Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN103303469 A
Publication typeApplication
Application numberCN 201310282649
Publication date18 Sep 2013
Filing date5 Jul 2013
Priority date5 Jul 2013
Also published asCN103303469B
Publication number201310282649.2, CN 103303469 A, CN 103303469A, CN 201310282649, CN-A-103303469, CN103303469 A, CN103303469A, CN201310282649, CN201310282649.2
Inventors李伟鹏
Applicant上海交通大学
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Device for controlling flow separation caused by interference between high-Mach-number shock waves and boundary layers
CN 103303469 A
Abstract
The invention discloses a device for controlling flow separation caused by interference between high-Mach-number shock waves and boundary layers in the technical field of hypersonic flight vehicles. The device comprises a base flow-dividing wedge and a miniature trailing edge vortex generator, wherein the base flow-dividing wedge in a lean-back wedged structure is arranged at the front end of a shock wave and boundary layer interference region, and the distance, in particular the distance between a trailing edge and a shock wave incidence point, is smaller than or equal to the thickness of three boundary layers; the miniature trailing edge vortex generator is arranged on the upper surface of the trailing edge of the base flow-dividing wedge. According to the device, a dropping vortex structure can be generated on the side edge of the flow-dividing wedge to take away a low-energy fluid of the interference region, and a high-turbulivity shearing layer on the trailing edge serves as a buffer strip. The device can control the flow separation caused by the interference between the shock waves and the boundary layers, realizes separation flow control under the condition of Mach number of 4 to 10, and has the characteristics of simple structure, stable performance and the like.
Claims(6)  translated from Chinese
1.一种用于控制高马赫数激波与附面层干扰流动分离的装置,其特征在于,包括:基部分流楔与尾缘微型涡流发生器,其中:后仰楔形结构的基部分流楔设置于激波与附面层干扰区的前端且距离,即后缘到激波入射点的距离,小于等于3个附面层的厚度,尾缘微型涡流发生器设置于基部分流楔的尾缘。 1. A method for controlling a high Mach number shock and disturb the boundary layer flow separation device, comprising: a base and a trailing edge wedge shunt micro vortex generator, wherein: base back wedge formation shunt Set at the front end of the wedge shock and the boundary layer interference region and the distance that the trailing edge of the shock wave from the incident point to less than equal to the thickness of the boundary layer 3, the trailing edge micro vortex generator provided at the base of the wedge of diversion the trailing edge.
2.根据权利要求1所述的装置,其特征是,所述基部分流楔的前、后缘高度H2、H1以及宽度D和长度L分别满足的条件为:0彡H2彡H1彡6 ^H1彡D彡5 ^H1彡L彡IOH1 ;其中:S为来流附面层的厚度。 2. The apparatus according to claim 1, characterized in that said front split wedge base, posterior height H2, H1, and the width D and length L of the conditions are met as follows: H2 0 San San San H1 ^ 6 H1 D Pie Pie Pie 5 ^ H1 L San IOH1; where: S is to flow boundary layer thickness.
3.根据权利要求1所述的装置,其特征是,所述的尾缘微型涡流发生器采用一个涡流发生单元或多个涡流发生单元排列构成,其中:每个涡流发生单元的水平最大高度h和轴向最大长度I满足:0彡h彡0.3 ;0 ^ I ^ 0.5,其中:为基部分流楔的后缘高度。 3. The apparatus according to claim 1, characterized in that said trailing edge vortex generators using micro-cells or a plurality of vortex generating means are arranged to form a vortex occurs, wherein: each of the swirl generating means of the maximum level height h and maximum axial length I meet: 0 h San San 0.3; 0 ^ I ^ 0.5, wherein: of the height of the rear edge of the base split wedge.
4.根据权利要求3所述的装置,其特征是,所述的涡流发生单元的形状采用圆柱形、锯齿形、后仰型楔形或前倾型楔形结构。 4. The apparatus according to claim 3, characterized in that the shape of the vortex generating unit using a cylindrical, serrated, or a wedge-type back rake wedge type structure.
5.根据权利要求3所述的装置,其特征是,所述的排列采用中心轴对称的方式。 5. The apparatus according to claim 3, characterized in that the arrangement of the central axis using said symmetric manner.
6.根据权利要求3所述的装置,其特征是,所述的排列采用轴向垂直的单排多个方式、轴向垂直的双排对齐方式或双排交错等排列方式。 6. The apparatus according to claim 3, characterized in that said single-row arrangement of a plurality of axially vertical, axial or vertical alignment of the double-row staggered arrangement so on.
Description  translated from Chinese

