CN102278288B - 带有可控的空气动力学涡旋元件的风力涡轮叶片 - Google Patents

带有可控的空气动力学涡旋元件的风力涡轮叶片 Download PDF

Info

Publication number
CN102278288B
CN102278288B CN201110173516.2A CN201110173516A CN102278288B CN 102278288 B CN102278288 B CN 102278288B CN 201110173516 A CN201110173516 A CN 201110173516A CN 102278288 B CN102278288 B CN 102278288B
Authority
CN
China
Prior art keywords
scroll member
wind turbine
turbine blade
material layer
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110173516.2A
Other languages
English (en)
Other versions
CN102278288A (zh
Inventor
熊伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LM Wind Power AS
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN102278288A publication Critical patent/CN102278288A/zh
Application granted granted Critical
Publication of CN102278288B publication Critical patent/CN102278288B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/709Piezoelectric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • F05B2240/122Vortex generators, turbulators, or the like, for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/306Surface measures
    • F05B2240/3062Vortex generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/32Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor with roughened surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/17Purpose of the control system to control boundary layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

本发明涉及带有可控的空气动力学涡旋元件的风力涡轮叶片。一种具有吸力侧表面(20)和压力侧表面(22)的风力涡轮叶片(16)。多个动态涡旋元件(24)形成在该吸力侧表面(20)或该压力侧表面(22)中的至少一个上。该涡旋元件(24)可在相对于涡旋元件形成于其上的表面的中性面向内凹进的第一缩进位置和相对于该表面的中性面向外凸出的第二伸出位置之间被激活。

