DE102015011260A1 - Wind turbine with more than one wing per wing flange of the rotor - Google Patents

Wind turbine with more than one wing per wing flange of the rotor Download PDF

Info

Publication number
DE102015011260A1
DE102015011260A1 DE102015011260.0A DE102015011260A DE102015011260A1 DE 102015011260 A1 DE102015011260 A1 DE 102015011260A1 DE 102015011260 A DE102015011260 A DE 102015011260A DE 102015011260 A1 DE102015011260 A1 DE 102015011260A1
Authority
DE
Germany
Prior art keywords
rotor
wings
wing
wind
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102015011260.0A
Other languages
German (de)
Inventor
Anmelder Gleich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102015011260.0A priority Critical patent/DE102015011260A1/en
Publication of DE102015011260A1 publication Critical patent/DE102015011260A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/02Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors
    • F03D1/025Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors coaxially arranged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0625Rotors characterised by their aerodynamic shape of the whole rotor, i.e. form features of the rotor unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

Betr. der Fundstelle:, das schmale lange Flügel in der Leistung effizienter sind als kurze, breite Flügel. Zu Einem geht dies aus den Erfahrungen aus der Entwicklung im Segelflugzeugbau hervor, und zum Zeiten würden die kurzen, breiten Flügel die gleiche Leistung erbringen, so würde man sie an den Windkraftanlagen einsetzen, da kurze, breite Flügel weniger dynamische Nachteile haben. Aus Sicht der Stabilität haben die dicken, starken Rotorflügel vom Stand der Technik die notwendige Profilform. Aus Sicht der effizienten Drehleistung des Rotors müssten die Flügel eine schlankere, aerodynamischere Profilform besitzen (4 und 5) im Vergleich. Die Flügel vom Rotor (4) sowie vom Rotor 5 haben in der Summe das gleiche Volumen, doch der Rotor von (4) mit den schlankeren Flügeln zeigt in der Darstellung der Profilquerschnitte seinen Leistungsvorteil. Die Verdopplung der Drehgeschwindigkeit des Rotors verdreifacht die Energieleistung. Deswegen werden schnelllaufende Rotoren verwendet. Mit dem Profilanstellwinkel von (4 (14) erreicht der Rotor die höchste Drehleistung. Das das Profil (Schnitt PQR) fast quer zur Windrichtung steht, liegt an der maßgebenden Windrichtung des scheinbaren Windes. Die scheinbare Windrichtung am Flügelprofil setzt sich zusammen,: aus der Windrichtung und dessen Windgeschwindigkeit einerseits und aus der Drehrichtung des Rotors sowie dessen Drehgeschwindigkeit andererseits. Der Grund dafür, dass die einzelnen Flügelprofilquerschnitte nicht die gleiche Richtung zum Wind haben, liegt an den verschiedenen Umfangsgeschwindigkeiten des Rotors, In der Richtung hin zum Rotorzentrum reduzieren sich die Umfangsgeschwindigkeiten bis auf Null.Subject. The reference: narrow narrow wings are more efficient in performance than short, wide wings. On the one hand, this is the result of experience in the development of glider construction, and at times, the short, wide wings would produce the same performance, so they would be used on wind turbines because short, wide wings have less dynamic drawbacks. From the perspective of stability, the thick, strong rotor blades of the prior art have the necessary profile shape. From the point of view of the efficient rotational performance of the rotor, the wings would have to have a slimmer, more aerodynamic profile shape (4 and 5) in comparison. The wings of the rotor (4) and the rotor 5 have in sum the same volume, but the rotor of (4) with the slimmer wings shows in the representation of the profile cross sections its performance advantage. Doubling the rotational speed of the rotor triples the energy output. That is why high-speed rotors are used. With the tread angle of (4 (14) the rotor achieves the highest turning power, and the profile (PQR cut) is almost transverse to the wind direction, because of the prevailing wind direction of the apparent wind The reason for the fact that the individual airfoil sections do not have the same direction to the wind is due to the different peripheral speeds of the rotor, in the direction towards the rotor center the circumferential speeds are reduced to zero.

Description

Windkraftanlagen mit horizontaler Achse, mit Drehzahlregulierung und Windrichtungsnachführung zur Herstellung von El. Energie.Wind turbines with horizontal axis, with speed regulation and wind direction tracking for the production of El. Energy.

Das Ziel ist es, aus der Kraft des Windes, kostengünstig einen hohen El. Energieertrag zu erzeugen.The goal is, from the power of the wind, cost a high El. Generate energy yield.