控制高马赫数激波与附面层干扰流动分离的装置 Control of high Mach number shock and boundary layer flow separation means interference

技术领域 Technical Field

[0001] 本发明涉及的是一种在高超声速飞行器技术领域中,控制激波与附面层干扰流动分离的装置,具体是一种分流式、带有复合涡流发生器的控制高马赫数激波与附面层干扰流动分离的装置。 [0001] The present invention relates to a hypersonic aircraft in the art, control shock and boundary layer flow separation interference device, in particular a shunt type, control of high Mach number shock with composite vortex generators wave and boundary layer flow separation device interference.

背景技术 Background

[0002] 高超声速飞行器是实现军事快速打击、快速反应的战略装备之一,近年来颇受国内外研究人员的关注。 [0002] hypersonic vehicle to achieve rapid military strike, one quick response strategies and equipment, recent flurry of domestic and foreign researchers. 激波与附面层干扰广泛存在于高超声飞行器的内流和外流中,当飞行器在高马赫数飞行时,强激波与附面层干扰常常导致附面层的大尺度流动分离,伴随产生较强的附加阻力与总压损失,同时激波后的湍流强度和导热系数剧增,并具有低频振荡特性,诱发的动态气动力/热载荷可能导致飞行器的结构破坏或热防护系统的实效。 Shock and boundary layer interference is widely present in high ultrasonic aircraft influx and outflow, when the aircraft flying at high Mach, strong shock wave and boundary layer disturbances often lead to large-scale boundary layer flow separation, with produce Additional strong resistance and total pressure loss, while turbulence intensity and thermal conductivity of shock after the surge, and low frequency oscillation characteristics, induced dynamic Aerodynamic / thermal loads may cause structural damage to the aircraft or the effectiveness of the thermal protection system. 由此可见,高马赫数下的激波/附面层干扰引发的流动分离现象是高超声速飞行器的安全隐患,是影响飞行器整体及其关键部件安全性的重要因素,并给飞行器的材料选择、结构装配和热防护设计带来困难和挑战。 Thus, the shock / boundary layer interference caused by high Mach numbers of flow separation is hypersonic vehicle security risks, is an important factor affecting the overall aircraft safety and its key components and material selection to the aircraft, assembly of the structure and thermal protection design brings difficulties and challenges.

[0003] 涡流发生器是一种延缓或抑制激波/附面层干扰流动分离的被控控制方法,但在高马赫数下(4〈M〈10),由于激波强度的增加,传统的涡流发生器难以发挥很好的控制效果,其主要原因是传统涡流发生器产生的涡扰动难以克服强激波导致的逆压梯度。 [0003] The vortex generator is a delay or inhibit the shock / boundary layer flow separation accused of interference control method, but in high Mach numbers (4 <M <10), due to the increased intensity of the shock wave, the traditional The vortex generator is difficult to play a good result, mainly due to the traditional vortex turbulence vortex generator insurmountable strong shock caused adverse pressure gradient. 因此提出一种简单可靠、易实现的控制高马赫数条件下的激波/附面层干扰流动分离的装置与方法是亟待解决的问题。 Therefore propose a simple, reliable, easy to implement control apparatus and method of shock / boundary layer disturbance at high Mach number flow separation is a serious problem.

[0004] 经过对现有技术的检索发现,中国专利文献号CN201210319468,公开日2013-01-09,记载了一种用于使流体流过表面期间的流动分离衰减的涡流发生器,所述涡流发生器被构造成用于邻近表面产生至少两个涡旋。 [0004] After retrieval of prior art found China Patent Document No. CN201210319468, Publication date 2013-01-09, describes a method for separating the flow of fluid through the surface during the decay of vortex generators, the vortex generator is configured for generating at least two adjacent surfaces of the vortex. 但该技术与本发明相比的缺陷在于:不适用于高超声速流体,其涡流发生器的结构可产生较强的激波阻力;不能加强涡流发生器后缘的剪切层混合,难以较好的控制激波与附面层干扰的流动分析现象。 However, the technology of the present invention compared to drawback: Not available for hypersonic flow, structure its vortex generator can generate strong shock resistance; can not strengthen the shear layer mixing edge vortex generators, it is difficult good Control shock and boundary layer flow analysis of interference phenomena.

