DE19962454A1 - Rotor blade for wind turbines - Google Patents

Rotor blade for wind turbines

Info

Publication number
DE19962454A1
DE19962454A1 DE19962454A DE19962454A DE19962454A1 DE 19962454 A1 DE19962454 A1 DE 19962454A1 DE 19962454 A DE19962454 A DE 19962454A DE 19962454 A DE19962454 A DE 19962454A DE 19962454 A1 DE19962454 A1 DE 19962454A1
Authority
DE
Germany
Prior art keywords
rotor blade
segments
segment
joint
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19962454A
Other languages
German (de)
Inventor
Soenke Siegfriedsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerodyn Engineering GmbH
Original Assignee
Aerodyn Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerodyn Engineering GmbH filed Critical Aerodyn Engineering GmbH
Priority to DE19962454A priority Critical patent/DE19962454A1/en
Priority to PCT/DE2000/004518 priority patent/WO2001046582A2/en
Priority to AU31512/01A priority patent/AU3151201A/en
Publication of DE19962454A1 publication Critical patent/DE19962454A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

The invention relates to a rotor blade for a wind power installation which has a plurality of segmented elements (16, 18). Said segmented elements are attached to a load transmitting box spar (10) and are separated by elastic joints (28) which enable the segments to move in relation to one another, in order to minimise the tensile stress in the region of the rotor blade in which the segments are located.

Description

Die Erfindung betrifft ein Rotorblatt für Windenergiean­ lagen.The invention relates to a rotor blade for wind energy were.

Rotorblätter für Windenergieanlagen unterscheiden sich von bisher in ähnlicher Bauweise gefertigten Tragflügeln, beispielsweise von Flugzeugen, im wesentlichen dadurch, daß sie turbulenten Windströmungen ausgesetzt sind und durch die vertikale Anordnung der Drehebene mit wechseln­ den Eigengewichtsbelastungen durch die Gravitation und auch Fliehkräften unterliegen.Rotor blades for wind turbines differ of hydrofoils previously manufactured in a similar design, for example of aircraft, essentially by that they are exposed to turbulent wind currents and change with the vertical arrangement of the rotary level  the dead weight due to gravitation and centrifugal forces are also subject.

Durch die kubisch mit dem Durchmesser ansteigende Blatt­ masse und die o. g. Belastungen nehmen die Probleme bei der Strukturauslegung der Blätter insbesondere bei großen Rotorblättern überproportional zu.Due to the leaf that increases cubically with the diameter mass and the above Stresses add to the problems the structural design of the leaves, especially for large ones Rotor blades disproportionately too.

Bei bisheriger konventioneller Fertigung, beispielsweise aus zwei Hälften, die in Negativ-Formen vorgefertigt und anschließend in GFK-Bau-üblicher Weise miteinander ver­ klebt werden, werden insbesondere in der Schwenkebene der Blätter hohe Spannungsamplituden in der Profilnase und der dünn auslaufenden Profilhinterkante im Betrieb auf­ treten.With previous conventional production, for example from two halves, prefabricated in negative forms and then ver in the usual GRP construction are stuck, especially in the swivel plane of the Leaves high voltage amplitudes in the profile nose and the thin trailing edge of the profile during operation to step.

Die durch die Spannungsamplituden hervorgerufenen Ermü­ dungsbelastungen führen insbesondere in der Profilhinter­ kante bei einigen der bisher bekannten Rotorblätter zu frühzeitiger Rißbildung, die sehr bedenklich ist, da sich die Risse durch die gesamte Struktur fortsetzen können und das Rotorblatt sogar völlig zerstören können.The fatigue caused by the stress amplitudes load especially in the rear of the profile edge of some of the previously known rotor blades early cracking, which is very worrying because of the cracks can continue through the entire structure and can even completely destroy the rotor blade.

Bisher begegnete man diesen Rissen dadurch, daß in der nachlaufenden Blatthälfte, der Profilfahne, und in der Profilnase zusätzliche Gurtstränge eingelegt wurden, die diese Lasten aufnehmen sollten. Zum einen ist dies ko­ stenträchtig, zum anderen ist dies auch deswegen nachtei­ lig, da dadurch hohe Kräfte in den Nasen- und Hinterkan­ tenbereich eingebracht werden, die im Blattanschluß wie­ der in den zentralen Holmkasten eingeleitet werden müs­ sen.So far, one has encountered these cracks in that in the trailing leaf half, the profile flag, and in the Profile nose additional belt strands were inserted, the should bear these loads. For one thing, this is knockout it is also a nightmare lig, as this creates high forces in the nasal and posterior channels ten range be introduced, which in the blade connection as which must be introduced into the central spar box sen.