Description

带有可控的空气动力学涡旋元件的风力涡轮叶片
技术领域
本发明大体上涉及风力涡轮领域,且更具体而言,涉及具有空气动力学表面构型的涡轮叶片。
背景技术
涡轮叶片是风力涡轮的主要元件,其用于将风能转换为电能。该叶片的工作原理类似于飞机机翼的工作原理。该叶片具有翼型件的截面轮廓,使得在运行期间,空气流经该叶片而在两侧面之间产生压差。因此从压力侧朝向吸力侧导向的升力作用在叶片上。该升力在主转子轴上产生转矩,该主转子轴通过齿轮连到发电机上,以产生电力。
越过叶片前沿的空气流主要是在粘附流区域中的层流。升力主要在这个粘附流区域中产生。随着空气朝着叶片后沿移动,流分离发生且空气流过渡到隔离流区域,此处该流更加湍流化。流分离取决于许多因素,诸如引入空气流特征(例如雷诺数、风速、流入大气湍流)和叶片特征(例如翼型件截面、叶片弦和厚度、扭转分布、桨距角等)。隔离流区域还导致主要由上游粘附流区域和下游隔离流区域之间的压差引起的阻力的增加。
因此,为了在风力涡轮的正常运行期间增加能量转换效率,期望在减小阻力的同时增加升力。为了这个目的,通过使流分离更靠近叶片后沿(也即在叶片的下游区域中)而增大粘附流区域并减小隔离流区域会是有利的。同样,大体期望具有稳定的流分离,以便增加叶片的工作稳定性并减少其噪音产生。
在本领域中已知的是通过在叶片表面上增加微坑、凸出或其它结构来改变风力涡轮叶片的空气动力学特性。这些结构通常被称为“涡旋产生器”,并用于在叶片表面上产生空气流的微湍流区域。这导致了在大体上更靠近叶片根部的叶片的相对低速区域中的流过渡稳定性。在更接近叶片尖端的叶片的相对更高速区域处,该涡旋产生器用于使空气流的流分离朝叶片后沿延伸,以产生更多提升并减少阻滞。
已知静态或固定涡旋产生元件。例如参考WO2007/065434;WO00/15961和美国专利No.7604461。这些参考资料中的涡旋元件具有限定的不变的形状、尺寸和构型,且因此用于改变空气流状况的元件的通用性受到了限制。
还已知相对于叶片表面部署的可缩进的或枢轴式涡旋产生器。例如参考美国专利No.4039161;美国专利No.5253828;美国专利No.6105904;美国专利No.6427948和WO2007/005687。
EP1896323B1描述了平面构件的形式的枢轴式涡旋产生器,其在缩进状态中处于流控制表面上而在伸出状态中从该表面以一定角度枢轴转动。该涡旋产生器可从由加热器促动的形状记忆合金形成。该参考资料描述了可使用其它类型的促动器(包括双压电晶片促动器)向涡旋产生器施加枢轴转动的动作。
美国专利No.7293959描述了具有为沿着叶片吸力侧的后沿和前沿以纵向方向延伸的柔性襟翼的形式的升力调节工具的风力涡轮叶片。该襟翼在高风速时被激活以减小叶片的提升。该激活工具可为压电的。
尽管在上文引用的参考资料中所讨论的涡旋产生器因为它们被部署为活动状态而可被认为是“动态”的,这些元件在“静止”状态中的用处最小。
因此,本行业将从这样的风力涡轮叶片中受益:该风力涡轮叶片具有在更宽范围的风和空气流状况下在活动和非活动两个状态中提供了增强的空气动力学表面特性的动态涡旋产生元件。
发明内容
本发明的各方面和优点将在下文的描述中部分地阐述,或者根据本描述它们可以是显然的,或者它们可以通过对本发明的实施而被了解。
根据本发明的各方面,提供了具有吸力侧表面和压力侧表面的风力涡轮叶片。多个动态涡旋元件形成在这些表面的任一个或两个上。该涡旋元件可被激活或可部署到相对于该表面的中性面向内凹进的第一缩进位置,涡旋元件在该位置中形成为限定了凹进的涡旋产生元件,以及相对于该表面的中性面向外凸出的第二伸出位置,涡旋元件在该位置中形成为限定了凸出的涡旋产生元件。
在一个具体的实施例中,相应的叶片表面包括在其中形成于各个涡旋元件的位置处的凹陷。该涡旋元件可由布置在该凹陷上方的柔性材料层制成。该材料层在第一缩进位置中顺应进入该凹陷中而在第二伸出位置中在该凹陷上方向外展开。可与该材料层一起构造激活机构以在相应的位置之间移动或部署该材料层。在一个特别独特的实施例中,该材料层包括压电材料而该激活机构包括连接到该压电材料的可控电源。供应到该压电材料的功率的特性决定了该材料相对于叶片表面的中性面呈现伸出的还是缩进的构型。该功率特性可变化,以在伸出的构型中产生涡旋元件的相应地变化的形状。该多个涡旋元件可供应有共同的受控电源,使得它们动作一致,或者为了更精确的控制,它们可单独地供应和控制。备选地,该涡旋元件可细分为组,且各组单独地控制。
在又一个实施例中,风力涡轮叶片除了动态涡旋元件还可包括静态涡旋元件。该静态元件可与动态涡旋元件隔离或关于动态涡旋元件散布。
动态涡旋元件的具体形状和构型不是限制性因素。在一个具体的实施例中,元件在缩进和展开的两个构型中大体上是半球形的形状。涡旋元件的任何期望的形状、定向或其它几何特征在本发明的范围和实质中。
在另一个独特的实施例中,涡旋元件也可构造为呈现第三中性位置,其中该元件与叶片表面的中性面共同延伸(co-extensive)而因此与该叶片表面基本齐平。
