Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN102245895 B
Publication typeGrant
Application numberCN 200980149675
PCT numberPCT/EP2009/064085
Publication date19 Mar 2014
Filing date26 Oct 2009
Priority date12 Dec 2008
Also published asCN102245895A, EP2141358A1, EP2368035A1, EP2368035B1, US8944775, US20110250076, WO2010066501A1
Publication number200980149675.X, CN 102245895 B, CN 102245895B, CN 200980149675, CN-B-102245895, CN102245895 B, CN102245895B, CN200980149675, CN200980149675.X, PCT/2009/64085, PCT/EP/2009/064085, PCT/EP/2009/64085, PCT/EP/9/064085, PCT/EP/9/64085, PCT/EP2009/064085, PCT/EP2009/64085, PCT/EP2009064085, PCT/EP200964085, PCT/EP9/064085, PCT/EP9/64085, PCT/EP9064085, PCT/EP964085
InventorsP.富格尔桑格, K.伦茨
ApplicantLm 玻璃纤维制品有限公司
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Wind turbine blade having a spoiler with effective separation of airflow
CN 102245895 B
Abstract  translated from Chinese
本发明公开了一种风力涡轮机叶片(10),其具有在叶片的压力侧被附连到成形轮廓(40、42、50)的流动引导装置(70)。 The present invention discloses a wind turbine blade (10), having a pressure side of the blade is attached to the shaping profile (40,42,50) of the flow guide means (70). 所述流动引导装置沿叶片的过渡区域(32)的至少纵向部分延伸并且被设置成当叶片被入射气流冲击时在所述流动引导装置和所述叶片的后缘(20)之间的点处产生沿所述流动引导装置的至少中心纵向部分(71)从所述叶片的所述压力侧的气流分离。 At least a longitudinal portion of said flow directing means along the blade of the transition region (32) extends and is arranged at a point between the flow guide means and the blade trailing edge (20) of the air flow when the blades are incident shock generating said flow directing means along at least a central longitudinal portion (71) is separated from the gas stream the pressure side of the blade. 在至少所述中心纵向部分内的入流表面(72)被成形为针对每个横向截面,在终点(76)处入流表面的终点切线(80)在交叉点(82)处与成形轮廓相交,在该交叉点处成形轮廓具有与成形轮廓相切的外形切线(78),其中外形切线和终点切线之间的角度(a)是至少45度。 At least part of the central longitudinal inflow surface (72) is shaped for each transverse cross section at the end (76) at the end of the inflow surface tangent (80) at the intersection point (82) and contoured at the intersection, in The crossing point has contoured shape forming the contour tangent tangent (78), wherein the angle between the tangent and end tangent shape of (a) is at least 45 degrees.
Claims(15)  translated from Chinese
1.一种用于风力涡轮机(2)的转子的叶片(10),该转子具有基本水平的转子轴,所述转子包括毂(8),当被安装于所述毂(8)时所述叶片(10)从所述毂(8)基本沿径向方向延伸,所述叶片具有带尖端(14)和根部端(16)的纵向方向(r)以及横向方向,所述叶片还包括: 成形轮廓(40、42、50),其包括压力侧和吸力侧以及前缘(18)和后缘(20),且具有其弦长在所述前缘和所述后缘之间延伸的弦,当被入射气流冲击时所述成形轮廓产生升力,其中所述成形轮廓被划分为: 最靠近所述毂、具有基本圆形或椭圆形外形的根部区域(30), 最远离所述毂、具有升力生成外形的翼型区域(34),以及在所述根部区域(30)和所述翼型区域(34)之间的过渡区域(32),所述过渡区域(32)具有沿所述径向方向从所述根部区域的所述圆形或椭圆形外形逐渐变化到所述翼型区域的所述升力生成外形的外形,并且其中所述叶片具有在所述叶片(10)的所述压力侧(52)上被附加到所述叶片的所述成形轮廓(40、42、50)的流动引导装置(70),所述流动引导装置(70)具有入流表面(72),该入流表面(72)具有朝向所述叶片(10)的所述前缘(18)定向的起点(74)以及朝向所述叶片(10)的所述后缘(20)定向的终点(76),所述入流表面(72)和所述成形轮廓(40、42、50)之间的距离从所述起点(74)向所述终点(76)增加,其特征在于所述流动引导装置(70)沿所述过渡区域(32)的至少纵向部分延伸并且被设置成当所述叶片(10)被所述入射气流冲击时在所述流动引导装置(70)和所述叶片(10)的所述后缘(20)之间的点处产生沿所述流动引导装置(70)的至少中心纵向部分(71)从所述叶片(10)的所述压力侧(52)的气流分离,其中在至少所述中心纵向部分(71)内的所述入流表面(72)被成形为使得针对每个横向截面,在所述终点(76)处与所述入流表面(72)相切的终点切线(80)在交叉点(82)处与所述成形轮廓(40、42、50)相交,在该交叉点处所述成形轮廓(40、42、50)具有与所述成形轮廓(40、42、50)相切的外形切线(78),并且其中在所述外形切线(78)和所述终点切线(80)之间的锐角(a)是至少45度。 