Zusätzlich muß eine Kraftumlenkung stattfinden, die zwangsläufig Zusatzkräfte in Blattquerrichtung erzeugt, die wiederum nur durch zusätzliche strukturelle Elemente aufgefangen werden können. Schließlich ist die Einbrin­ gung der Gurte in Nase und Hinterkante neben dem dadurch verursachten erheblichen Fertigungsaufwand auch eine Feh­ lerquelle für die Struktur, da der Verlauf dieser zusätz­ lichen Gurte ganz besonders genau eingehalten werden muß.In addition, a force redirection must take place inevitably generates additional forces in the transverse direction of the blade,  which in turn only through additional structural elements can be caught. Finally, the Einbrin extension of the straps in the nose and rear edge next to the thereby caused considerable manufacturing effort also a mistake ler source for the structure, since the course of this additional Lichen belts must be observed particularly carefully.

Die Erfindung hat sich daher zur Aufgabe gestellt, ein Rotorblatt zu schaffen, dessen Struktur bereits im Kon­ zept an die wechselnden Eigengewichte, die bei Windkraft­ anlagen auftreten, besser angepaßt ist, als dies bei her­ kömmlichen, den Flugzeugtragflächen ähnelnden Rotorblät­ tern der Fall ist.The invention has therefore set itself the task of To create rotor blade, the structure of which is already in the con I accept the changing dead weights of wind power plants occur, is better adapted than at her conventional rotor blade that resembles aircraft wings tern is the case.

Erfindungsgemäß wird dies durch eine Struktur mit den Merkmalen des Anspruches 1 erreicht. Die Unteransprüche geben vorteilhafte Ausführungsformen der Erfindung wie­ der.According to the invention, this is achieved by a structure with the Features of claim 1 achieved. The subclaims give advantageous embodiments of the invention such the.

Insbesondere ist vorteilhaft, daß die Profilnasen und/­ oder Fahnenstruktur des Rotorblattes aus einzelnen radial getrennten Segmentelementen aufgebaut ist. Diese Segmente werden separat mit einem tragenden Holmkasten verbunden, wobei sich in diesem Bereich eine schubsteife Verbindung ergibt.It is particularly advantageous that the profile lugs and / or flag structure of the rotor blade from individual radial separate segment elements is built. These segments are connected separately to a supporting spar box, with a shear-resistant connection in this area results.

Die Verbindung zwischen den Fahnenelementen selbst wird mit einem dauerelastischen Klebstoff hergestellt, der aufgrund seiner Nachgiebigkeit sehr geringe Kräfte in axialer Blattrichtung überträgt, wodurch eine lastabhän­ gige Deformation des tragenden Holmkastens nahezu lastlos von den Fahnenelementen nachvollzogen werden kann. Die Länge der Fahnenelemente wird dabei so ausgelegt, daß die Verklebung zwischen den Fahnenelementen, der Last des elastischen Klebers angepaßt, diesen nicht überlastet. The connection between the flag elements themselves will be made with a permanently elastic adhesive that very low forces due to its flexibility axial blade direction transmits, which makes a load dependent current deformation of the carrying spar box almost without load can be traced by the flag elements. The Length of the flag elements is designed so that the Gluing between the flag elements, the load of the adjusted elastic adhesive, this is not overloaded.  

Durch diese Ausführung ist die Hinterkante den bisher auftretenden hohen Dehnungsbelastungen entzogen, so daß nunmehr keine Ausbildung gefährlicher Risse mehr zu be­ fürchten ist. Durch die geringen Dehnungen im Bauteil kann zudem bei der Auslegung des Bauteils bereits an Ma­ terial eingespart werden.With this design, the rear edge is the previous one withdrawn occurring high strain loads, so that no more dangerous cracks to be formed fear. Due to the low expansion in the component can also already with Ma material can be saved.

Das Rotorblatt wird durch diese Aufteilung erheblich ein­ facher zu fertigen sein, was insbesondere bei sehr großen Rotorblättern, deren Bauformen die gesamte Länge des Rot­ orblattes haben müssen, bisher mit erheblichen Nachteilen in der Fertigung verbunden war.This division makes the rotor blade considerably larger be easier to manufacture, especially for very large ones Rotor blades, the designs of which cover the entire length of the red have to have orblattes, so far with considerable disadvantages was connected in manufacturing.

Weiter kann durch diese Ausbildung im Fall einer Struk­ turbeschädigung das Segment des betroffenen Bereiches einfach ausgetauscht werden, und die Segmente benötigen in sich keine Gurtstrukturen.In the case of a struc Damage to the segment of the affected area simply be replaced and the segments need no belt structures in itself.

