a gas turbine, and tool and method for producing cooling ducts in a gas turbine component
KR102138327B1 (en) * 2013-11-15 2020-07-27 한화에어로스페이스 주식회사 Turbine
US9551229B2 (en) * 2013-12-26 2017-01-24 Siemens Aktiengesellschaft Turbine airfoil with an internal cooling system having trip strips with reduced pressure drop
US20170159487A1 (en) * 2015-12-02 2017-06-08 General Electric Company HT Enhancement Bumps/Features on Cold Side
KR101797370B1 (en) * 2016-07-04 2017-12-12 두산중공업 주식회사 Gas Turbine Blade
US10830448B2 (en) * 2016-10-26 2020-11-10 Raytheon Technologies Corporation Combustor liner panel with a multiple of heat transfer augmentors for a gas turbine engine combustor
KR20180065728A (en) * 2016-12-08 2018-06-18 두산중공업 주식회사 Cooling Structure for Vane
KR102099307B1 (en) * 2017-10-11 2020-04-09 두산중공업 주식회사 Turbulence generating structure for enhancing cooling performance of liner and a gas turbine combustor using the same
EP3473961B1 (en) 2017-10-20 2020-12-02 Api Heat Transfer, Inc. Heat exchanger
CN108386234B (en) * 2018-02-23 2021-03-16 西安交通大学 Internal cooling structure of combustion engine blade with column row fins as basic cooling unit
FR3089549B1 (en) * 2018-12-07 2021-01-29 Safran Aircraft Engines Turbomachine hollow blade fitted with primary disruptors and secondary disruptors
CN111271133B (en) * 2020-03-09 2021-04-09 北京南方斯奈克玛涡轮技术有限公司 Turbine guider blade with complex fin structure inner cooling channel
CN115875084B (en) * 2023-03-02 2023-06-30 中国航发四川燃气涡轮研究院 Laminate cooling structure applied to turbine blade pressure surface

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966648A (en) * 1982-10-07 1984-04-16 Matsushita Electric Ind Co Ltd Heat exchanger
JPH07190663A (en) * 1993-11-16 1995-07-28 Mitsubishi Heavy Ind Ltd Heating tube
WO1996011372A1 (en) * 1994-10-05 1996-04-18 Amerigon, Inc. Improved heat transfer system for thermoelectric modules
DE19526917A1 (en) * 1995-07-22 1997-01-23 Fiebig Martin Prof Dr Ing Longitudinal swirl generating roughening elements
EP0845580A2 (en) * 1993-12-28 1998-06-03 Kabushiki Kaisha Toshiba A heat transfer promoting structure
WO1999024772A1 (en) * 1997-11-12 1999-05-20 Marconi Communications, Inc. Heat exchanger

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE648190C (en) * 1933-04-13 1937-07-24 Hermann Carl Amme Heat transition area
US2691991A (en) * 1950-08-30 1954-10-19 Gen Motors Corp Heat exchange device
FR1444696A (en) * 1964-12-17 1966-07-08 Thomson Houston Comp Francaise Improvements made to heat-dissipating walls and to devices comprising such walls
US3877517A (en) * 1973-07-23 1975-04-15 Peerless Of America Heat exchangers
JPS59119192A (en) * 1982-12-27 1984-07-10 Hitachi Ltd Heat transfer pipe
DE4129598A1 (en) * 1991-09-06 1993-03-11 Ruhrgas Ag METHOD AND DEVICE FOR INCREASING THE HEAT TRANSFER BETWEEN A WALL AND A HEAT TRANSFER FLUID
US5158136A (en) * 1991-11-12 1992-10-27 At&T Laboratories Pin fin heat sink including flow enhancement
US5361828A (en) * 1993-02-17 1994-11-08 General Electric Company Scaled heat transfer surface with protruding ramp surface turbulators
DE4404357C2 (en) * 1994-02-11 1998-05-20 Wieland Werke Ag Heat exchange tube for condensing steam
TW327205B (en) * 1995-06-19 1998-02-21 Hitachi Ltd Heat exchanger
US6092982A (en) * 1996-05-28 2000-07-25 Kabushiki Kaisha Toshiba Cooling system for a main body used in a gas stream
DE19628548A1 (en) * 1996-07-16 1998-01-22 Abb Patent Gmbh Heat sink profile for air cooling device for semiconductor components
DE29822241U1 (en) * 1998-12-14 1999-03-04 Baxmann Frank Ribbed heatsink