本发明还包括具有一个或多个配置有如本文描述的动态涡旋元件的涡轮叶片的风力涡轮。
本发明的这些和其它特征、方面和优点通过参照下文描述和所附权利要求将被更好地理解。结合在本申请文件中并构成本申请文件的一部分的附图示出了本发明的实施例,且与本说明一起用于解释本发明的原理。
附图说明
在本申请文件中阐述了本发明的针对本领域一般技术人员而言完整和可实施的公开,包括其最佳模式,其参照了附图,其中:
图1是传统风力涡轮的透视图;
图2是根据本发明的各方面的风力涡轮叶片的一个实施例的透视图;
图3是风力涡轮叶片的一个实施例的图解侧视图;
图4是风力涡轮叶片的一个备选实施例的透视图;
图5是风力涡轮叶片的一个备选实施例的图解侧视图;
图6是相对于涡轮叶片的表面处在伸出位置中的涡旋元件的一个具体实施例的图解侧视和运行图;
图7是图6的涡旋元件在相对于涡轮叶片的表面的缩进位置中的图解侧视和运行图;
图8是涡旋元件的半球形实施例的图解俯视图;以及,
图9是涡轮转子轮毂和叶片的主视图。
部件列表
风力涡轮10
塔架12
机舱14
涡轮叶片16
转子轮毂18
吸力侧表面20
压力侧表面22
涡旋元件24
涡旋产生器25
凹陷26
蒙皮28
柔性材料层30
压电材料32
导线34
保持环36
激活机构38
电源40
传感器42
传感器线路44
中央电源46
控制器48
涡旋元件组50
具体实施方式
现将对本发明的实施例进行详细参照,在附图中示出了实施例的一个或多个实例。各个实例通过对本发明的解释而非对本发明的限制的方式提供。事实上,对本领域技术人员来说将会显然的是,在本发明中可以不脱离本发明的范围或精神而作出多种修改和变化。例如,作为一个实施例的部分来示出或描述的特征可与另一个实施例一起使用而产出一个另外的其它实施例。因此,本发明意图包括处于所附权利要求及其等价物的范围中的这样的修改和变化。
图1示出了传统结构的风力涡轮10。该风力涡轮10包括塔架12,机舱14安装在其上。多个涡轮叶片16安装到转子轮毂18上,而该转子轮毂则连接到使主转子轴转动的主凸缘上。风力涡轮功率产生和控制部件容纳在机舱14中。提供图1的视图仅是为了说明性目的,其将本发明置于示例性的使用领域中。应该明白本发明不限于任何特定类型的风力涡轮构型。
图2和图4描绘了结合了本发明的各方面的风力涡轮叶片16的实施例。该叶片16包括吸力侧表面20和压力侧表面22。多个动态涡旋元件24形成在表面20和22中的任一个或两者上。在图2和图4示出的实施例中,涡旋元件24被描绘为在吸力侧20上。涡旋元件24是“动态”的,因为它们在不同的运行位置之间激活或部署。具体而言,涡旋元件24被激活到第一缩进位置,其中元件24相对于该元件形成于其上的相应表面的中性面向内凹进。在图7中描绘了在该缩进状态中的涡旋元件24的一个实施例。如图6中所描绘的,涡旋元件24被部署或激活到相对于涡旋元件形成于其上的表面的中性面向外凸出的第二伸出位置。因此应该明白涡旋元件24在第一状态中形成凹进的涡旋产生器而在第二状态中形成凸出的涡旋产生器。
涡旋元件24可与传统的固定涡旋产生器25(诸如固定鳍状物、楔形物等等)在涡轮叶片表面上以任何样式组合使用,以修改叶片16的空气动力学特性。例如,在图2中描绘的实施例中,涂黑的元件是位于叶片16的尖端段处的动态涡旋元件24(凹进或凸出),而较浅的元件是静态或固定涡旋产生器25。在图4的实施例中,动态涡旋元件24同静态涡旋产生器25一样沿着叶片16的长度定位。另外,多个涡旋元件24可分为不同的组,其中这些组中的第一个组包括所有在伸出位置中的涡旋元件24,而分开的不同组包括所有在缩进或凹进位置中的涡旋元件24。
涡旋元件24形成于其上的叶片16的表面20、22形成为具有对应于涡旋元件24之间的叶片的光滑表面的中性面。参照图6,处于其展开状态中的涡旋元件24在环绕该涡旋元件24的中性面上方延伸了高度H。类似地,在图7的涡旋元件24的构型中,元件24相对于环绕该涡旋元件24的表面的中性面具有凹进深度D。
具体参照图6和图7,叶片16包括由诸如模制材料、层压材料等等的任何合适材料形成的外蒙皮28。在该蒙皮材料28中在各个涡旋元件24的位置处形成了凹陷26。涡旋元件24包括布置在凹陷26上方的柔性材料层30。在涡旋元件24的缩进位置中,该柔性材料层30顺应进入凹陷26而限定了凹进的涡旋产生器。如图6中所描绘,在涡旋元件24的第二伸出位置中,柔性材料层30在凹陷26上方向外展开而相对于蒙皮28的中性面限定了凸出的涡旋产生器。柔性材料层30可由足够柔韧以顺应进入凹陷26和从该凹陷向外展开、同时经受风力涡轮叶片的环境状况的任何材料限定。应该明白本发明不限于任何特定类型的柔性材料层30。可使用保持环或其它结构36来将柔性材料层30附连到蒙皮28。如图6和图7所示,该环36可嵌入到环绕凹陷26限定的凹槽或沟道中。在一个备选的实施例中,柔性材料层30可粘接或机械地紧固到凹陷26周围的蒙皮28。