Aus Sicht der Stabilität haben die dicken, starken Rotorflügel vom Stand der Technik die notwendige Profilform. Aus Sicht der effizienten Drehleistung des Rotors müssten die Flügel eine schlankere, aerodynamischere Profilform besitzen (4 und 5) im Vergleich. Die Flügel vom Rotor (4) sowie vom Rotor 5 haben in der Summe das gleiche Volumen, doch der Rotor von (4) mit den schlankeren Flügeln zeigt in der Darstellung der Profilquerschnitte seinen Leistungsvorteil. Die nötige Stabilität der schlankeren Flügel gegen die dynamischen Kräfte (bei Starkwind) erhalten die Flügel durch das Verbindungsdreieck. Von der Traverse, dem Radialdrehpunkt I und dem Radialdrehpunkt II, siehe (3).From the perspective of stability, the thick, strong rotor blades of the prior art have the necessary profile shape. From the point of view of the efficient rotational performance of the rotor, the wings would have to have a slimmer, more aerodynamic profile shape ( 4 and 5 ) compared. The wings of the rotor ( 4 ) as well as from the rotor 5 have in sum the same volume, but the rotor of ( 4 ) with the slimmer wings shows in the representation of the profile cross sections its performance advantage. The necessary stability of the slimmer wings against the dynamic forces (in strong winds) are given to the wings by the connecting triangle. From Traverse, Radial Fulcrum I and Radial Fulcrum II, see ( 3 ).

Bei Sturm werden die Flügel des Rotors durch eine Pitch-Vorrichtung am Flügeladapter (1 (7)) gegen das Überdrehen des Rotors, in Windfahnenrichtung gestellt. Der Flügel (3) wird durch die Traverse (5) gleichfalls mit verstellt. Damit sich der Flügel (3) beim Verstellen leicht bewegt, hat er am Flügelflansch keine Verbindung zur Rotornabe. Die Zugkräfte werden durch eine Kette aufgefangen. Diese Kette verläuft im inneren des Flügels und reicht von der Rotornabe (9) bis zur Traverse (5).In case of a storm, the wings of the rotor are replaced by a pitch device on the wing adapter ( 1 ( 7 )) against over-rotation of the rotor, placed in Windfahnenrichtung. The wing ( 3 ) is supported by the traverse ( 5 ) also adjusted. So that the wing ( 3 ) moves slightly when adjusting, it has no connection to the rotor hub on the wing flange. The tensile forces are absorbed by a chain. This chain runs inside the wing and extends from the rotor hub ( 9 ) to the traverse ( 5 ).

Alternativ zur Kettenversion wäre das Rollenlager am Flügelflansch, das allerdings die hohen Zugkräfte auffangen müsste.As an alternative to the chain version, the roller bearing would be on the wing flange, which, however, would have to absorb the high tensile forces.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

Fig. 1: Die Windkraftanlage in der Perspektive

1
Flügel 1
2
Flügel 2
3
Flügel 3
4
Turm
5
Traverse
6
Gondel
7
Blattadapter
8
Flügelflansch
9
Rotornabe
Fig. 2: Die Windkraftanlage in der Vorderansicht
10
Verbindungsbolzen
11
Die Rotordrehrichtung
Fig. 3: Die Windkraftanlage in der Seitenansicht
12
Radialdrehpunkt I
13
Radialdrehpunkt II
Fig. 4: Die Flügelquerschnitte der Windkraftanlage
14
Die Flügelquerschnitte im Maßstab 1 × 3 vergrößert
15
Windrichtung
Fig. 5: Der Flügel eines Rotors vom Stand der Technik
16
Die Flügelquerschnitte im Maßstab 1 × 3 vom Stand der Technik
Fig. 1: The wind turbine in perspective
1
Wing 1
2
Wing 2
3
Wing 3
4
tower
5
traverse
6
gondola
7
blade adapter
8th
Flügelflansch
9
rotor hub
Fig. 2: The wind turbine in front view
10
connecting bolts
11
The rotor rotation direction
Fig. 3: The wind turbine in the side view
12
Radial pivot point I
13
Radial pivot point II
Fig. 4: The wing sections of the wind turbine
14
The wing cross sections in the scale 1 × 3 enlarged
15
wind direction
Fig. 5: The wing of a rotor of the prior art
16
The wing sections in the scale 1 × 3 of the prior art

Claims (3)

Windkraftanlagen mit horizontaler Achse zur Herstellung von El. Energie. Dadurch gekennzeichnet,Wind turbines with horizontal axis for the production of El. Energy. Characterized, dass an den Radialdrehpunkt des Rotors, die Flügelflansche jeweils mehr als einen Flügel aufweisen (1)that at the radial rotation point of the rotor, the wing flanges each have more than one wing ( 1 ) dass an einem zweiten Radialdrehpunkt des Rotors Flügel vorhanden sind, die mit den Flügeln des ersten Radialdrehpunkt eine mechanische, statische Zweckverbindung aufweisen (1).in that there are vanes at a second radial center of rotation of the rotor which have a mechanical, static purpose connection with the vanes of the first radial pivot point ( 1 ).
DE102015011260.0A 2015-08-26 2015-08-26 Wind turbine with more than one wing per wing flange of the rotor Ceased DE102015011260A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102015011260.0A DE102015011260A1 (en) 2015-08-26 2015-08-26 Wind turbine with more than one wing per wing flange of the rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015011260.0A DE102015011260A1 (en) 2015-08-26 2015-08-26 Wind turbine with more than one wing per wing flange of the rotor