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966648A (en) * 1982-10-07 1984-04-16 Matsushita Electric Ind Co Ltd Heat exchanger
JPH07190663A (en) * 1993-11-16 1995-07-28 Mitsubishi Heavy Ind Ltd Heating tube
EP0845580A2 (en) * 1993-12-28 1998-06-03 Kabushiki Kaisha Toshiba A heat transfer promoting structure
WO1996011372A1 (en) * 1994-10-05 1996-04-18 Amerigon, Inc. Improved heat transfer system for thermoelectric modules
DE19526917A1 (en) * 1995-07-22 1997-01-23 Fiebig Martin Prof Dr Ing Longitudinal swirl generating roughening elements
WO1999024772A1 (en) * 1997-11-12 1999-05-20 Marconi Communications, Inc. Heat exchanger

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 174 (M-316), 10. August 1984 (1984-08-10) -& JP 59 066648 A (MATSUSHITA DENKI SANGYO KK), 16. April 1984 (1984-04-16) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 10, 30. November 1995 (1995-11-30) -& JP 07 190663 A (MITSUBISHI HEAVY IND LTD), 28. Juli 1995 (1995-07-28) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1500895A3 (en) * 2003-07-22 2005-04-06 Modine Manufacturing Company Conduit for heat exchanger
EP2284363A1 (en) * 2009-07-07 2011-02-16 Rolls-Royce plc Heat transfer passage
US8511977B2 (en) 2009-07-07 2013-08-20 Rolls-Royce Plc Heat transfer passage
ITMI20110788A1 (en) * 2011-05-09 2012-11-10 Ansaldo Energia Spa GAS TURBINE SHOVEL
WO2014139738A1 (en) * 2013-03-13 2014-09-18 Siemens Aktiengesellschaft Jet burner with cooling duct in the base plate
US10088163B2 (en) 2013-03-13 2018-10-02 Siemens Aktiengesellschaft Jet burner with cooling duct in the base plate
EP2993403A1 (en) * 2014-09-05 2016-03-09 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine combustor
US10443845B2 (en) 2014-09-05 2019-10-15 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine combustor
EP3276128A1 (en) * 2016-07-25 2018-01-31 Siemens Aktiengesellschaft Coolable wall element

Also Published As

Publication number Publication date
US6446710B2 (en) 2002-09-10
DE19963374B4 (en) 2007-09-13
US20020005274A1 (en) 2002-01-17
EP1114976A3 (en) 2001-10-31
DE19963374A1 (en) 2001-07-12

Similar Documents

Publication Publication Date Title
EP1114976A2 (en) Device for cooling a conduit wall provided with at least one fin element
DE102005038395B4 (en) Combustor cooling with inclined segmented surfaces
DE60005602T2 (en) Liquid-carrying pipe and its use in an automotive radiator
DE60201136T2 (en) Turbulence generator for use in heat exchangers
EP1901020B1 (en) Stacked plate heat exchanger for charge air cooling
EP1668236B1 (en) Combustion chamber comprising a cooling unit and method for producing said combustion chamber
DE102011117223B3 (en) Air duct for the flow of air in an electronic device and electronic device with such an air duct
WO2012017044A2 (en) Plate-shaped heat exchanger for a cooling device comprising at least one heat exchanger package
EP2505808B1 (en) Device for mixing fuel and air of a turbojet engine
DE10100241A1 (en) Heat exchanger tube for liquid or gaseous media
EP3456923B1 (en) Blade of a turbomachine having cooling passage and displacement body arranged therein and method for producing the same
DE3134465T1 (en) TUBULAR-LAMELLAR HEAT EXCHANGER
EP1118831B1 (en) Finned heat transfer wall
WO2012079701A1 (en) Exhaust heat exchanger of an internal combustion engine
EP0892150A1 (en) System for cooling the trailing edge of a hollow gasturbine blade
DE2318132A1 (en) CROSS-FLOW HEAT EXCHANGER
DE102018108729B4 (en) Flow-guiding component with a flow control surface and a gas turbine blade
DE69816947T2 (en) Gas turbine blade
DE102018124574A1 (en) Finned heat exchanger
EP1540662B1 (en) Spacer
DE202004020294U1 (en) Heat exchanger has wall comprising of burls and two half shafts such that first half shaft exhibits shorter rising and longer sloping section and related to center planes in which connecting lines exists
DE202011003054U1 (en) heat exchangers
EP3669133B1 (en) Heat exchanger
EP1628076B1 (en) Cooling Channel, Combustor and Gas Turbine
DE102022113854A1 (en) Heat exchanger for a vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A2

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

17P Request for examination filed

Effective date: 20020408

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

17Q First examination report despatched

Effective date: 20031105

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050125