Weitere Vorteile und Merkmale der Erfindung ergeben sich aus nachfolgender Beschreibung eines bevorzugten Ausfüh­ rungsbeispiels. Dabei zeigtFurther advantages and features of the invention result from the following description of a preferred embodiment example. It shows

Fig. 1 eine Explosionsdarstellung eines Rotorblattes mit einer Reihe von sieben Nasenelementen, die vor einem durchgehenden Holmkasten an­ geordnet sind und an die sich in Drehrichtung nachlaufende Fahnenelemente anschließen, die zur hinteren Kante her schmal auslaufen, Fig. 1 is an exploded view of a rotor blade with a series of seven nose elements which are arranged in front of a continuous spar box and which is followed in the rotation direction trailing vane elements that leak to the rear edge forth narrow,

Fig. 2 das Rotorblatt der Fig. 1 im zusammengebauten Zustand, Fig. 2, the rotor blade of FIG. 1 in the assembled state,

Fig. 3 eine prinzipielle Schnittdarstellung durch ein derartiges Rotorblatt, und Fig. 3 is a basic sectional view through such a rotor blade, and

Fig. 4a, 4b, 4c drei alternative Arten der Klebver­ bindung zwischen den Fahnenelementen unter Belassung eines mit flexiblen, materialge­ füllten Fugenbereichs. Fig. 4a, 4b, 4c three alternative types of adhesive bond between the flag elements while leaving a flexible, material-filled joint area.

Das in der Fig. 1 und 2 dargestellte Rotorblatt besteht aus einem zentralen, vom Blattanschluß bis im wesentli­ chen zur Blattspitze 14 reichenden Holmkasten 10, in dem Gurte 12 zur Aufnahme der Längsspannungen angeordnet sind. Die Stege 22 (siehe auch Fig. 3) des Holmkasten 10 übertragen die Schubspannungen. An dem Holmkasten 10 sind zur Herstellung der erforderlichen aerodynamischen Außenkontur Nasen- und Fahnenelemente 18, 16, sowie ein an der äußeren Seite des Blattes als Blattspitze 14 vor­ handenes separates Teil, das mit dem Ende des Holmkastens 10 verbunden ist, vorgesehen.The rotor blade shown in Fig. 1 and 2 consists of a central, from the blade connection to the wesentli surfaces of the blade tip 14 reaching spar box 10, are arranged in the belts 12 for receiving the longitudinal stresses. The webs 22 (see also FIG. 3) of the spar box 10 transmit the shear stresses. On the spar box 10 are to produce the required aerodynamic outer contour nose and flag elements 18 , 16 , and a separate part on the outer side of the blade as the blade tip 14 present, which is connected to the end of the spar box 10 .

Dabei wird die Tragfunktion von einem im wesentlichen zentral im Rotorblatt verlaufenden Holmkasten 10 wahrge­ nommen, der bis zu einem abschließendem Spitzensegment 14 längs im Blatt ausgebildet ist und an den - in Rotations­ richtung - an der Vorderseite Nasenelemente 18 und an der Rückseite Fahnenelemente 16 angesetzt sind.The carrying function is perceived by a spar box 10 extending essentially centrally in the rotor blade, which is formed longitudinally in the blade up to a final tip segment 14 and on which - in the direction of rotation - nose elements 18 and flag elements 16 are attached to the front and to the rear .

In der Fig. 3 ist anhand eines Schnittes durch ein Rotor­ blatt eine schematische Darstellung enthalten, in der der Holmkasten mit seinen Gurten 12 und den beiden Stegen 22 sowie dem Verbindungslaminat 24 dargestellt ist, der An­ satzkanten 26 für die im wesentlichen im Querschnitt U-förmig ausgebildeten Nasenelemente und die im wesentli­ chen V-förmig ausgebildeten Fahnenelemente bietet. In FIG. 3 on the basis of a section, is sheet by a rotor containing a schematic representation of the spar box with its belts 12 and the two webs 22, and the connecting laminate 24 is shown, which at block edges 26 for the substantially cross-sectionally U- shaped nose elements and the V-shaped flag elements in wesentli chen offers.

Der Übergangsbereich zwischen zwei Segmenten 16; 18 kann durch Verklebung teilflexibel ausgebildet sein, wobei je­ doch durch die Fugen 28 quer zur Erstreckung des Holmes bereits für jedes einzelne Segment eine Bewegung gegen­ über dem benachbarten möglich ist, so daß es selber ver­ gleichsweise steif an dem Holmkasten angesetzt werden kann. Die Verbindung zwischen den Fahnen- und Nasenele­ menten 16; 18 mit dem Holmkasten 10 kann durch Verkle­ bung, Verschraubung, Vernietung oder einer Kombination hiervon ausgeführt werden.The transition area between two segments 16 ; 18 can be partially flexible by gluing, but depending on the joints 28 transversely to the extension of the spar a movement is already possible for each individual segment relative to the neighboring one, so that it itself can be applied comparatively stiff to the spar box. The connection between the flag and Nasenele elements 16 ; 18 with the spar box 10 can be performed by gluing, screwing, riveting or a combination thereof.

In der Fig. 4 ist in Blattiefenrichtung die Verklebung zwischen den benachbarten Nasenelementen 18 oder zwischen den benachbarten Fahnenelementen 16 dargestellt, wobei die Verklebung über eine breite Fuge 28 erfolgt, die mit einem hochelastischen Klebstoff ausgefüllt ist, der der Zwangsverformung des Rotorblatts übertragen durch die Segmentelemente wenig Widerstand entgegensetzt, so daß sich innerhalb dieser und auch innerhalb der Fuge keine Rißbildung einstellen wird.In FIG. 4 chordwise the bond between the adjacent nose elements 18 or between the adjacent lugs elements 16 is shown, wherein the adhesive bonding over a wide joint 28 is carried out, which is filled with a highly elastic adhesive which transmitted the forced deformation of the rotor blade by the segment elements opposed little resistance, so that no cracking will occur within this and also within the joint.