A wind turbine (2) for a rotor blade (10), the rotor having a substantially horizontal rotor shaft, said rotor comprising a hub (8), when mounted on the hub (8) when the blades (10) extending substantially in a radial direction from the hub (8), said blade tip having a band (14) and the root end (16) in the longitudinal direction (r) and a transverse direction, said blade further comprising: forming profile (40,42,50), which comprises a pressure side and a suction side and the leading edge (18) and a trailing edge (20), and having the chord at the leading edge and the trailing edge extending between the strings, When the impact of the incident airflow generating lift shaped contour, wherein said shaped profile is divided into: the closest to the hub, having a substantially circular or elliptical shape of the root region (30), farthest from the hub, having generating lift airfoil profile region (34), and a transition region at the root region (30) and the airfoil region (34) between (32), said transition region (32) having a diameter along the in a direction from the circular or elliptical shape of the root region gradually changes to the region of the airfoil shape of the lift generating profile, and wherein said blade having a pressure in the said blade (10) side (52) is attached to said blade shaped profile (40,42,50) of the flow guide means (70), said flow directing means (70) having inflow surface (72), the inflow surface ( the end of the leading edge 72) having the blade orientation (10) (18) starting orientation (74) and the facing of the blade (10) of the trailing edge (20) directed (76), the inflow surface (72) and the distance profile (40,42,50) between the molding (74) (76) increases from the start point to the end point, wherein said flow directing means (70) along the at least a longitudinal portion of the trailing edge transition zone (32) extends and is arranged such that when the blade when the incident shock in the flow stream (10) guide means (70) and said blade (10) in ( at least a central longitudinal portion (71) from said blade (10) of said pressure side (52) of the flow separation point 20) between the flow generation along the guide means (70), wherein at least the central The longitudinal portion inflow surface (71) (72) is shaped such that for each transverse section, the end (76) at the inflow surface (72) tangent to the end point tangent (80) at the cross point (82) at the forming profile (40,42,50) intersect at the intersection of said contoured (40,42,50) has said contoured (40,42,50) tangent The shape of the tangent (78), and wherein the contour tangent at an acute angle (78) and the end point of the tangent (80) between (a) is at least 45 degrees.
2.根据权利要求1所述的叶片,其中在所述外形切线(78)和所述终点切线(80)之间的所述锐角是至少50度,或至少55度,或至少60度。 2. The blade according to claim 1, wherein the acute angle of the contour tangent (78) and the end point of the tangent (80) between at least 50 degrees, or at least 55 degrees, or at least 60 degrees.
3.根据权利要求1或2所述的叶片,其中所述入流表面(72)的中线与所述弦(44)形成第二角度(Θ ),所述第二角度是至少25度,或至少30度,或至少35度。 3. The blade according to claim 1 or claim 2, wherein the inflow surface centerline (72) and said chord (44) forming a second angle (Θ), said second angle is at least 25 degrees, or at least 30 degrees, or at least 35 degrees.
