CN1948747A - 涡轮机叶片的主动流控制 - Google Patents

涡轮机叶片的主动流控制 Download PDF

Info

Publication number
CN1948747A
CN1948747A CNA2006101362043A CN200610136204A CN1948747A CN 1948747 A CN1948747 A CN 1948747A CN A2006101362043 A CNA2006101362043 A CN A2006101362043A CN 200610136204 A CN200610136204 A CN 200610136204A CN 1948747 A CN1948747 A CN 1948747A
Authority
CN
China
Prior art keywords
wind turbine
blade
flow control
control actuator
active flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006101362043A
Other languages
English (en)
Inventor
S·赫尔
P·吉古雷
A·古普塔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1948747A publication Critical patent/CN1948747A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/024Adjusting aerodynamic properties of the blades of individual blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0256Stall control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/32Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor with roughened surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

一种带有至少一个叶片(108)的风力涡轮机(100)的操作方法,包括提供至少一个带有主动流控制促动器(300)的叶片,主动流控制促动器设置成可增加攻角范围,在这个范围叶片可产生扭矩且无流分离,可根据载荷使用流控制促动器调节该攻角范围。

Description

涡轮机叶片的主动流控制
技术领域
本发明大体上涉及风力涡轮机,具体涉及增强风力涡轮机的功率输出的方法和装置。
背景技术
近年来,风力涡轮机已经受到不断增加的关注,因为其环保并且是一种相对便宜的替代能源。随着不断增加的兴趣,已作出了很大努力来开发可靠和有效率的风力涡轮机。
一般地,风力涡轮机包括具有多个叶片的转子。转子安装到壳体或短舱,壳体位于构架或管状塔件。实用级别的风力涡轮机(即风力涡轮机设计成可提供电能到应用网络)可设置大转子(如直径为70米或更大)。这种转子上的叶片可将风能转换成旋转力矩或力,驱动一个或多个发电机,发电机通过变速箱可旋转地连接到转子。在某些已知实施例中,变速箱提高了涡轮机原来传递给发电机的低旋转速度,可有效地将机械能转换为输送到应用网络的电能。
随着风速的提高,具有固定顶部速度(接近额定功率)的叶片包括较大区域的流分离(接近额定功率)。这些较大区域的流分离限制了风力涡轮机产生的功率输出数量,使其低于额定功率。出于相同的原因,具有细长平面的叶片也受到额定功率限制。
已知的风力涡轮机叶片使用被动流控制装置或完全不设置流控制。在至少一个已知结构中,使用了旋涡发生器来增加功率输出,尽管已经知道被动装置,如旋涡发生器或Gurney flaps可增加功率和载荷。
发明内容
因此本发明的一个方面,提供了一种操作带有至少一个叶片的风力涡轮机的方法。该方法包括提供至少一个带有至少一个主动流控制促动器的叶片,主动流控制促动器设置成可增加攻角范围,在这个范围叶片可产生扭矩且没有流分离;可根据载荷使用流控制促动器来调节攻角范围。
在另一方面,本发明提供了一种风力涡轮机的叶片,设有主动流控制促动器,其设置成可增加所述叶片的攻角范围。
在另一方面,本发明提供了一种风力涡轮机,其具有至少一个叶片,叶片设有流控制促动器,可增加攻角范围,其中叶片可产生扭矩且无流分离。风力涡轮机还设有控制器。该控制器设置成可控制流控制促动器,可根据控制器的输入,如功率和载荷,增加攻角范围的功率输出。
附图说明
图1是风力涡轮机的示例性结构的视图;
图2是图1的示例性风力涡轮机结构的短舱的剖开透视图;
图3是图1的涡轮机结构的叶片的部分剖开视图;
图4是图3所示风力涡轮机叶片的截面图;和
图5是本发明的代表性风力涡轮机的功率曲线。
部件表
100            风力涡轮机
102            短舱
104            机塔