Die Fuge 28 wird mit hochelastischem Kunststoff gefüllt sein, wobei eine großflächige Verklebung des elastischen. Materials an den Segmenten durch Ausbildung überlappender Strukturen ermöglicht wird. Die einzelnen Segmente 16; 18 können insbesondere in diesem Fall von einer Fuge 28 mit einer Breite, die die in Richtung senkrecht zur Rotor­ blattebene definierte Höhe der seitlichen Segmentan­ schlußflächen um ein Mehrfaches übersteigt, zusammenge­ halten werden.The joint 28 will be filled with highly elastic plastic, with a large-area gluing of the elastic. Material on the segments is made possible by the formation of overlapping structures. The individual segments 16 ; 18 can in this case in particular of a joint 28 with a width which in the direction perpendicular to the rotor blade plane defined height of the lateral Segmentan connection surfaces exceeds several times, keep together.

Die Fuge 28 kann dabei im Randbereich an der Segmentkante an Ober- und/oder Unterseite jeweils von einem festen, am Segment angesetzten Ansatzfläche 30 (siehe Fig. 4b) über­ deckt werden, wobei sich diese Abschnitte aneinander an­ grenzender Segmente überlappen können.The joint 28 can be covered in the edge area at the segment edge on the top and / or bottom side by a fixed attachment surface 30 attached to the segment (see FIG. 4b), these sections being able to overlap one another on adjacent segments.

Es ist auch denkbar, daß die Fuge 28 durch von den beiden benachbarten Segmenten 16; 18 in den Zwischenraum hinein­ ragende, U-förmige, mit den Segmenten einstückige Steg­ strukturen 32 im Kantenbereich zu den Segmenten hin, an Blattober- und Blattunterseite wenigstens teilweise über­ deckt wird.It is also conceivable that the joint 28 through the two adjacent segments 16 ; 18 protruding into the intermediate space, U-shaped, with the segments integral web structures 32 in the edge area towards the segments, is at least partially covered on the top and bottom of the sheet.

Schließlich wird eine Ausführung vorgeschlagen, in der sich eine U-förmige Stegstruktur eines Segments und eine in diese einliegende Stegkante 34 eines angrenzenden Seg­ mentes derart überdecken, daß die Klebefuge 28 im Schnitt quer zur Erstreckung der Fuge einen U-förmigen Verlauf aufweist.Finally, an embodiment is proposed in which a U-shaped web structure of a segment and a web edge 34 that lies in it overlap an adjacent segment such that the adhesive joint 28 has a U-shaped profile in cross section to the extent of the joint.

Claims (7)