4.根据权利要求1所述的叶片,其中所述流动引导装置(70)基本沿所述过渡区域(32)的整个纵向尺度延伸。 4. The blade according to claim 1, wherein said flow directing means (70) substantially along the entire longitudinal dimension of the transition region (32) extends.
5.根据权利要求1所述的叶片,其中所述中心纵向部分(71)是所述流动引导装置(70)的纵向尺度的至少50%、60%、70%、80%或90%。 5. A blade according to claim 1, wherein said central longitudinal portion (71) is the flow directing means (70) of the longitudinal dimension of at least 50%, 60%, 70%, 80% or 90%.
6.根据权利要求1所述的叶片,其中所述入流表面(72)是凹的。 6. A blade according to claim 1, wherein the inflow surface (72) is concave.
7.根据权利要求6所述的叶片,其中在所述起点(74)处所述入流表面的起点切线基本平行于所述起点(74)处所述外形的切线。 7. A blade according to claim 6, wherein in the starting point (74) at the inflow surface substantially parallel to a tangent to the starting point of the start point (74) at a tangent to the contour.
8.根据权利要求1所述的叶片,其中所述流动引导装置(70)与所述叶片(10) —体成形。 8. A blade according to claim 1, wherein said flow directing means (70) and said blade (10) - the body shape.
9.根据权利要求1所述的叶片,其中所述流动引导装置(70)被装配到所述叶片(10)的表面上。 9. A blade according to claim 1, wherein said flow directing means (70) is fitted to the upper surface of the blade (10).
10.根据权利要求1所述的叶片,其中所述流动引导装置(70)延伸到所述根部区域(30)内。 10. The blade according to claim 1, wherein said flow directing means (70) extends into the root region (30).
11.根据权利要求1所述的叶片,其中所述流动引导装置(70)具有后方边缘(84),该后方边缘(84)具有一定后方边缘高度,其中在所述流动引导装置(70)的至少所述中心纵向部分(71)内该后方边缘高度沿纵向方向朝向所述尖端(14)减小。 11. A blade according to claim 1, wherein said flow directing means (70) having a rear edge (84), the rear edge (84) having a certain height of the rear edge, wherein said flow directing means (70) At least the central longitudinal portion (71) of the rear edge of the height in the longitudinal direction toward the tip (14) is reduced.
12.根据权利要求1所述的叶片,其中所述流动引导装置(70)具有后方边缘(84),该后方边缘(84)具有一定后方边缘高度,并且其中在所述流动引导装置(70)的至少所述中心纵向部分(71)内该后方边缘高度是基本恒定的。 12. The blade according to claim 1, wherein said flow directing means (70) having a rear edge (84), the rear edge (84) having a certain height of the rear edge, and wherein said flow directing means (70) at least the central longitudinal portion (71) within the height of the rear edge is substantially constant.
13.根据权利要求1所述的叶片,其中所述流动引导装置(70)具有后方边缘(84),该后方边缘(84)具有一定后方边缘高度(h),并且所述成形轮廓(40、42、50)具有最大厚度,并且其中在至少所述中心纵向部分内该后方边缘高度(h)和该最大厚度(t/c)之间的比位于3%至25%之间的区间内,或者位于3%至20%之间的区间内。 13. A blade according to claim 1, wherein said flow directing means (70) having a rear edge (84), the rear edge (84) having a certain height the rear edge (h), and the shaped contour (40, 42,50) has a maximum thickness, and wherein at least the central portion of the rear longitudinal edge height (h) and the maximum thickness (t / c) located between the ratio between 3-25% of the interval, or in the range of 3-20% between.
14.一种包括多个如前述权利要求中任一项所述的叶片的风力涡轮机。 14. A plurality of the preceding claims comprising any one of a wind turbine blade.
15.根据权利要求14所述的风力涡轮机,其中所述风力涡轮机包括两个或三个所述叶片。 15. A wind turbine according to claim 14, wherein the wind turbine comprises two or three of the blades.
Description  translated from Chinese