[0005] 中国专利文献号CN201110322560,公开日2012_05_16,记载了一种包含涡流发生器的风力涡轮机叶片,所述涡流发生器的构造和布置为对所述叶片的空气动力特性有贡献,所述涡流发生器包括平台和延伸部,平台固定在所述凹陷中。 [0005] China Patent Document No. CN201110322560, Publication date 2012_05_16 describes a wind turbine blade comprising a vortex generator and the vortex generator constructed and arranged on the aerodynamic characteristics of the blades contribute to the vortex generator includes a platform and extension, platform fixed to the recess. 但在高马赫数条件下,该涡流发生器不能产生较好的涡扰动,不能起到控制激波流动分离的作用。 But at high Mach number, the vortex generator can not produce a better vortex disturbance, can not play the role of controlling flow separation shock.

发明内容 DISCLOSURE

[0006] 本发明针对现有技术存在的上述不足,提出一种控制高马赫数激波与附面层干扰流动分离的装置,能够控制高超音速激波/附面层干扰导致的流动分离,实现马赫数在4〜10条件下的分离流动控制,具有结构简单、性能稳定等特点。 [0006] The present invention addresses the above deficiencies of the prior art presents a high Mach number shock and disturb the boundary layer flow separation control device can be controlled hypersonic shock wave / boundary layer flow separation caused by interference, achieve Mach number flow separation conditions under 4~10 control, has a simple structure, stable performance characteristics.

[0007] 本发明是通过以下技术方案实现的,本发明包括:基部分流楔与尾缘微型涡流发生器,其中:基部分流楔为后仰楔形结构,设置于激波与附面层干扰区的前端,其尾缘与激波入射点的距离小于等于3个附面层的厚度,尾缘微型涡流发生器设置于基部分流楔尾缘的上表面。 [0007] The present invention is achieved by the following technical solution, the present invention includes: the shock and the boundary layer interference wedge to split the base back wedge structure, set in: the base and the trailing edge wedge shunt micro vortex generator, which the front area from its trailing edge and shock incident point less than equal to the thickness of the boundary layer 3, the trailing edge micro vortex generator provided at the trailing edge of the wedge base shunt on the surface.

[0008] 所述的基部分流楔的前、后缘高度H2、H1以及宽度D和长度L分别满足的条件为: 0 ^ H2 ^ H1 ^ 6 ^H1彡D彡5 ^H1彡L彡IOH1 ;其中:5为来流附面层的厚度。 Former base [0008] The split wedge, posterior height H2, H1 and width D and length L conditions are met as: 0 ^ H2 ^ H1 ^ 6 ^ H1 D Pie Pie Pie 5 ^ H1 L San IOH1 ; where: 5 to flow boundary layer thickness.

[0009] 所述的尾缘微型涡流发生器采用一个涡流发生单元或多个涡流发生单元排列构成,其中:每个涡流发生单元的水平最大高度h和轴向最大长度I满足:0 < h < 0.3 ;0 ^ I ^ 0.5 ;并可根据具体尾缘涡流发生器不同结构进行调节。 Miniature trailing edge vortex generator [0009] The use of the unit or a plurality of vortex generating means are arranged to form a vortex occurs, wherein: each of the swirl generating means maximum horizontal axial height h and the maximum length I satisfies: 0 <h < 0.3; 0 ^ I ^ 0.5; which can be adjusted depending on the trailing edge of the vortex generators of different structures.

[0010] 所述的尾缘涡流发生单元的形状采用但不限于圆柱形、锯齿形、后仰型楔形、前倾型楔形结构。 The shape of the trailing edge vortex [0010] The use of the generating unit, but not limited to cylindrical, zigzag, back-type wedge, wedge-forward type structure.

[0011] 所述的尾缘涡流发生单元的排列形式采用中心轴对称的方式,进一步优选为轴向垂直的单排多个方式、双排对齐方式、双排交错等排列方式。 Are arranged in the form of the trailing edge vortex [0011] The generating unit with central axisymmetric manner, a plurality of single-row manner and further preferably orthogonal to the axial direction, the alignment double, double, etc. staggered arrangement.