106            转子
108            转子叶片数
110            驱动套管
112            控制屏
114            叶片节距驱动
116            主旋转轴
118            齿轮箱
120            发电机
122            连接件
124            偏转驱动
126            偏转台
128            气象柱
130            主轴承
132            主框架
300            促动器
400            吸力侧
402            压力侧
500            选择边
502            功率曲线
504            门槛值
具体实施方式
在某些结构中并参考图1,风力涡轮机100包括短舱102,其中容纳发电机(未在图1显示)。短舱102安装到高塔104的顶部,图1只显示了其中一部分。风力涡轮机100还包括转子106,转子上设置一个或多个连接到转动套管110的转子叶片108。尽管图1所示的风力涡轮机100包括三个转子叶片108,但本发明不要求对转子叶片108的数量有具体限制。
在某些结构中并参考图2,不同的部件容纳于风力涡轮机100的塔件104顶部的短舱102。塔件104的高度选择基于现有技术已知的因素和条件。在某些结构中,控制器112内的一个或多个微控制器包括控制系统,用于整个系统监测和控制。不同的分配或中心控制系统结构用于某些结构。
在某些结构中,设置了可变叶片节距驱动器114以控制叶片108的节距(未在图2显示),叶片在风的作用下驱动套管110。在某些结构中,套管110容纳三个叶片108,但其他结构可使用任何数量的叶片。在某些结构中,叶片108的节距通过叶片节距驱动器114单独控制。套管110和叶片108一起组成风力涡轮机转子106。
风力涡轮机的传动系统包括主转轴116(还可称作低速轴),其通过主轴承130连接到套管110,位于(在某些结构中)相对变速箱118的轴116端部。变速箱118,在某些结构中,使用双路径几何结构来驱动封闭的高速轴。在其他的结构中,主转轴116直接连接到发电机120。高速轴(未在图2中显示)用于驱动发电机120,发电机安装到主框架132。在某些结构中,转动扭矩通过连接件122传递。
偏转驱动器124和偏转台126提供了风力涡轮机100的偏转定向系统。涡轮机的短舱上的风向标和风速计和/或气象柱128可向控制屏112上的涡轮机控制系统提供信息,包括风向和/或风速。在某些结构中,偏转系统安装在设置在塔件104顶部的凸缘。
在某些结构中并参考图3和图4,风力涡轮机100的至少一个叶片108设置了主动流控制(AFC)促动器300,其设置成可增加攻角范围,在这个范围叶片108可产生扭矩且叶片108上无空气流分离。流控制促动器300,例如,可用来增加攻角范围,在这个范围可根据控制器的输入,例如但不限于叶片108的功率输出和载荷,产生功率。某些结构使用位于控制屏112的控制器,以及传感器(图中未显示),来实现对流控制促动器300的控制。在本发明的某些结构中,使用了流控制促动器300(如通过控制屏112的控制器进行控制)来限制操作载荷,使其接近风力涡轮机100的额定功率。在某些结构中,流控制促动器300用于提供停止载荷的下降。在某些结构中,流控制促动器用于限制操作载荷,使其接近风力涡轮机100的额定功率;和实现停止载荷的下降。
在某些结构中,主动流控制促动器300设置在吸力侧400(相对于压力侧402),可根据经验选择位置或位于可使攻角范围增加最大化的位置。例如,在某些叶片108的结构中,控制促动器300位于叶片108的吸力侧400的翼弦的大约60%,使攻角范围增加最大化。
叶片108具有低厚实感(如细长的)的平面形状。在促动器300或控制屏112上的控制器损坏的情况下,叶片108还可以降低功率输出的方式操作,以避免空气流分离或流分离,及后来的对载荷和噪音的负面影响。
主动流促动器300因此对于增加攻角范围是有效的,在这个范围升力产生且无空气流分离。为了控制停止和/或操作载荷,也可关断促动器300。通过主动流促动器300增强的功能叶片108的形状使得叶片108即使在促动器300或控制器损坏的情况下仍能操作。
风力涡轮机100的功率输出取决于叶片108的截面的性能(尤其是升力)。在某些结构中和参考图5的图表,使用促动器300增强了在功率曲线502的选择区域500的截面升力。在大风的情况下,升力可增加超过门槛值504。促动器300可在超过门槛值时关断,以减少升力,使其位于希望的水平。风传感器,如气象杆128,可用于确定风速以及升力是否位于操作的促动器300可接受的范围。
应当理解,本发明的结构使得攻角范围可增加,允许风力涡轮机叶片可具有低厚实感(如细长的)的平面形状,以便能产生低停止载荷,并能限制操作载荷,使其接近额定功率。主动流控制机构还可添加到现有的叶片。使用主动流控制机构增强的功能叶片形状使得叶片即使在主动流控制机构或相关控制器损坏的情况下仍可以操作。

Claims (10)