提供了大体上为38的激活机构以在缩进和伸出状态之间部署柔性材料层30。激活机构38可为任何形式的适当的系统或机构,诸如气动系统、液压系统、电/机械系统等等。例如在未在图中示出的一个具体实施例中,凹陷26可供应有加压空气源以将柔性材料层30展开到图6所示的位置。如图7中所描绘,要缩进层30,可以施加吸力,以移除该空气而将层30拉入与凹陷26顺应。激活机构38也可改变在伸出状态中的涡旋元件的凸出程度或范围。例如,气动或液压系统可为能够可变化地调节的,以使得涡旋元件相对于蒙皮28的中性表面以变化的程度凸出。
在一个特别独特的实施例中,激活机构38包括与柔性层材料30相结合的压电材料32。该压电材料32可为嵌入或以其它方式附连到柔性层材料30的部分上的带状物的形式(如图8所示)。在一个备选的实施例中,该压电材料32可为以任何期望的样式或构型贯穿柔性材料层30而分布的纤维的形式。
压电促动器的运行是众所周知的,且因而在此处不需详细描述。大体上,传统的压电纤维复合材料促动器包括装入保护性聚合物基体材料中的一层挤压成型的压电纤维。交叉梳状电极刻蚀或否则沉积到纤维的顶部和底部上的聚合物薄膜层上,以形成可容易地嵌入到多种类型表面中或布置在它们上的促动器层压薄片。供应到压电材料的功率的频率和电压特性支配了该材料被激活时呈现的形状。在本发明的实施中可能有用的一种具体类型的压电材料32在例如美国专利No.6629341中描述。然而应该明白,其它压电材料可能也是合适的。
图6到图8将单独的涡旋元件24描绘为大体上半球形的形状。如图8中所描绘,这种形状可通过使用不同的均等地间隔开的压电材料件来实现,其引起柔性材料层30在施加到材料32的某电压/频率处以大体上均匀的半球形的形状向外凸出,以及在涡旋元件24的缩进位置中向内顺应为凹陷26的大体上为半球形的形状。
也可控制供应到压电材料32的功率特性,以产生变化的伸出程度,以及因此涡旋元件的变化的形状。
然而应该容易明白,涡旋元件24不限于任何特定的形状或构型,且可使用压电材料32的任何形式或构型来实现涡旋元件的任何期望的形状,包括楔形形状、襟翼等等。
压电材料32可通过导线34由电源进行供应。该导线34可结合到保持环结构36中,其因此可作为用于与特定涡旋元件24相关联的所有多个压电材料件32的电分配汇流管或总线。其它用于向压电材料32供应功率的构型处于本发明的范围和精神中。
在一个具体的实施例中,如图3中所描绘,在叶片16上的所有或不同组的涡旋元件24可由共同的可控电源40供应。通过这种构型,与相同电源40连通的所有涡旋元件24将呈现相同的运行状态。换言之,取决于由共同电源40供应的功率的特性,连接到相同电源40的一组中的所有元件24将或者展开或者缩进。在图3所示的实施例中,在吸力侧表面20上的涡旋元件24由单个电源40供应,而在压力侧表面22上的元件24由不同的电源40供应。因此,通过这种安排,在吸力侧上的元件24可部署为如图6所示的展开状态,而在压力侧22上的元件24可被激活进入如图7所示的凹进状态。图4和图5示出了一个实施例,其中在相应的表面20、22上的涡旋元件24由相应的电源40单独地控制。以这种方式,可设计凹进和展开的涡旋元件24的任何期望的样式或构型,如图4所描绘,其中涂黑的元件24意图描绘展开的涡旋元件,而阴影更浅的元件24意图描绘凹进的涡旋元件。
参照图6和图7,在某些情形下可能希望涡旋元件24呈现第三运行状态,其中,如图6和图7中的虚线所描绘,涡旋元件24的表面与叶片的环绕表面的中性面共同延伸。可能存在有这样的风和空气流状况,其中由于涡旋元件引进的阻滞,涡旋元件的有用性或合意性是最小的,且可能是有害的。在这种状况下,柔性材料层30可被部署为图6和图7中的虚线构型所示的平坦轮廓状态,其中元件24变为基本上不起作用。
图9描绘了带有多个根据本发明的各方面构造的叶片16的转子轮毂18。在这个具体的实施例中,各个叶片16包括多组50如本文描述的涡旋元件24。各组50和与各个叶片16相关联的控制器48相连通。取决于用于各个叶片16的控制方案,控制器48支配供应到单独的组50或供应到各个组50中的单独的涡旋元件的电源的特性。而相应的控制器48转而与可在轮毂18或机舱14(图1)中可操作地构造的中央控制器/电源46联系。单独的控制器48可响应在叶片16的表面上提供的任何形式的传感器42检测到的由单独的叶片16经历的相应的风或其它环境状况而供应有控制信号。例如,传感器42可为载荷传感器,失速传感器或可用于确定叶片16的空气动力学状况的任何其他类型的传感器。传感器42可通过线路44向单独的相应控制器48供应信号,以用于与各个相应叶片16相关联的涡旋元件24的近似实时的控制。
仍参照图9,还应该明白,尽管单独的相应的叶片控制可能是合乎需要的,但这样的控制不是强制性的,且本发明包括基于通过传感器42由任何一个或所有叶片16感测到的状况来共同控制与叶片16相关联的所有涡旋元件24。
尽管本主题已相对于具体的示例性实施例及其方法进行了详细描述,但将明白,本领域的技术人员在获得对前述内容的理解后,可能很容易对这样的实施例作出变换、变化和等价物。因此,本公开的范围通过实例而非通过限制(确定),且本主题公开不排除包括对本领域一般技术人员来说将会容易地明白的对本主题的这样的修改、变化和/或附加。