1. Rotorblatt für eine Windenergieanlage, gekennzeich­ net durch eine Mehrzahl von Segmentelementen (16, 18), die an einem lastübertragenden Holmkasten (10) ange­ setzt, zwischen sich elastische Fugen (28) besitzen, die eine Relativbewegung der Segmente zueinander zulas­ sen, um die Spannungsbelastungen in dem Bereich des Rotorblattes, in dem die Segmente vorgesehen sind, zu minimieren.1. rotor blade for a wind turbine, characterized by a plurality of segment elements ( 16 , 18 ), which is on a load-transmitting spar box ( 10 ), between them have elastic joints ( 28 ) that allow a relative movement of the segments to each other to minimize the stress loads in the area of the rotor blade in which the segments are provided. 2. Rotorblatt nach Anspruch 1, dadurch gekennzeichnet, daß die zwischen den einzelnen Elementen vorgesehenen Fugen (28) mit hochelastischem Kunststoff gefüllt sind.2. Rotor blade according to claim 1, characterized in that the joints ( 28 ) provided between the individual elements are filled with highly elastic plastic. 3. Rotorblatt nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß ein im wesentlichen zentral im Rotorblatt verlaufender Holmkasten (10) bis zu einem abschließendem Spitzensegment ausgebildet ist und an der Vorderseite Nasenelemente (18) und an der Rückseite Fahnenelemente (16) an diesen angesetzt sind.3. Rotor blade according to one of the preceding claims, characterized in that a spar box ( 10 ) extending essentially centrally in the rotor blade is formed up to a final tip segment and on the front nose elements ( 18 ) and on the back flag elements ( 16 ) are attached to them are. 4. Rotorblatt nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Fugenbreite, die durch den Abstand der einzelnen Segmente (16, 18) gebildet ist, die in Richtung senkrecht zur Rotorblattebene de­ finierte Höhe der seitlichen Segmentanschlußflächen um ein Mehrfaches übersteigt.4. Rotor blade according to one of the preceding claims, characterized in that the joint width, which is formed by the distance between the individual segments ( 16 , 18 ), the de-defined height of the lateral segment connection surfaces in the direction perpendicular to the rotor blade plane exceeds a multiple. 5. Rotorblatt nach Anspruch 4, dadurch gekennzeichnet, daß die Fuge (28) durch von beiden Segmenten (16; 18) in die Fuge hineinragende U-förmige, mit den Segmenten einstückige Stegstrukturen (32) im Kantenbereich zu den Segmenten hin an Ober- und Unterseite überdeckt wird.5. Rotor blade according to claim 4, characterized in that the joint ( 28 ) by two segments ( 16 ; 18 ) protruding into the joint U-shaped, with the segments integral web structures ( 32 ) in the edge area to the segments towards top and underside is covered. 6. Rotorblatt nach Anspruch 4, dadurch gekennzeichnet, daß die Fuge (28) im Randbereich an der Segmentkante an Ober- und/oder Unterseite des Rotorblatts jeweils von einem festen, am Segment angesetzten Ansatzfläche (30) überdeckt wird, wobei die Ansatzflächen (30) aneinander angrenzender Segmente (16; 18) sich überlappen.6. Rotor blade according to claim 4, characterized in that the joint ( 28 ) in the edge region at the segment edge on the top and / or bottom of the rotor blade is covered in each case by a fixed attachment surface ( 30 ) attached to the segment, the attachment surfaces ( 30 ) adjacent segments ( 16 ; 18 ) overlap. 7. Rotorblatt nach Anspruch 4, dadurch gekennzeichnet, daß sich eine U-förmige Stegstruktur eines Segments und eine in diese einliegende Stegkante (34) an einem dane­ benliegenden Segment sich derart überdecken, daß die Fuge (28) im Schnitt quer zur Erstreckung der Fuge ei­ nen U-förmigen Verlauf aufweist.7. Rotor blade according to claim 4, characterized in that a U-shaped web structure of a segment and a web edge ( 34 ) lying therein overlap on a segment lying next to it in such a way that the joint ( 28 ) in cross section to the extent of the joint has a U-shaped course.
DE19962454A 1999-12-22 1999-12-22 Rotor blade for wind turbines Withdrawn DE19962454A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE19962454A DE19962454A1 (en) 1999-12-22 1999-12-22 Rotor blade for wind turbines
PCT/DE2000/004518 WO2001046582A2 (en) 1999-12-22 2000-12-19 Rotor blade for wind power installations
AU31512/01A AU3151201A (en) 1999-12-22 2000-12-19 Rotor blade for wind power installations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19962454A DE19962454A1 (en) 1999-12-22 1999-12-22 Rotor blade for wind turbines

Publications (1)

Publication Number Publication Date
DE19962454A1 true DE19962454A1 (en) 2001-07-05

Family

ID=7934126

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19962454A Withdrawn DE19962454A1 (en) 1999-12-22 1999-12-22 Rotor blade for wind turbines

Country Status (3)

Country Link
AU (1) AU3151201A (en)
DE (1) DE19962454A1 (en)
WO (1) WO2001046582A2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003006825A1 (en) * 2001-07-11 2003-01-23 Hydra Tidal Energy Technology As Plant, generator and propeller element for generating energy from watercurrents
DE10235496A1 (en) * 2002-08-02 2004-02-12 Ge Wind Energy Gmbh Method for making wind turbine blade comprises fitting connectors over joint between two sections of blade, gap between inner surfaces of connector and blade sections then being filled with resin
FR2863319A1 (en) * 2003-12-09 2005-06-10 Ocea Sa Wind generator`s blade for producing electricity, has ribs coupled to mast using sticking lip, and layer coupled to ribs by sticking lip, where sticking lip is constituted of bi-component polyurethane adhesive
WO2009109619A2 (en) * 2008-03-05 2009-09-11 Vestas Wind Systems A/S An assembly tool and a method of manufacturing a blade
WO2010013025A2 (en) 2008-08-01 2010-02-04 Vestas Wind Systems A/S Segmented rotor blade extension portion
WO2010013024A2 (en) 2008-08-01 2010-02-04 Vestas Wind Systems A/S Rotor blade extension portion having a skin located over a framework
DE102005059298B4 (en) 2004-12-17 2010-07-29 General Electric Co. System and method for passive load reduction in a wind turbine
DE102009002637A1 (en) * 2009-04-24 2010-10-28 Wobben, Aloys Rotor blade for wind turbine, has support structure with belt, where belt has certain thickness and width, and width of belt is adapted at constant thickness along length of belt at load distribution
US20110100533A1 (en) * 2008-06-27 2011-05-05 Repower Systems Ag Method and production of a rotor blade for wind energy plant
DE102013200287A1 (en) * 2013-01-11 2014-07-17 Bayerische Motoren Werke Aktiengesellschaft Method for the production of a structural component of a vehicle
CN105927465A (en) * 2016-05-31 2016-09-07 上海理工大学 Magnetic deformation blade of vertical axis wind turbine
WO2019115337A1 (en) * 2017-12-14 2019-06-20 Lm Wind Power International Technology Ii Aps System and method for manufacturing preforms for a wind turbine rotor blade
DE102011001086B4 (en) * 2010-03-05 2020-06-04 Lätzsch GmbH Kunststoffverarbeitung Wind vane for a flow energy system
CN113323797A (en) * 2021-08-03 2021-08-31 常州市宏发纵横新材料科技股份有限公司 Modularized wind power blade