1.一种风力涡轮机(100)的叶片(108),设有主动流控制促动器(300),其设置成可增加所述叶片的攻角范围。
2.根据权利要求1所述的叶片(108),其特征在于,所述叶片具有细长的平面形状。
3.根据权利要求1所述的叶片(108),其特征在于,所述主动流控制促动器(300)位于所述叶片的吸力侧(400)翼弦的大约60%。
4.一种风力涡轮机(100),包括至少一个叶片(108),设有流控制促动器(300)以增加攻角范围,在这个范围所述至少一个叶片可产生扭矩且无流分离;和控制器(112),其设置成可控制流控制促动器,可根据控制器的输入,提高大攻角范围的功率输出。
5.根据权利要求4所述的风力涡轮机(100),其特征在于,所述控制器设置成可限制操作载荷使其接近风力涡轮机的额定功率。
6.根据权利要求4所述的风力涡轮机(100),其特征在于,所述控制器设置成可实现停止载荷的下降。
7.根据权利要求4所述的风力涡轮机(100),其特征在于,所述叶片设置成,可在所述控制系统(112)损坏的情况下继续操作。
8.根据权利要求4所述的风力涡轮机(100),其特征在于,所述主动流控制促动器(300)设置在所述叶片(108)的吸力侧(400),可选择位于使所述攻角范围增加最大化的位置。
9.根据权利要求4所述的风力涡轮机(100),其特征在于,所述主动流控制促动器(300)设置在所述叶片(108)的吸力侧(400)翼弦的大约60%。
10.根据权利要求4所述的风力涡轮机(100),其特征在于,所述控制器(112)设置成可限制操作载荷,使其接近风力涡轮机的额定功率,和实现停止载荷的下降。
CNA2006101362043A 2005-10-10 2006-10-10 涡轮机叶片的主动流控制 Pending CN1948747A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/247811 2005-10-10
US11/247,811 US20070231151A1 (en) 2005-10-10 2005-10-10 Active flow control for wind turbine blades

Publications (1)

Publication Number Publication Date
CN1948747A true CN1948747A (zh) 2007-04-18

Family

ID=37665466

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006101362043A Pending CN1948747A (zh) 2005-10-10 2006-10-10 涡轮机叶片的主动流控制

Country Status (5)

Country Link
US (1) US20070231151A1 (zh)
EP (1) EP1772623A1 (zh)
CN (1) CN1948747A (zh)
BR (1) BRPI0604406A (zh)
MX (1) MXPA06011552A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052248A (zh) * 2009-11-05 2011-05-11 通用电气公司 用于操作主动式流控制系统的系统和方法
CN102052249A (zh) * 2009-11-05 2011-05-11 通用电气公司 用于操作具有主动式流控制的风力涡轮机的系统和方法
CN102094765A (zh) * 2009-12-10 2011-06-15 通用电气公司 组装用于风力涡轮转子叶片的空气分配系统的系统和方法
CN101903646B (zh) * 2007-12-21 2012-09-05 维斯塔斯风力系统有限公司 主动流动控制装置和用于影响风力涡轮机叶片的流体边界层的方法
CN108087193A (zh) * 2017-12-28 2018-05-29 江苏金风科技有限公司 叶片、叶片增效系统及风力发电机组