具有有效分离气流的阻流板的风力涡轮机叶片 The wind turbine blade having an effective separation of the airflow spoiler

技术领域 Technical Field

[0001] 本发明涉及用于风力涡轮机转子的叶片,该转子具有基本水平的转子轴,所述转子包括毂,当被安装于该毂时叶片基本沿径向方向从该毂延伸,所述叶片具有纵向方向和横向方向且纵向方向上带有尖端和根部端,其中所述叶片还包括:成形轮廓,该成形轮廓包括压力侧和吸力侧以及前缘和后缘,具有在前缘和后缘之间延伸的弦长的弦,当被入射气流冲击时成形轮廓产生升力,其中成形轮廓被划分为:最接近毂的具有基本圆形或椭圆形外形的根部区域、具有最远离毂的具有升力生成外形的翼型区域以及在根部区域和翼型区域之间的过渡区域,所述过渡区域具有沿径向方向逐渐从根部区域的圆形或椭圆形外形变化到翼型区域的升力生成外形的外形。 [0001] The present invention relates to a rotor for a wind turbine blade, the rotor having a substantially horizontal rotor shaft, said rotor comprising a hub, when the blade is mounted on the hub extending from the hub substantially in a radial direction, the blade having a longitudinal direction and a transverse direction and having tip and root ends of the longitudinal direction, wherein the blade further comprising: shaping profile, the shaped contour comprising a pressure side and a suction side as well as a leading edge and a trailing edge, a leading edge and a trailing edge having chord chord extending between, forming air impact incident when the outline to generate lift, which is divided into a contoured: root area closest to the hub having a substantially circular or elliptical shape, with most having a lift away from the hub The airfoil shape is generated in the region and the transition region between the root region and the airfoil region, the transition region having a gradual change in the radial direction from the circular or elliptical shape of the root region to the lift generating profile of the airfoil region shape.

背景技术 Background

[0002] 理论上,翼型类型的风力涡轮机叶片被成形为类似于典型飞机机翼,其中叶片的弦平面宽度及其一阶导数随着距毂距离的减小而连续增加。 [0002] In theory, airfoil type of wind turbine blade is shaped similar to a typical airplane wing, where the width of the blade chord plane and the first derivative of the hub distance decreases as the distance increases continuously. 这导致了,在毂的附近,理论上叶片相当宽。 This led, in the vicinity of the hub, theoretically leaves quite wide. 这又导致了当必须将叶片安装于毂时的问题,并且此外,由于叶片具有大的表面面积,从而这导致了在叶片工作期间具有较大载荷,例如暴风载荷。 This in turn leads to problems when it is necessary to install the hub when the blades are in, and in addition, since the blade has a large surface area, which thereby results in the blade working with a large load during, e.g., storm loads.

[0003] 因此,多年间,叶片的构造朝向形状方面发展,其中叶片由最靠近毂的根部区域、最远离毂的包括升力生成外形的翼型区域以及在根部区域和翼型区域之间的过渡区域构成。 [0003] Thus, between the years, build up a blade shape toward the development, which leaves from the root area closest to the hub, the farthest from the hub includes an airfoil shape to generate lift and a transition region between the root region and the airfoil region -area. 关于生成升力,翼型区域具有理论或几乎理论的叶片形状,而根部区域具有基本圆形截面,这减小了暴风载荷并且使得更容易且安全地将叶片安装到毂。 Of generating lift, airfoil or blade shape region having almost theoretical theory, and the root region has a substantially circular cross-section, which reduces storm loads and makes it easier to install and secure the blade to the hub. 根部区域直径优选地沿整个根部区域是恒定的。 Root area diameter is preferably constant along the entire root area is a. 由于圆形截面的原因,根部区域不对风力涡轮机的能量生产作出贡献,并且实际上由于阻力而使其少量减少。 Due to the circular cross-section, the energy production of the wind turbine root region does not contribute to, and in fact, due to the resistance and a small reduction in it. 如名称所示,过渡区域具有从根部区域的圆形形状向翼型区域的翼型外形逐渐变化的形状。 As shown in the name, the transition area has a circular shape from the root region to the airfoil shape of the airfoil region gradually changing shape. 通常,在过渡区域中叶片的宽度随着距毂的距离增大而基本线性增大。 Typically, in the transition region of the blade width increases with distance from the hub and substantially linear increase.