Claims (16)

1.一种风力涡轮叶片,所述叶片包括:
吸力侧表面和压力侧表面;
在所述叶片的前缘与后缘之间形成于所述吸力侧表面或所述压力侧表面中的至少一个上的多个动态涡旋元件;以及,
所述涡旋元件可激活到相对于所述表面的中性面向内凹进的第一缩进位置或相对于所述表面的所述中性面向外凸出的第二伸出位置中的任一个;
在所述表面中在所述涡旋元件中的各个的位置处的凹陷,所述涡旋元件包括完全布置在所述凹陷上方的柔性材料层,其中所述材料层在所述第一缩进位置中顺应进入所述凹陷而在所述第二伸出位置中在所述凹陷上方向外展开;以及
与所述材料层一起构造以在所述第一缩进位置和所述第二伸出位置之间移动所述材料层的激活机构。
2.如权利要求1所述的风力涡轮叶片,其特征在于,所述材料层在所述第二伸出位置中能够可变化地延伸,以产生具有变化的尺寸或形状的涡旋元件。
3.如权利要求1所述的风力涡轮叶片,其特征在于,所述材料层包括压电材料,所述激活机构包括连接到所述压电材料的可控电源。
4.如权利要求3所述的风力涡轮叶片,其特征在于,所述电源构造成以便向所述压电材料供应可变功率,使得所述材料层在所述第二伸出位置中能够可变化地延伸,以产生具有变化的尺寸或形状的涡旋元件。
5.如权利要求3所述的风力涡轮叶片,其特征在于,所述多个涡旋元件由共同的受控电源进行供应。
6.如权利要求3所述的风力涡轮叶片,其特征在于,所述多个涡旋元件分为独立地受控制的组,所述组中的各个组由相应的受控电源进行供应。
7.如权利要求3所述的风力涡轮叶片,其特征在于,所述多个涡旋元件由相应的受控电源单独地控制。
8.如权利要求1所述的风力涡轮叶片,其特征在于,所述涡旋元件在所述第一缩进位置中以及在所述第二伸出位置中大体上是半球形的。
9.如权利要求1所述的风力涡轮叶片,其特征在于,所述涡旋元件包括与所述表面的所述中性面共同延伸的第三中性位置。
10.如权利要求1所述的风力涡轮叶片,其特征在于,所述涡旋元件形成于所述吸力侧表面和所述压力侧表面上。
11.如权利要求1所述的风力涡轮叶片,其特征在于,还包括结合所述涡旋元件在所述吸力侧表面或所述压力侧表面上提供的多个静态涡旋产生器。
12.一种风力涡轮,所述风力涡轮包括多个涡轮叶片,所述涡轮叶片中的至少一个包括:
吸力侧表面和压力侧表面;
形成于所述吸力侧表面或所述压力侧表面中的至少一个上的多个动态涡旋元件;
所述涡旋元件可激活到相对于所述表面的中性面向内凹进的第一缩进位置以及相对于所述表面的所述中性面向外凸出的第二伸出位置;
在所述表面中在所述涡旋元件中的各个的位置处的凹陷,所述涡旋元件包括完全布置在所述凹陷上方的柔性材料层,其中所述材料层在所述第一缩进位置中顺应进入所述凹陷而在所述第二伸出位置中在所述凹陷上方向外展开;以及
与所述材料层一起构造以在所述第一缩进位置和所述第二伸出位置之间移动所述材料层的激活机构。
13.如权利要求12所述的风力涡轮,其特征在于,所述材料层包括压电材料,所述激活机构包括连接到所述压电材料的可控电源。
14.如权利要求12所述的风力涡轮,其特征在于,还包括结合所述涡旋元件构造在所述叶片的所述表面上的多个静态涡旋产生器。
15.如权利要求12所述的风力涡轮,其特征在于,所述涡旋元件在所述第一缩进位置和所述第二伸出位置中大体上是半球形的。
16.如权利要求12所述的风力涡轮,其特征在于,所述涡旋元件包括与所述表面的所述中性面共同延伸的第三中性位置。
CN201110173516.2A 2010-06-11 2011-06-10 带有可控的空气动力学涡旋元件的风力涡轮叶片 Active CN102278288B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/813650 2010-06-11
US12/813,650 US8061986B2 (en) 2010-06-11 2010-06-11 Wind turbine blades with controllable aerodynamic vortex elements

Publications (2)

Publication Number Publication Date
CN102278288A CN102278288A (zh) 2011-12-14
CN102278288B true CN102278288B (zh) 2015-09-16

Family

ID=44118214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110173516.2A Active CN102278288B (zh) 2010-06-11 2011-06-10 带有可控的空气动力学涡旋元件的风力涡轮叶片

Country Status (5)