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476985B2 (en) * 2005-07-22 2009-01-13 Gamesa Innovation & Technology, S.L. Method of operating a wind turbine
US7909575B2 (en) * 2007-06-25 2011-03-22 General Electric Company Power loss reduction in turbulent wind for a wind turbine using localized sensing and control
US9239039B2 (en) * 2008-10-27 2016-01-19 General Electric Company Active circulation control of aerodynamic structures
US8303249B2 (en) * 2009-06-17 2012-11-06 General Electric Company Wind turbine and method for optimizing energy production therein
US20110103950A1 (en) * 2009-11-04 2011-05-05 General Electric Company System and method for providing a controlled flow of fluid to or from a wind turbine blade surface
US8376704B2 (en) * 2009-11-05 2013-02-19 General Electric Company Systems and method of assembling an air distribution system for use in a rotor blade of a wind turbine
US7931445B2 (en) * 2009-11-05 2011-04-26 General Electric Company Apparatus and method for cleaning an active flow control (AFC) system of a wind turbine
US8221075B2 (en) * 2009-11-05 2012-07-17 General Electric Company Systems and method for operating a wind turbine having active flow control
US8092172B2 (en) 2009-11-05 2012-01-10 General Electric Company Method for operating a wind turbine with reduced blade fouling
US7883313B2 (en) * 2009-11-05 2011-02-08 General Electric Company Active flow control system for wind turbine
CN102712360B (zh) 2009-12-21 2015-08-05 雷蒙特亚特特拉维夫大学有限公司 振荡涡旋发生器及其应用
US20110206531A1 (en) * 2010-02-22 2011-08-25 Desktop Aeronautics Efficient low-cost wind energy using passive circulation control
US8061986B2 (en) * 2010-06-11 2011-11-22 General Electric Company Wind turbine blades with controllable aerodynamic vortex elements
US20110142595A1 (en) 2010-07-02 2011-06-16 General Electric Company Wind turbine blades with controlled active flow and vortex elements
US8057175B2 (en) * 2010-11-11 2011-11-15 General Electric Company Active control of a wind turbine blade
US8267653B2 (en) * 2010-12-21 2012-09-18 General Electric Company System and method of operating an active flow control system to manipulate a boundary layer across a rotor blade of a wind turbine
US8167554B2 (en) * 2011-01-28 2012-05-01 General Electric Corporation Actuatable surface features for wind turbine rotor blades
US20120020803A1 (en) * 2011-02-14 2012-01-26 Paul Lees Turbine blades, systems and methods
US9133819B2 (en) 2011-07-18 2015-09-15 Kohana Technologies Inc. Turbine blades and systems with forward blowing slots
DE102011079432B4 (de) * 2011-07-19 2014-10-23 Siemens Aktiengesellschaft Ansteuerung einer Windturbine, Rotorblatt und Windturbine
US8616846B2 (en) * 2011-12-13 2013-12-31 General Electric Company Aperture control system for use with a flow control system
US9267491B2 (en) 2013-07-02 2016-02-23 General Electric Company Wind turbine rotor blade having a spoiler
US9752559B2 (en) 2014-01-17 2017-09-05 General Electric Company Rotatable aerodynamic surface features for wind turbine rotor blades
JP6345503B2 (ja) * 2014-06-25 2018-06-20 株式会社日立製作所 水平軸型風車及びその待機方法
EP3907401A1 (en) * 2020-05-05 2021-11-10 Siemens Gamesa Renewable Energy A/S Lift modifying device for a rotor blade, rotor blade of a wind turbine and method for modifying the lift of a rotor blade
WO2023138823A1 (en) * 2022-01-18 2023-07-27 Siemens Gamesa Renewable Energy A/S Control system for maintaining stall margin of a wind turbine blade with an active aerodynamic device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2622686A (en) * 1942-07-21 1952-12-23 Chevreau Rene Louis Pier Marie Wind motor
FR2290585A1 (fr) * 1974-11-07 1976-06-04 Morin Bernard Aile de rotor a profil variable, notamment pour eolienne
US4083651A (en) * 1976-08-17 1978-04-11 United Technologies Corporation Wind turbine with automatic pitch and yaw control
US4297076A (en) * 1979-06-08 1981-10-27 Lockheed Corporation Wind turbine
DE3106624A1 (de) * 1981-02-23 1982-09-16 Dietrich, Reinhard, 8037 Olching Regelungsverfahren fuer windenergieanlagen mit direkt aus der umstroemung des aerodynamisch wirksamen und auftrieberzeugenden profiles gewonnenen eingangssignalen
US4355955A (en) * 1981-04-06 1982-10-26 The Boeing Company Wind turbine rotor speed control system
US4504192A (en) * 1983-09-15 1985-03-12 The United States Of America As Represented By The United States Department Of Energy Jet spoiler arrangement for wind turbine
DE3913505A1 (de) * 1989-04-25 1989-11-16 Astrid Holzem Fluegel mit aerodynamischer bremse fuer windkraftmaschinen
US6109566A (en) * 1999-02-25 2000-08-29 United Technologies Corporation Vibration-driven acoustic jet controlling boundary layer separation
US6796533B2 (en) * 2001-03-26 2004-09-28 Auburn University Method and apparatus for boundary layer reattachment using piezoelectric synthetic jet actuators
US6722581B2 (en) * 2001-10-24 2004-04-20 General Electric Company Synthetic jet actuators
US6869049B2 (en) * 2002-07-24 2005-03-22 General Electric Company Method and apparatus for modulating flow separation
US6629674B1 (en) * 2002-07-24 2003-10-07 General Electric Company Method and apparatus for modulating airfoil lift
RU2218477C1 (ru) * 2002-12-30 2003-12-10 ООО "Научно-производственное предприятие "Триумф" Способ повышения эффективности лопасти ротора ветроэнергетической установки (варианты)
US6940185B2 (en) * 2003-04-10 2005-09-06 Advantek Llc Advanced aerodynamic control system for a high output wind turbine
DK200300670A (da) * 2003-05-05 2004-11-06 Lm Glasfiber As Vindmölleving med opdriftsregulerende organer
US6899302B1 (en) * 2003-12-12 2005-05-31 The Boeing Company Method and device for altering the separation characteristics of flow over an aerodynamic surface via hybrid intermittent blowing and suction
US7387491B2 (en) * 2004-12-23 2008-06-17 General Electric Company Active flow modifications on wind turbine blades
US7354247B2 (en) * 2005-10-27 2008-04-08 General Electric Company Blade for a rotor of a wind energy turbine
US8807940B2 (en) * 2007-01-05 2014-08-19 Lm Glasfiber A/S Wind turbine blade with lift-regulating means in form of slots or holes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101903646B (zh) * 2007-12-21 2012-09-05 维斯塔斯风力系统有限公司 主动流动控制装置和用于影响风力涡轮机叶片的流体边界层的方法
CN102052248A (zh) * 2009-11-05 2011-05-11 通用电气公司 用于操作主动式流控制系统的系统和方法
CN102052249A (zh) * 2009-11-05 2011-05-11 通用电气公司 用于操作具有主动式流控制的风力涡轮机的系统和方法
CN102052249B (zh) * 2009-11-05 2014-06-04 通用电气公司 用于操作具有主动式流控制的风力涡轮机的系统和方法
CN102052248B (zh) * 2009-11-05 2014-12-17 通用电气公司 用于操作主动式流控制系统的系统和方法
CN102094765A (zh) * 2009-12-10 2011-06-15 通用电气公司 组装用于风力涡轮转子叶片的空气分配系统的系统和方法
CN102094765B (zh) * 2009-12-10 2014-09-24 通用电气公司 组装用于风力涡轮转子叶片的空气分配系统的系统和方法
CN108087193A (zh) * 2017-12-28 2018-05-29 江苏金风科技有限公司 叶片、叶片增效系统及风力发电机组