[0004] 因为,例如,随着时间的推移,风力涡轮机的叶片变得越来越大并且现在可能已经超过60米长,因此对于优化空气动力学性能的需求逐渐增加。 [0004] For example, over time, the blades of the wind turbines become larger and may now be more than 60 meters long, and therefore increasing demand for optimized aerodynamic performance. 风力涡轮机叶片被设计成具有至少20年的工作寿命。 The wind turbine blades are designed to have at least 20 years of working life. 因此,即使对于叶片总体性能的小的改变也会随风力叶片的工作寿命而累积成经济收益的大幅增加,其超过与这种改变相关的额外制造成本。 Thus, even a small change for the overall performance of the blade will be the working life of the wind power blades and accumulate into a substantial increase in economic benefits, which exceeds the change associated with additional manufacturing costs. 许多年间研究的关注领域针对改进叶片的翼型区域,不过在近几年,也越来越多地关注改进叶片的根部区域和过渡区域的空气动力学性能。 Research areas of concern for many years to improve the blade airfoil region, but in recent years, more and more attention to improving the aerodynamic performance of the blade root region and the transition region.

[0005] W02007/065434公开了一种叶片,其中根部区域具有凹口和/或突起以便减少来自叶片这个部分的阻力。 [0005] W02007 / 065434 discloses a blade, wherein the base region has a recess and / or projections in order to reduce resistance from the part of the blade.

[0006] W02007/045244公开了一种叶片,其中根部区域和过渡区域被设计成具有至少两个单独的翼型外形以便增加这些区域的升力。 [0006] W02007 / 045244 discloses a blade, wherein the root region and the transition region is designed to have at least two separate airfoil shape of these areas in order to increase the lift.

[0007] W02007/118581公开了一种叶片,其中叶片的内侧部分在叶片的压力侧上具有流动引导装置以便延迟气流的分离并且增加叶片的空气动力学性能。 [0007] W02007 / 118581 discloses a blade, wherein the inner portion of the blade has a flow guide means to delay airflow separation on the pressure side of the blade and increase the aerodynamic performance of the blade.

[0008] EP I 845 258公开了一种叶片,其具有设置在叶片的过渡部分内的Gurney副翼状装置。 [0008] EP I 845 258 discloses a blade having a Gurney flap-like device provided in the transition portion of the blade. Gurney副翼状装置具有凹面曲率并且在后缘处被设置在叶片的压力侧上。 Gurney flap-like device has a concave curvature and the trailing edge is provided on the pressure side of the blade.

发明内容 DISCLOSURE

[0009] 本发明的目标是获得一种新型叶片,并且其克服或改善了现有技术的至少一个缺点或者其提供了有用的替代品。 [0009] The object of the present invention is to obtain a new blade, and which overcomes or ameliorate at least one of the disadvantages of the prior art or provide a useful alternative.

[0010] 根据本发明的第一方面,叶片具有在叶片的压力侧被附加于叶片的成形轮廓的流动弓I导装置,所述流动弓I导装置具有入流表面,该入流表面具有朝向叶片的前缘定向的起点以及朝向叶片的后缘定向的终点,入流表面和成形轮廓之间的距离从起点向终点增加,并且其中所述流动引导装置沿过渡区域的至少纵向部分延伸并且被设置成当叶片被入射气流冲击时在流动引导装置和叶片的后缘之间的点处产生沿流动引导装置的至少中心纵向部分从叶片的压力侧的气流分离,并且其中在至少所述中心纵向部分内的入流表面被成形为针对每个横向截面,在终点处与入流表面相切的终点切线在交叉点处与成形轮廓相交,在该交叉点处成形轮廓具有与成形轮廓相切的外形切线,并且其中外形切线和终点切线之间的角度是至少45度。 I bow flow guide means [0010] According to a first aspect of the present invention, the blade having a pressure side of the blade is attached to the blade shaped profile, the flow guide means having a bow I inflow surface, facing the inflow surface has a blade distance between the starting point and end point of the leading edge oriented toward the rear edge of the blade orientation, between the inflow surface and the contoured increases from the starting point to the end point, and wherein said flow directing means at least partially extending longitudinally along the transition region and are arranged as When the blade is produced along the flow stream enters the flow at the point of impact and the guiding means between the vane trailing edges of the guide means at least partially from the longitudinal center of the side of the blade pressure gas stream separated and wherein at least the central longitudinal portion inflow surface is shaped transverse cross-section for each, and at the end of the inflow end surface tangent at the intersection point of the tangent intersects contoured, shaped contour at the intersection with the contoured shape tangent tangent, and wherein shape angle between the tangent and end tangent is at least 45 degrees.