Country Link
US (1) US8061986B2 (zh)
EP (1) EP2394911B1 (zh)
CN (1) CN102278288B (zh)
DK (1) DK2394911T3 (zh)
ES (1) ES2533251T3 (zh)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9739296B2 (en) * 2008-09-25 2017-08-22 Parafluidics Llc Channeling fluidic waveguide surfaces and tubes
US20110006165A1 (en) * 2009-07-10 2011-01-13 Peter Ireland Application of conformal sub boundary layer vortex generators to a foil or aero/ hydrodynamic surface
EP2548800A1 (en) 2011-07-22 2013-01-23 LM Wind Power A/S Method for retrofitting vortex generators on a wind turbine blade
US8444384B2 (en) * 2011-08-25 2013-05-21 General Electric Company Rotor blade assembly and method for adjusting loading capability of rotor blade
US9022740B2 (en) * 2012-01-26 2015-05-05 Mitsubishi Heavy Industries, Ltd. Wind turbine rotor blade lightning discharger and wind turbine generator equipped with the same
US10677217B2 (en) 2012-10-03 2020-06-09 General Electric Company Wind turbine and method of operating the same
US9670900B2 (en) 2013-03-28 2017-06-06 General Electric Company Rotor blade assembly for wind turbine having load reduction features
DE102013207640A1 (de) * 2012-10-16 2014-04-17 Wobben Properties Gmbh Windenergieanlagen-Rotorblatt
US9845147B2 (en) * 2013-05-01 2017-12-19 Northrop Grumman Systems Corporation Recessed lift spoiler assembly for airfoils
US9556849B2 (en) 2013-05-02 2017-01-31 General Electric Company Attachment system and method for wind turbine vortex generators
US9638176B2 (en) 2013-05-10 2017-05-02 The Boeing Company Vortex generator using shape memory alloys
JP6189088B2 (ja) * 2013-05-28 2017-08-30 テラル株式会社 ロータ
DE102013210733B4 (de) * 2013-06-10 2021-03-25 Senvion Gmbh Rotorblatt und Vortexgenerator
US20150003985A1 (en) * 2013-06-27 2015-01-01 General Electric Company Moveable surface features for wind turbine rotor blades
CN103410657B (zh) * 2013-08-30 2015-06-03 内蒙古工业大学 一种加肋开槽型风力机叶片
CN103482055B (zh) * 2013-09-18 2017-01-18 上海交通大学 用于机翼减阻的主动控制方法的装置
EP2865890B1 (en) * 2013-10-24 2016-06-15 Alstom Renovables España, S.L. Wind turbine blade
DK2865887T3 (en) 2013-10-24 2016-09-05 Alstom Renovables Espana Sl Wind turbine blade
US9523279B2 (en) 2013-11-12 2016-12-20 General Electric Company Rotor blade fence for a wind turbine
FR3017165B1 (fr) * 2014-02-05 2016-01-22 Snecma Pale pour une helice de turbomachine, notamment a soufflante non carenee, helice et turbomachine correspondantes
CN107110111B (zh) 2014-08-05 2020-09-01 Lm Wp 专利控股有限公司 设置有表面安装装置的风力涡轮机叶片
US10385826B2 (en) 2014-09-12 2019-08-20 Ge Infrastructure Technology, Llc Wind turbine air deflector system control
US10011346B2 (en) 2015-12-18 2018-07-03 Amazon Technologies, Inc. Propeller blade indentations for improved aerodynamic performance and sound control
US10933988B2 (en) 2015-12-18 2021-03-02 Amazon Technologies, Inc. Propeller blade treatments for sound control
EP3736208B1 (en) * 2015-12-18 2023-10-25 Amazon Technologies, Inc. Propeller blade treatments for sound control
US10460717B2 (en) 2015-12-18 2019-10-29 Amazon Technologies, Inc. Carbon nanotube transducers on propeller blades for sound control
US10259574B2 (en) 2015-12-18 2019-04-16 Amazon Technologies, Inc. Propeller surface area treatments for sound dampening
US10259562B2 (en) 2015-12-18 2019-04-16 Amazon Technologies, Inc. Propeller blade trailing edge fringes for improved sound control
US10099773B2 (en) 2015-12-18 2018-10-16 Amazon Technologies, Inc. Propeller blade leading edge serrations for improved sound control
US10099771B2 (en) * 2016-03-14 2018-10-16 The Boeing Company Aircraft wing structure and associated method for addressing lift and drag
US10400744B2 (en) 2016-04-28 2019-09-03 General Electric Company Wind turbine blade with noise reducing micro boundary layer energizers
US10487796B2 (en) 2016-10-13 2019-11-26 General Electric Company Attachment methods for surface features of wind turbine rotor blades
CN106351799B (zh) * 2016-11-16 2019-11-08 西安鑫风动力科技有限公司 一种水平轴风力发电机
CN109386425A (zh) * 2017-08-09 2019-02-26 新疆工程学院 一种叶片前缘呈线性微孔状结构的风力机叶片及风力机
CN109386426A (zh) * 2017-08-09 2019-02-26 新疆工程学院 一种叶片后缘呈线性微孔状结构的风力机叶片及风力机
CA3072004A1 (en) * 2017-08-23 2019-02-28 Lm Wind Power International Technology Ii Aps A wind turbine blade and a method of operating such a wind turbine blade
EP3552959A1 (en) * 2018-04-13 2019-10-16 Airbus Defence and Space GmbH Aerodynamics influencing device for an aircraft and aircraft
US11046415B1 (en) * 2018-06-20 2021-06-29 United States of Americas as represented by the Secretary of the Air Force Multi-material printed control surface
US11163302B2 (en) 2018-09-06 2021-11-02 Amazon Technologies, Inc. Aerial vehicle propellers having variable force-torque ratios
EP3832127A1 (en) * 2019-12-05 2021-06-09 Siemens Gamesa Renewable Energy A/S Wind turbine blade flow regulation
FR3104691B1 (fr) * 2019-12-12 2022-08-12 Safran Aircraft Engines Echangeur de chaleur comportant une paroi perturbatrice à générateurs de turbulence creux
CN110953121B (zh) * 2019-12-12 2021-07-30 赵明星 一种环保型低噪风力发电机
US20230340937A1 (en) * 2022-04-20 2023-10-26 National Technology & Engineering Solutions Of Sandia, Llc Wind Turbine Blades Having System Integrated Tips and Methods of Making Using Additive Manufacturing
CN117365825A (zh) * 2022-06-30 2024-01-09 江苏金风科技有限公司 叶片以及风力发电机组