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005051931B4 (en) * 2005-10-29 2007-08-09 Nordex Energy Gmbh Rotor blade for wind turbines
BRPI0600613B1 (en) 2006-03-14 2015-08-11 Tecsis Tecnologia E Sist S Avançados S A Multi-element blade with aerodynamic profiles
DE102006022279B4 (en) 2006-05-11 2016-05-12 Aloys Wobben Rotor blade for a wind energy plant
WO2008052677A2 (en) * 2006-11-02 2008-05-08 Lignum Vitae Limited Wind rotor blade and wind turbine comprising such blade
WO2008071195A2 (en) 2006-12-15 2008-06-19 Danmarks Tekniske Universitet Reinforced aerodynamic profile
CN101611225B (en) 2007-01-16 2012-05-23 丹麦技术大学 Reinforced blade for wind turbine
DK2108083T3 (en) 2007-01-25 2013-02-04 Bladena Aps Reinforced wind turbine blade
CN101595300A (en) * 2007-01-29 2009-12-02 丹麦技术大学 Wind turbine blade
ES2342638B1 (en) 2007-02-28 2011-05-13 GAMESA INNOVATION & TECHNOLOGY, S.L. A MULTI-PANEL AIRPLANE SHOVEL.
ES2343712B1 (en) * 2007-05-03 2011-05-18 Manuel Torres Martinez AEROGENERATOR SHOVEL DIVIDED IN SECTIONS AND MANUFACTURING PROCESS OF THE SAME.
ES2322423B1 (en) * 2007-06-21 2010-01-26 Manuel Torres Martinez HORIZONTAL SHAFT AEROGENERATOR SHOVEL.
US8123488B2 (en) * 2007-09-17 2012-02-28 General Electric Company System and method for joining turbine blades
GB0807515D0 (en) 2008-04-24 2008-06-04 Blade Dynamics Ltd A wind turbine blade
US8777579B2 (en) 2008-06-20 2014-07-15 Vestas Wind Systems A/S Method of manufacturing a spar for a wind turbine from elements comprising different materials
EP2318197B1 (en) 2008-06-20 2016-03-30 Vestas Wind Systems A/S A method of manufacturing a spar for a wind turbine from elements having geometrically well-defined joint surface portions, and the related spar
CN102123849B (en) 2008-06-20 2015-03-11 维斯塔斯风力系统有限公司 A method of manufacturing a spar for a wind turbine from elements having end portions extending transversely to an intermediate portion
ES2383061T3 (en) 2008-06-24 2012-06-18 Bladena Aps Reinforced Wind Turbine Paddle
DE102008045601A1 (en) 2008-06-27 2009-12-31 Repower Systems Ag Rotor blade for a wind energy plant and method and production form for its production
WO2010043645A2 (en) 2008-10-14 2010-04-22 Vestas Wind Systems A/S Wind turbine blade with device for changing the aerodynamic surface or shape
US7854594B2 (en) 2009-04-28 2010-12-21 General Electric Company Segmented wind turbine blade
US8043065B2 (en) 2009-05-01 2011-10-25 General Electric Company Wind turbine blade with prefabricated leading edge segments
DE102009033165A1 (en) 2009-07-13 2011-01-27 Repower Systems Ag Rotor blade of a wind energy plant, method for manufacturing a rotor blade and belt pair for a rotor blade
DE102009033164A1 (en) * 2009-07-13 2011-01-27 Repower Systems Ag Rotor blade of a wind energy plant and method for manufacturing a rotor blade of a wind turbine
SE0950727A1 (en) * 2009-10-02 2011-04-03 Aegir Konsult Ab Wind turbine with turbine blade
EP2343451B1 (en) 2009-10-08 2018-04-04 LM Wind Power International Technology II ApS Wind turbine blade with plurality of longitudinally extending flow guiding device parts
EP2330294B1 (en) 2009-12-02 2013-01-16 Bladena ApS Reinforced airfoil shaped body
DE102009047570A1 (en) * 2009-12-07 2011-06-09 Repower Systems Ag Belt of a rotor blade of a wind turbine
JP5484892B2 (en) * 2009-12-25 2014-05-07 三菱重工業株式会社 Wind turbine rotor
US8043066B2 (en) * 2010-06-08 2011-10-25 General Electric Company Trailing edge bonding cap for wind turbine rotor blades
DE102010040596A1 (en) 2010-09-10 2012-03-15 Aloys Wobben Removable rotor blade tip
US7922454B1 (en) 2010-10-29 2011-04-12 General Electric Company Joint design for rotor blade segments of a wind turbine
US8057189B2 (en) * 2010-12-15 2011-11-15 General Electric Company Wind turbine blade with modular leading edge
GB2488099A (en) * 2011-01-31 2012-08-22 Vestas Wind Sys As Modular wind turbine blade with both spar and foil sections forming aerodynamic profile
EP2481914A1 (en) * 2011-01-31 2012-08-01 Vestas Wind Systems A/S A wind turbine blade and a method of manufacturing thereof
ES2398553B1 (en) 2011-02-24 2014-02-06 Gamesa Innovation & Technology S.L. A MULTI-PANEL IMPROVED AIRPLANE SHOVEL.
WO2012140058A2 (en) 2011-04-11 2012-10-18 Lm Wind Power A/S A wind turbine blade comprising resistive heating means
ES2399259B1 (en) 2011-05-24 2014-02-28 Gamesa Innovation & Technology, S.L. A joining method for a multi-panel wind turbine blade.
FR2980514B1 (en) * 2011-09-23 2018-01-05 Flakt Solyvent-Ventec ROTATING MACHINE BLADE WITH REINFORCED MODULAR STRUCTURE
ES2554908T3 (en) * 2012-02-24 2015-12-28 Siemens Aktiengesellschaft Arrangement to reduce noise caused by a wind turbine blade
PL2666615T3 (en) 2012-05-23 2015-10-30 Nordex Energy Gmbh Method for producing a half shell of rotor blade for a wind energy assembly or for producing a rotor blade for a wind energy assembly and production mould for this purpose
US9297357B2 (en) 2013-04-04 2016-03-29 General Electric Company Blade insert for a wind turbine rotor blade
US9506452B2 (en) 2013-08-28 2016-11-29 General Electric Company Method for installing a shear web insert within a segmented rotor blade assembly
US9790919B2 (en) 2014-02-25 2017-10-17 General Electric Company Joint assembly for rotor blade segments of a wind turbine
US10760544B2 (en) * 2016-06-20 2020-09-01 General Electric Company Sealing members for jointed rotor blade assemblies
US10538317B2 (en) * 2016-07-27 2020-01-21 Textron Innovations Inc. Rotor blade erosion protection systems
US10570879B2 (en) 2017-05-23 2020-02-25 General Electric Company Joint assembly for a wind turbine rotor blade with flanged bushings
US10563636B2 (en) 2017-08-07 2020-02-18 General Electric Company Joint assembly for a wind turbine rotor blade
US10961982B2 (en) 2017-11-07 2021-03-30 General Electric Company Method of joining blade sections using thermoplastics
GB2569571A (en) 2017-12-20 2019-06-26 Vestas Wind Sys As Wind turbine blades and manufacturing systems and methods using segmented blade assembly proximate site of wind turbine installation
US11346320B2 (en) 2018-05-31 2022-05-31 Vestas Wind Systems A/S Wind turbine blade leading edge pairing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1085142A (en) * 1953-06-19 1955-01-27 Sncase Improvements to aerodynamic surfaces and more particularly to helicopter blades
DE1260985B (en) * 1965-02-01 1968-02-08 United Aircraft Corp Counterweight for rotor blades, which is installed inside a spar forming the front part of the blade
CA985151A (en) * 1972-03-23 1976-03-09 Paul V. Oliva Honeycomb core structural panels
US4316701A (en) * 1976-08-30 1982-02-23 The Boeing Company Composite aerodynamic rotor blade assembly
US4295790A (en) * 1979-06-21 1981-10-20 The Budd Company Blade structure for use in a windmill