技术效果 Technical effect

[0012] 相对于传统的涡流发生器,本发明涉及的分流式、复合涡流发生器的技术效果包括: [0012] Compared with traditional vortex generators, the present invention relates to Split, the technical effect of compound vortex generators include:

[0013] I)由于分流效应,在基部分流楔的侧缘形成非稳态涡旋结构,可周期性的与激波/附面层干扰引发的分离涡发生相互作用,卷走干扰区附近的低能流体,增大激波/附面层干扰区的抗逆压强度; [0013] I) due to the diversion effect, split wedge at the base of the side edges of forming a non-steady-state vortex structure, cyclical and shock / boundary layer separation vortex induced interference interacts swept away near the disturbed areas low energy fluid, increasing the compressive strength of resilience shock / boundary layer interference region;

[0014] 2)由于尾缘涡流发生器的作用,来流经过分流楔的尾缘后,形成三维、强混合的湍流剪切层,湍流剪切层起到很好的“缓解带”作用,用于减弱激波直接入射到壁面上的强逆压梯度,同时分流楔尾缘形成的膨胀波系,有利于加速湍流剪切层,克服激波前后的动量 After the [0014] 2) due to the trailing edge vortex generators to flow through the shunt trailing edge wedge, three-dimensional, strong mixing shear layer turbulence, turbulent shear layer acts as a good "with ease" for attenuating shock wave directly incident to strong adverse pressure gradient on the wall, while the shunt system expansion wave trailing edge wedge formation, accelerate the turbulent shear layer, to overcome the momentum before and after the shock

差。 Difference. ` `

[0015] 相对于传统的涡流发生器,本发明具有三种优点: [0015] Compared with traditional vortex generators, the present invention has three advantages:

[0016] I)分流式、复合涡流发生器具有较强分流效应,增强了湍流边界层的不均匀度和抗逆压强度,分流作用的强度可通过基部分流楔的前缘高度进行调节; [0016] I) Split, the composite vortex generator has a strong shunt effect, enhances the compressive strength and resistance unevenness turbulent boundary layer, split the role of strength by the leading edge of the wedge base shunt height adjustment;

[0017] 2)基部分流楔的侧缘形成的大尺度、周期性振荡的漩涡结构,有利于带走干扰区的低能流体; [0017] 2) the large-scale diversion base side edge wedge formation, periodic oscillations of the vortex structure is conducive to taking the low energy fluid interference region;

[0018] 3)通过分流楔与微型涡流发生器的组合,大幅增强了尾缘剪切层的湍流强度,使得抗干扰强度增强。 [0018] 3) Porthole wedge and micro vortex generator, significantly enhances the turbulence intensity trailing edge of the shear layer, so that interference intensity increased.

附图说明 Brief Description

[0019] 图1为实施例1中涡流发生器结构示意图。 [0019] Figure 1 is a schematic structural view of the vortex generator 1 in embodiment.

[0020] 图2为实施例2中涡流发生器结构示意图。 [0020] Example 2 FIG. 2 is a schematic structural view of the vortex generators.

[0021] 图3为实施例3中涡流发生器结构示意图。 [0021] Example 3 Figure 3 is a schematic structural view of the vortex generators.

[0022] 图4为实施例4中涡流发生器结构示意图。 [0022] Example 4 FIG. 4 is a schematic structural view of the vortex generators.

[0023] 图5为实施例5中涡流发生器结构示意图。 [0023] FIG. 5 is a schematic structural view of the vortex generator 5 embodiment.

[0024] 图6为实施例6中涡流发生器结构示意图。 [0024] Example 6. FIG. 6 is a schematic structural view of the vortex generator embodiment.

具体实施方式 DETAILED DESCRIPTION

[0025] 下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。 [0025] The following embodiments of the present invention will be described in detail, this embodiment of the present invention in the technology be implemented under the premise, it gives a detailed description and specific course of action, but the scope of the present invention is not limited to lower Example embodiments described below.

实施例1 Example 1

[0026] 如图1所示,本实施例装置包括:基部分流楔I与尾缘微型涡流发生器2,其中:后仰楔形结构的基部分流楔I设置于激波与附面层干扰区的前端且距离(具体分流楔后缘到激波入射点距离)小于等于3个附面层的厚度,尾缘微型涡流发生器2设置于基部分流楔I的尾缘。 [0026] 1, the example of the apparatus of the present embodiment comprises: a base I and the trailing edge wedge shunt micro vortex generator 2, wherein: the base structure split wedge wedge back I set up in shock and the boundary layer interference and the distance between the tip region (after the split wedge edge specific to the shock from the incident point) is less than equal to the thickness of the boundary layer 3, the trailing edge micro vortex generator 2 at the base of the shunt I of the trailing edge wedge.