[0011] 流动引导装置被安装到叶片的内侧部分,即最靠近毂的部分,并且具体地安装到叶片的过渡区域。 [0011] the flow guide means is mounted to the inner portion of the blade, i.e. the part closest to the hub, and in particular the transition region attached to the blade. 从叶片的这个部分产生的动力是非常贫乏的,不过在管理这个部段的入流角度方面,根据本发明附连流动引导装置显著增加了叶片的这个部段上的寿命。 Power generation from this portion of the blade is very poor, but in the management of the inflow angle aspect of this section, means a significant increase in the lifetime of this section on the blade attachment according to the present invention the flow guide. 流动引导装置用于阻碍在外形的压力侧上的流动。 Flow directing means for obstruction in the shape of the pressure side of the flow. 这种阻碍导致了由于流动的脱离而在流动引导装置之后(即在流动引导装置和风力涡轮机叶片的后缘之间)具有更大压力。 This leads to obstruction (i.e. between the flow guide means and the trailing edge of a wind turbine blade) due to the flow out of the flow guide means and after having greater pressure. 在流动引导装置之后,即在流动引导装置和风力涡轮机叶片的后缘之间,气流产生分离。 After the flow guide means, i.e. between the flow guide means and the trailing edge of a wind turbine blade, airflow separation. 因此,气流的“释放角度”的增加也显著增加了具体叶片节段的阻力。 Therefore, increasing the air flow "release angle" also significantly increased the resistance to specific blade segment. 不过,实验惊人地证明,根据本发明的流动引导装置虽然使得阻力增加,不过与所述角度基本小于45度的常规流动引导装置相t匕,在流动引导装置的纵向尺度内仍将整体升力-阻力比提高了至少5%。 However, experiments surprisingly demonstrated that although the guide means such that the flow resistance increases in accordance with the present invention, however, substantially less than with the conventional flow angle of 45 degrees relative to the guide means t dagger, in the longitudinal dimension of the flow guide means will lift the whole - resistance ratio increased by at least 5%. 升力-阻力比的增加提高了风力涡轮机转子的整体性能,并且仅升力的增加减少了局部入流角度,从而稍稍限制了在吸力侧被分离的流动区域的尺寸。 Lift - increase drag ratio to improve the overall performance of a wind turbine rotor, and increase only partially reduced lift inflow angle, thereby slightly limiting the size of the separated flow area on the suction side. 与没有这种流动引导装置的常规风力涡轮机叶片相比,实际估算,潜在性能提高是年度能量产量的1-1.5%。 Compared with a conventional flow without such a wind turbine blade guiding means, the actual estimated potential performance increase is 1.5% of the annual energy production. 当考虑风力涡轮机转子的使用寿命时,相比于与制造具有这种流动引导装置的叶片有关的额外制造成本,这提供了实质的经济效益。 When considering the life of the wind turbine rotor, compared to the manufacturing costs associated with additional manufacturing such flow guide vanes, which offer substantial economic benefits.

[0012] 应该注意到,终点切线和外形切线形成了多于一个角度。 [0012] It should be noted, the end tangents and shape the formation of more than one angle tangent. 从下述详细描述中,明显的是,提到的角度是在终点切线的外部和外形切线朝向叶片的后缘延伸的部分之间的角度。 From the following detailed description, it is apparent, the angle is the angle mentioned tangent at the end portion of the outer shape and the tangent extending toward the trailing edge of the blade between. 换言之,提到的角度位于最靠近叶片的后缘的在叶片外形外侧的象限(四分之一圆)。 In other words, the angle referred to is located closest to the trailing edge of the blade in the blade shape of the outer quadrant (quarter circle). 两条切线形成了锐角和钝角(除非它们相互垂直)。 Two tangents formed acute and obtuse (unless they mutually perpendicular). 因此,明显的是这是至少45度的锐角。 Thus, it is apparent that an acute angle of at least 45 degrees.