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003006825A1 (en) * 2001-07-11 2003-01-23 Hydra Tidal Energy Technology As Plant, generator and propeller element for generating energy from watercurrents
DE10235496A1 (en) * 2002-08-02 2004-02-12 Ge Wind Energy Gmbh Method for making wind turbine blade comprises fitting connectors over joint between two sections of blade, gap between inner surfaces of connector and blade sections then being filled with resin
DE10235496B4 (en) * 2002-08-02 2015-07-30 General Electric Co. Method for producing a rotor blade, rotor blade and wind energy plant
FR2863319A1 (en) * 2003-12-09 2005-06-10 Ocea Sa Wind generator`s blade for producing electricity, has ribs coupled to mast using sticking lip, and layer coupled to ribs by sticking lip, where sticking lip is constituted of bi-component polyurethane adhesive
DE102005059298C5 (en) 2004-12-17 2018-05-30 General Electric Co. System and method for passive load reduction in a wind turbine
DE102005059298B4 (en) 2004-12-17 2010-07-29 General Electric Co. System and method for passive load reduction in a wind turbine
DK177924B1 (en) * 2004-12-17 2015-01-12 Gen Electric System and method for passive load attenuation in a wind turbine
WO2009109619A2 (en) * 2008-03-05 2009-09-11 Vestas Wind Systems A/S An assembly tool and a method of manufacturing a blade
WO2009109619A3 (en) * 2008-03-05 2010-06-03 Vestas Wind Systems A/S An assembly tool and a method of manufacturing a blade of a wind turbine
US8012299B2 (en) 2008-03-05 2011-09-06 Vestas Wind Systems A/S Assembly tool and a method of manufacturing a blade
US20110100533A1 (en) * 2008-06-27 2011-05-05 Repower Systems Ag Method and production of a rotor blade for wind energy plant
WO2010013024A2 (en) 2008-08-01 2010-02-04 Vestas Wind Systems A/S Rotor blade extension portion having a skin located over a framework
WO2010013024A3 (en) * 2008-08-01 2010-11-04 Vestas Wind Systems A/S Rotor blade extension portion having a skin located over a framework
US8393865B2 (en) 2008-08-01 2013-03-12 Vestas Wind Systems A/S Rotor blade extension portion having a skin located over a framework
WO2010013025A3 (en) * 2008-08-01 2010-11-04 Vestas Wind Systems A/S Segmented rotor blade extension portion
WO2010013025A2 (en) 2008-08-01 2010-02-04 Vestas Wind Systems A/S Segmented rotor blade extension portion
DE102009002637A1 (en) * 2009-04-24 2010-10-28 Wobben, Aloys Rotor blade for wind turbine, has support structure with belt, where belt has certain thickness and width, and width of belt is adapted at constant thickness along length of belt at load distribution
DE102011001086B4 (en) * 2010-03-05 2020-06-04 Lätzsch GmbH Kunststoffverarbeitung Wind vane for a flow energy system
DE102013200287A1 (en) * 2013-01-11 2014-07-17 Bayerische Motoren Werke Aktiengesellschaft Method for the production of a structural component of a vehicle
CN105927465A (en) * 2016-05-31 2016-09-07 上海理工大学 Magnetic deformation blade of vertical axis wind turbine
CN105927465B (en) * 2016-05-31 2019-06-04 上海理工大学 A kind of vertical axis windmill magnetic deformation blade
WO2019115337A1 (en) * 2017-12-14 2019-06-20 Lm Wind Power International Technology Ii Aps System and method for manufacturing preforms for a wind turbine rotor blade
CN113323797A (en) * 2021-08-03 2021-08-31 常州市宏发纵横新材料科技股份有限公司 Modularized wind power blade