Publications (1)

Publication Number Publication Date
DE102015011260A1 true DE102015011260A1 (en) 2017-03-02

Family

ID=58011241

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015011260.0A Ceased DE102015011260A1 (en) 2015-08-26 2015-08-26 Wind turbine with more than one wing per wing flange of the rotor

Country Status (1)

Country Link
DE (1) DE102015011260A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10208733B2 (en) * 2016-07-19 2019-02-19 Michael L Barrows Tandem tip-joined rotor blade and hub coupling for passive pitch angle control
FR3079003A1 (en) * 2018-03-13 2019-09-20 Francois Geli TRIPARTITE SKELETAL WIND BUTTON

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171929A (en) * 1977-06-27 1979-10-23 Allison William D Blade for windmill
DE3331166A1 (en) * 1983-08-30 1985-03-14 Erich Herter Turbine
DE102006027885A1 (en) * 2006-06-16 2007-12-20 Meyer, Ullrich, Dr. Ing. Wind generator, has twistable rotor blades guiding hub to concentric ring pair, support ring and control ring , where support ring and control ring are manufactured from double curved material
WO2010053450A2 (en) * 2008-11-05 2010-05-14 Vestas Technology R&D Singapore Pte Ltd Tandem tip-joined blades for wind turbines
WO2010145916A1 (en) * 2009-05-26 2010-12-23 Etablissements Roty Et Fils Wind turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171929A (en) * 1977-06-27 1979-10-23 Allison William D Blade for windmill
DE3331166A1 (en) * 1983-08-30 1985-03-14 Erich Herter Turbine
DE102006027885A1 (en) * 2006-06-16 2007-12-20 Meyer, Ullrich, Dr. Ing. Wind generator, has twistable rotor blades guiding hub to concentric ring pair, support ring and control ring , where support ring and control ring are manufactured from double curved material
WO2010053450A2 (en) * 2008-11-05 2010-05-14 Vestas Technology R&D Singapore Pte Ltd Tandem tip-joined blades for wind turbines
WO2010145916A1 (en) * 2009-05-26 2010-12-23 Etablissements Roty Et Fils Wind turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10208733B2 (en) * 2016-07-19 2019-02-19 Michael L Barrows Tandem tip-joined rotor blade and hub coupling for passive pitch angle control
FR3079003A1 (en) * 2018-03-13 2019-09-20 Francois Geli TRIPARTITE SKELETAL WIND BUTTON

Similar Documents

Publication Publication Date Title
EP1255931B1 (en) Wind power installation with two rotors in tandem
DE102008002930A1 (en) Rotor wing tip vortex breaker
DE102008037609A1 (en) Rotor blades with multiple sections for wind turbines and wind turbines with these
DE112012005432T5 (en) Wind turbine with gondola fence
EP2798205A1 (en) Turbomachine
DE102013101725A1 (en) Combined wind turbine for electrical power generation, comprises wind sensor designed in form of symmetric channels formed by annular air deflector and disk-shaped air deflector, where solar cells are fixed on outer surface of wind turbine
DE102015011260A1 (en) Wind turbine with more than one wing per wing flange of the rotor
WO2013171320A1 (en) Wind motor with rotational axis substantially perpendicular to the wind direction
DE102008025895B4 (en) Pinwheel with a vertical axis and horizontal pivot wing axes
DE112017004377B4 (en) wind turbine plant
DE102012107250B4 (en) Rotor of a vertical axis wind turbine
AT512564A1 (en) Wind turbine and method for generating rotary energy by wind
DE202015006036U1 (en) Wind turbine with more than one wing per wing flange of the rotor
DE202007014366U1 (en) Blade adjustment for vertical wind turbines
AT510210B1 (en) DEVICE FOR IMPLEMENTING THE ENERGY OF A FLOWING MEDIUM
DE202014104399U1 (en) Wind turbines with spiral wings
DE102015015788B4 (en) Uplift wind power plant with rotating wind tunnels for harvesting energy from weak to moderate winds
DE202018003498U1 (en) Length-variable H-Darrieus rotor
DE202013104726U1 (en) turbine generator
DE102009008805A1 (en) Wind turbine for use in generation of power, has vane whose surface is formed such that counter torque is less around vertical yaw axis by wind effect on vane and lesser than torque around yaw axis by wind effect on wind wheel
DE102011017373A1 (en) Wind turbine
DE102012019497B4 (en) Rotor blades for wind power machines
DE102012000438A1 (en) Wind turbine used in e.g. low-wind region, has rotor blades that are arranged on surface of vertical rotating circular support ring, around horizontal rotor axis in overlapping manner
DE102021006443A1 (en) wind turbine
DE102009013161A1 (en) Hub-airfoil system e.g. video system and camera system, for controlling e.g. wind energy, in wind turbine, has energy convertors and energy storing device arranged under base of base body in closed housing

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R086 Non-binding declaration of licensing interest
R163 Identified publications notified
R016 Response to examination communication
R082 Change of representative
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final