[0027] 所述的基部分流楔I的前、后缘高度H2、H1以及宽度D和长度L分别满足:0 ^ H2 ^ H1 ^ 6 ^H1彡D彡5 ^H1彡L彡IOH1 ;其中:5为来流附面层的厚度。 Former base [0027] The wedge I split, the posterior height H2, H1 and a width D and length L satisfy: 0 ^ H2 ^ H1 ^ 6 ^ H1 D Pie Pie Pie 5 ^ H1 L San IOH1; wherein : 5 to the thickness of the boundary layer flow.

[0028] 如图1所示,本实施例中的尾缘微型涡流发生器2采用三个涡流发生单元2轴向垂直,即沿Z轴方向单排排列。 It is shown in [0028] Figure 1, in this embodiment the trailing edge vortex generator 2 uses two miniature vertical three axial swirl generating means, i.e., a single row along the Z-axis direction are arranged.

[0029] 所述的涡流发生单元3采用圆柱形结构,每个涡流发生单元2的水平最大高度h和轴向最大长度I满足:0 < h < 0.3 ;0 ^ I ^ 0.5 ;并可根据具体尾缘涡流发生器不同结构进行调节。 [0029] The vortex generating unit 3 using a cylindrical structure, each level of unit 2 of the swirl generating maximum height h and maximum axial length I meet: 0 <h <0.3; 0 ^ I ^ 0.5; and be adjusted according to the specific structure of the trailing edge vortex generators different.

[0030] 在高马赫数条件下由于激波强度的增强,导致在激波入射点附件产生附面层的大尺度流动分离,利用图1所示装置的流动控制作用,在分流楔的侧缘及尾缘产生的涡结构可消除流动分离现象,避免由于流动分离导致的诸多负面效果。 [0030] Because at high Mach number shock strength increases, resulting in a shock wave incident point annex a large scale boundary layer flow separation, the use of flow control device shown in FIG. 1 role in the diversion of the side edges of the wedge and the trailing edge vortices generated to eliminate flow separation, to avoid the flow separation caused many negative effects.

实施例2 Example 2

[0031] 如图2所示,本实施例与实施例1的区别在于:所述的尾缘微型涡流发生器2采用两个涡流发生单元2轴向垂直,即沿Z轴方向单排排列;且所述的涡流发生单元2采用前倾形楔形结构。 [0031] shown in Figure 2, this embodiment differs from Embodiment 1 in that: said miniature trailing edge vortex generator 2 uses two perpendicular two axial swirl generating means, i.e., along the Z-axis direction arranged in a single row; and the swirl generating unit 2 using the rake-shaped wedge structure.

[0032] 该涡流发生单元2的形状结构技术要求细节为:所述的涡流发生单元2的后缘高度h、宽度d和长度I分别满足:0彡h彡0.3 ;h彡d彡2h ;h彡I彡3h。 [0032] The cell shape of the structure of the swirl generating technique 2 requires details as: the occurrence of the trailing edge vortex unit 2 of height h, width d and length I satisfy: h 0 San San 0.3; h San d San 2h; I h San San 3h.

[0033] 本实施例在高马赫数条件下的控制效果与实施例1相似。 Example control effect at high Mach number of embodiments similar to Example 1 [0033] present.

实施例3 Example 3

[0034] 如图3所示,本实施例与实施例1的区别在于:所述的尾缘微型涡流发生器2采用两个涡流发生单元2轴向垂直,即沿Z轴方向单排排列;且所述的涡流发生单元2采用后仰形楔形结构。 [0034] As shown in Figure 3, the present embodiment differs from Embodiment 1 in that: said miniature trailing edge vortex generator 2 uses two perpendicular two axial swirl generating means, i.e., along the Z-axis direction arranged in a single row; and the swirl generating unit 2 using back wedge-shaped structure.

[0035] 该涡流发生单元2的形状结构技术要求细节为:所述的涡流发生单元2的前缘高度h、宽度d和长度I分别满足:0彡h彡0.3 ;h彡d彡2h ;h彡I彡3h。 [0035] The cell shape of the structure of the swirl generating technique 2 requires details as: the occurrence of a leading edge vortex unit 2 of height h, width d and length I satisfy: h 0 San San 0.3; h San d San 2h; I h San San 3h.