Also Published As

Publication number Publication date
AU3151201A (en) 2001-07-03
WO2001046582A3 (en) 2001-12-27
WO2001046582A2 (en) 2001-06-28

Similar Documents

Publication Publication Date Title
DE19962454A1 (en) Rotor blade for wind turbines
DE19962989B4 (en) Rotor blade for wind turbines
EP0019691B1 (en) Composite rotor blade
DE102010017062B4 (en) Rotor blade of a wind turbine
EP3114348B1 (en) Method for producing a rotor blade of a wind turbine, a rotor blade and a wind turbine
EP1636490B1 (en) Rotor blade connection
EP2788618B1 (en) Rear casing, rotor blade with rear casing, and a wind turbine that comprises such a rotor blade
DE20320714U1 (en) Rotor blade for wind power generator has shell with internal stiffening straps having glass fiber and carbon fiber reinforced sections to increase stiffness
EP0947693A2 (en) Wind turbine blade profile
EP2434143B1 (en) Rotor blade or rotor blade segment for a wind turbine
DE202006017158U1 (en) Steigleitersystem for tower elements for tower structures, in particular wind turbines and riser element for this purpose
DE102017125060A1 (en) Annular console for external tensioning of a tower segment, external tensioning system of a hybrid tower, tower section of a hybrid tower, hybrid tower, wind energy plant and assembly process of an external tensioning system for a hybrid tower
WO2015062710A1 (en) Rotor blade of a wind turbine and a wind turbine
DE2645174A1 (en) ROTOR HEAD FOR AN IMPACT AND SWIVEL-LESS ROTOR
DE102012102746B4 (en) Rotor blade with adaptive slat for a wind turbine
DE102008048857A1 (en) Rotor blade for wind energy system, has inner and outer rods that cut cross section of blade in different manner, where cross section is distanced from rotor blade base and from rotor blade tip towards longitudinal direction
DE102018121190A1 (en) Rotor blade, wind turbine and method for optimizing a wind turbine
DE102014001893A1 (en) Aerodynamic cladding on truss structures as well as methods for increasing the stability of truss structures
EP3464892B1 (en) Wind turbine with tower with an aerodynamic profile
DE102015110981A1 (en) Wind energy plant for the production of electrical energy from wind and corresponding tower
WO2021004723A1 (en) Rotor blade for a wind turbine, rotor blade segment, wind turbine, and method for producing a rotor blade
DE102019128487A1 (en) Connection between longitudinal segments of a rotor blade of the rotor of a wind turbine
WO2020109220A1 (en) Method for introducing a rotor blade belt into a rotor blade shell, belt mold, rotor blade and wind turbine
DE3703473A1 (en) ROTOR FOR A VERTICAL SHAFT WIND TURBINE
EP3808972A1 (en) Connection between longitudinal segments of a rotor blade of a wind turbine

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8130 Withdrawal