Also Published As

Publication number Publication date
MXPA06011552A (es) 2007-04-09
EP1772623A1 (en) 2007-04-11
US20070231151A1 (en) 2007-10-04
BRPI0604406A (pt) 2007-08-28

Similar Documents

Publication Publication Date Title
CN1948747A (zh) 涡轮机叶片的主动流控制
US8253264B2 (en) Orbiting drum wind turbine and method for the generation of electrical power from wind energy
CN201865840U (zh) 垂直轴风力发电机风叶及其风轮
CN1755102A (zh) 多部分风轮机转子叶片以及包括该叶片的风轮机
EP0610905B1 (en) Wind powered turbine
US20070231148A1 (en) Reversing free flow propeller turbine
CN1793643A (zh) 风力涡轮机叶片上的主动流修正
CN1777750A (zh) 安装转子叶片的方法及风轮机的转子叶片
CN1904354A (zh) 多部件被动负载减小的叶片和使用该叶片的风轮机
CN101922407B (zh) 能够以扭转的方式加载的风力涡轮叶片
US20090074573A1 (en) Wind turbine blade with cambering flaps controlled by surface pressure changes
CN101956656A (zh) 用于风力涡轮机叶片的被动式除冰
CN104612896A (zh) 海上风电抗台风控制系统
CN101694205A (zh) 一种集风式立轴风机的控制方法及其风力发电机组
CN108457795B (zh) 自动变桨和失能保护的风力发电机风轮
WO2003098034A1 (en) Wind turbine rotor construction
CN1392341A (zh) 风能储存动力发电方法和设备
US8038400B2 (en) High-efficiency windmill
CN101245763A (zh) 垂直风力发电机叶片组及风力发电可变绕线结合的方法
CN101048591B (zh) 扭转式横流涡轮机
CN1932284A (zh) 对称轮风力发电机组
US20230175473A1 (en) Turbine with secondary rotors
CN202031780U (zh) 一种垂直轴风力发电机
CN107366604B (zh) 风力发电机的多段式转子叶片
CN109751189B (zh) 一种风力发电机及其叶片

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20070418