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029247A1 (en) * 2000-09-29 2002-04-11 Bonus Energy A/S Method for regulating a windmill and an apparatus for the use of said method
CN1705822A (zh) * 2002-10-22 2005-12-07 西门子公司 带有用于改善流动的结构化表面的风力发电设备
CN101258071A (zh) * 2005-07-13 2008-09-03 城市大学 用于产生流体动力的元件
CN101542115A (zh) * 2006-10-28 2009-09-23 玛利亚·赫尼希 风力设备、以环境空气产生电能的发电机,以及以运动的环境空气产生电能的方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039161A (en) 1975-10-16 1977-08-02 Mcdonnell Douglas Corporation Hidden vortex generators
JPH0429063A (ja) 1990-05-25 1992-01-31 Hitachi Ltd ボルテツクスジエネレータ
US5253828A (en) 1992-07-17 1993-10-19 The Board Of Regents Of The University Of Oklahoma Concealable flap-actuated vortex generator
US6105904A (en) * 1998-03-30 2000-08-22 Orbital Research Inc. Deployable flow control device
US6220550B1 (en) * 1998-03-31 2001-04-24 Continuum Dynamics, Inc. Actuating device with multiple stable positions
DE19815519A1 (de) 1998-03-31 1999-10-07 Tacke Windenergie Gmbh Rotorblatt für eine Windkraftanlage
AU5618099A (en) 1998-09-16 2000-04-03 Lm Glasfiber A/S Wind turbine blade with vortex generator
US6705838B1 (en) 1999-08-25 2004-03-16 Forskningscenter Riso Modified wind turbine airfoil
NL1012949C2 (nl) 1999-09-01 2001-03-06 Stichting Energie Blad voor een windturbine.
US6537159B2 (en) 1999-09-16 2003-03-25 Callaway Golf Company Aerodynamic pattern for a golf ball
US6315686B1 (en) 1999-10-25 2001-11-13 Gilbert Barfield Golf ball dimple structures with vortex generators
US6629341B2 (en) 1999-10-29 2003-10-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of fabricating a piezoelectric composite apparatus
AU2002237648A1 (en) 2000-10-10 2002-05-21 The Regents Of The University Of California Microfabricated translational stages for control of aerodynamic loading
US6427948B1 (en) 2000-10-30 2002-08-06 Michael Campbell Controllable vortex generator
DK200300670A (da) 2003-05-05 2004-11-06 Lm Glasfiber As Vindmölleving med opdriftsregulerende organer
JP4029063B2 (ja) 2003-06-17 2008-01-09 任天堂株式会社 ゲームシステム、ゲーム装置およびゲームプログラム
DE10347802B3 (de) 2003-10-10 2005-05-19 Repower Systems Ag Rotorblatt für eine Windkraftanlage
US7059664B2 (en) * 2003-12-04 2006-06-13 General Motors Corporation Airflow control devices based on active materials
US7854467B2 (en) 2004-11-05 2010-12-21 General Motors Corporation Airflow control devices based on active materials
US7387491B2 (en) 2004-12-23 2008-06-17 General Electric Company Active flow modifications on wind turbine blades
WO2006122547A1 (en) 2005-05-17 2006-11-23 Vestas Wind Systems A/S A pitch controlled wind turbine blade, a wind turbine and use hereof
WO2007005687A1 (en) 2005-06-30 2007-01-11 Bell Helicopter Textron Inc. Retractable vortex generator
US20070231151A1 (en) 2005-10-10 2007-10-04 General Electric Company Active flow control for wind turbine blades
US7604461B2 (en) 2005-11-17 2009-10-20 General Electric Company Rotor blade for a wind turbine having aerodynamic feature elements
BRPI0619445A2 (pt) 2005-12-05 2011-10-04 Lm Glasfiber As lãmina para rotor de turbina de vento
BRPI0709855A2 (pt) 2006-04-02 2011-07-26 Gustave Paul Corten turbina eàlica, e, mÉtodo pelo qual uma primeira lÂmina de uma turbina existente É removida e substituÍda por uma outra lÂmina
CN101484692B (zh) 2006-06-09 2011-08-31 维斯塔斯风力系统有限公司 风轮机叶片和桨距控制式风轮机
US7748958B2 (en) * 2006-12-13 2010-07-06 The Boeing Company Vortex generators on rotor blades to delay an onset of large oscillatory pitching moments and increase maximum lift
ES2396702T3 (es) 2007-01-12 2013-02-25 Siemens Aktiengesellschaft Pala de rotor de turbina eólica con generadores de vórtice
WO2008113349A2 (en) 2007-03-20 2008-09-25 Vestas Wind Systems A/S Slow rotating wind turbine rotor with slender blades
ATE490404T1 (de) 2007-03-20 2010-12-15 Vestas Wind Sys As Windturbinenschaufel mit wirbelerzeugern
US8047233B2 (en) 2007-11-14 2011-11-01 The Boeing Company Apparatus and method for generating vortexes in fluid flow adjacent to a surface
ES2343397B1 (es) 2008-03-07 2011-06-13 GAMESA INNOVATION & TECHNOLOGY, S.L. Una pala de aerogenerador.
US9239039B2 (en) 2008-10-27 2016-01-19 General Electric Company Active circulation control of aerodynamic structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029247A1 (en) * 2000-09-29 2002-04-11 Bonus Energy A/S Method for regulating a windmill and an apparatus for the use of said method
CN1705822A (zh) * 2002-10-22 2005-12-07 西门子公司 带有用于改善流动的结构化表面的风力发电设备
CN101258071A (zh) * 2005-07-13 2008-09-03 城市大学 用于产生流体动力的元件
CN101542115A (zh) * 2006-10-28 2009-09-23 玛利亚·赫尼希 风力设备、以环境空气产生电能的发电机,以及以运动的环境空气产生电能的方法