[0036] 本实施例在高马赫数条件下的控制效果与实施例1相似。 Example control effect at high Mach number of embodiments similar to Example 1 [0036] present.

实施例4 Example 4

[0037] 如图4所示,本实施例与实施例1的区别在于:所述的尾缘微型涡流发生器2采用两个涡流发生单元2轴向垂直,即沿Z轴方向单排排列;且所述的涡流发生单元2采用凹陷锯齿结构。 [0037] shown in Figure 4, this embodiment differs from Embodiment 1 in that: said miniature trailing edge vortex generator 2 uses two perpendicular two axial swirl generating means, i.e., along the Z-axis direction arranged in a single row; and said vortex generation unit 2 using the recessed sawtooth structure.

[0038] 该涡流发生单元2的形状结构技术要求细节为:所述的涡流发生单元2的后缘高度h、宽度d和长度I分别满足:0彡h彡0.3 ;h彡d彡2h ;h彡I彡3h。 [0038] 2 cell shape structure technology requires the swirl generating details are: the occurrence of the trailing edge vortex unit 2 of height h, width d and length I satisfy: h 0 San San 0.3; h San d San 2h; I h San San 3h.

[0039] 本实施例在高马赫数条件下的控制效果与实施例1相似。 Example control effect at high Mach number of embodiments similar to Example 1 [0039] present.

实施例5 Example 5

[0040] 如图5所示,本实施例与实施例1的区别在于:所述的尾缘微型涡流发生器2采用6个涡流发生单元2轴向垂直,即沿Z轴方双排对齐排列; [0040] As shown in Figure 5, the difference between the present embodiment and the embodiment in Example 1 in that: said trailing edge vortex generator 2 uses two miniature vertical axial swirl generating means 6, i.e. aligned along the Z-axis double ;

[0041] 双排涡流发生单元2之间的轴心距离DX的参数要求为:1彡DX彡21。 [0041] 2 between the axis of the double vortex generating unit distance DX parameter requirements: 1 San San DX 21.

[0042] 本实施例相比于实施例1,可增强对分流楔尾缘的剪切层混合效果,更好的抑制激波导致的流动分析现象,但可能导致相比于实施例1较大的阻力。 [0042] The present embodiment as compared to Example 1, can enhance the trailing edge of the wedge to split shear layer mixing, better shock suppression phenomenon caused by flow analysis, but may result in larger as compared to Example 1 resistance.

实施例6 Example 6

[0043] 如图6所示,本实施例与实施例1的区别在于:所述的尾缘微型涡流发生器2采用5个涡流发生单元2轴向垂直,即沿Z轴方双排交错排列; [0043] As shown in Figure 6, the difference between the present embodiment and the embodiment in Example 1 in that: said trailing edge vortex generator 2 uses two miniature axial vertical vortex generating unit 5, i.e., along the Z-axis direction are staggered double ;

[0044] 双排涡流发生单元2之间的轴心距离DX的参数要求为:1彡DX彡31。 Parameters axis distance between DX 2 [0044] the double vortex generating unit requirements: 1 San San DX 31.

[0045] 本实施例相比于实施例1,可增强对分流楔尾缘的剪切层混合效果,更好的抑制激波导致的流动分析现象,但可能导致相比于实施例1较大的阻力。 [0045] The present embodiment as compared to Example 1, can enhance the trailing edge of the wedge to split shear layer mixing, better shock suppression phenomenon caused by flow analysis, but may result in * compared to Example 1 greater resistance.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
CN102865274A *6 Jul 20129 Jan 2013拉姆金动力系统有限责任公司Vortex generators
EP0845580A2 *27 Dec 19943 Jun 1998Kabushiki Kaisha ToshibaA heat transfer promoting structure
US20110315248 *26 May 201129 Dec 2011Simpson Roger LLow drag asymmetric tetrahedral vortex generators
WO2000015961A1 *16 Sep 199923 Mar 2000Lm Glasfiber A/SWind turbine blade with vortex generator
WO2011004262A1 *9 Jul 201013 Jan 2011Ireland Peter SElastomeric vortex generators
Classifications
International ClassificationB64C23/06
Cooperative ClassificationY02T50/162
Legal Events
DateCodeEventDescription
18 Sep 2013C06Publication
23 Oct 2013C10Request of examination as to substance
27 May 2015C14Granted