Also Published As

Publication number Publication date
EP2394911A1 (en) 2011-12-14
DK2394911T3 (en) 2015-03-30
EP2394911B1 (en) 2015-02-25
US8061986B2 (en) 2011-11-22
ES2533251T3 (es) 2015-04-08
US20110142628A1 (en) 2011-06-16
CN102278288A (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
CN102278288B (zh) 带有可控的空气动力学涡旋元件的风力涡轮叶片
EP2034178B1 (en) Wind turbine blade with deflectable flaps
US9140233B2 (en) Wind power generation system
US8286909B2 (en) Boundary layer propulsion airship with related system and method
EP2778392B1 (en) A rotor blade for a wind turbine
CN101354008B (zh) 具有拱形襟翼的风轮机叶片
EP2402595A2 (en) Wind turbine blades with actively controlled flow through vortex elements.
US20100215494A1 (en) Wind Turbine Rotor Blade
US11203409B2 (en) Geometric morphing wing with adaptive corrugated structure
EP2085609B1 (en) Wind turbine blade with cambering flaps controlled by surface pressure changes
EP3177524A1 (en) Structure with rigid projections adapted to traverse a fluid environment
WO2012061598A1 (en) Flight configuration and flight strategy for flight wind speeds
EP3071830A1 (en) Wind turbine blade with wave shaped trailing edge
US10677217B2 (en) Wind turbine and method of operating the same
US20200149507A1 (en) A Wind Turbine Blade Comprising A Noise Reducing Device
WO2015081215A1 (en) Blade flow deflector
US11719224B2 (en) Rotor blade of a wind turbine, having a splitter plate
CN103168172A (zh) 风车叶片及具备该风车叶片的风力发电装置以及风车叶片的设计方法
NL2000301C1 (nl) Inrichting die aerodynamische liftvariaties ondervindt.
RU2412864C1 (ru) Способ управления аэродинамическими характеристиками несущей поверхности и несущая поверхность

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240221

Address after: Danish spirit

Patentee after: LM Wind Power A/S

Guo jiahuodiqu after: Dan Mai

Address before: New York, United States

Patentee before: General Electric Co.

Guo jiahuodiqu before: Mei Guo