[0013] 根据有利实施例,外形切线和终点切线之间的角度是至少50度,或者至少55度,或者至少60度。 [0013] According to an advantageous embodiment, the angle between the tangent and end tangent shape is at least 50 degrees, or at least 55 degrees, or at least 60 degrees. 角度可以高达90度。 Angle up to 90 degrees. 优选地,角度位于60至90度的区间内,惊人地发现这种角度提供了最佳的效率,即使具有高度分离和增加的阻力也是如此。 Preferably, the angle is located within the range of 60 to 90 degrees, the angle surprisingly found that provides the best efficiency, even though having a high degree of separation and increased resistance as well. 已经发现,升力-阻力比在所述区间内基本恒定。 It has been found, the lift - drag ratio is substantially constant within the range.

[0014] 根据又一有利实施例,入流表面的中线与弦形成第二角度,该第二角度是至少25度,或至少30度,或至少35度。 [0014] According to a further advantageous embodiment, the inflow surface and the chord center line forming a second angle, the second angle is at least 25 degrees, or at least 30 degrees, or at least 35 degrees. 第二角度可以是对于终点切线和外形切线之间的角度的补充设计参数,或者其可以是替代性设计参数。 The second angle may be an angle between the end of the tangent and the tangent of the complementary shape design parameters, or it may be an alternative design parameters. 根据有利实施例,入流表面沿与弦形成一角度的线基本对齐,该角度是至少25度,或至少30度,或至少35度。 According to an advantageous embodiment, the inflow surface along a chord line forming an angle of substantially aligned, the angle is at least 25 degrees, or at least 30 degrees, or at least 35 degrees. 因此,如果入流表面是直的,则终点切线与弦形成的角度也可以是至少25度,或至少30度,或至少35度。 Therefore, if the inflow surface is straight, the angle of the tangent to the chord end may also be formed of at least 25 degrees, or at least 30 degrees, or at least 35 degrees. 中线对应入流表面的线性拟合线或者入流表面的平均切线。 The middle line corresponds to the linear fit inflow surface or the surface of the average tangential inflow. 因此,可以看出,入流表面平均上与弦形成至少25度的第二角度。 Thus, it can be seen, the average inflow surface forming a second angle with the chord of at least 25 degrees. 而且,应该注意,第二角度指代的是在中线和弦之间形成的锐角。 Moreover, it should be noted that the second angle is an acute angle refers to the chord formed between the center line.

[0015] 根据又一有利实施例,流动引导装置基本沿过渡区域的整个纵向长度延伸。 [0015] According to a further advantageous embodiment, the entire longitudinal length of the flow guide transition region extends substantially along the apparatus. 因而,对于基本整个空气动力学上非理论的过渡区域而言,提高了升力和升力-阻力比。 Thus, for substantially the entire transition area non-aerodynamic theory, raising the lift and the lift - drag ratio.

[0016] 在根据本发明的优选实施例中,中心纵向部分是流动引导装置的纵向尺度的至少50%、60%、70%、80% 或90%。 [0016] In a preferred embodiment of the present invention, the central longitudinal portion of the flow is at least 50% of the longitudinal dimension of the guiding means, 60%, 70%, 80% or 90%.

[0017] 入流表面可以是基本直的,即流动引导装置具有基本楔形的截面。 [0017] The inflow surface may be substantially straight, i.e., the flow guide means having a substantially wedge-shaped cross-section. 根据可替代实施例,叶片入流表面是凹的。 According to an alternative embodiment, the inflow surface of the blade is concave.

[0018] 根据一种实施例,在起点处成型入流表面的起点切线基本平行于起点处外形的切线。 [0018] According to one embodiment, at the start of forming the starting point of tangential inflow surface substantially parallel to the contour tangent at the starting point. 因而,外形具有向流动引导装置的入流表面的平滑表面过渡。 Accordingly, the shape having a smooth surface to the flow guide means inflow transition surface.

[0019] 根据一种有利实施例,流动引导装置具有一宽度,其中宽度和弦长之间的比沿纵向方向朝向尖端减小。 [0019] According to an advantageous embodiment, the flow guide means having a width, wherein the ratio between the width of the chord length in the longitudinal direction decreases toward the tip. 这能够例如通过使得宽度沿叶片的纵向方向基本恒定来实现,因为弦长在过渡区域内增加。 This can, for example so that the longitudinal direction by a substantially constant width along the blade to achieve, because the increase in the chord transition region. 不过,宽度也可以沿叶片的纵向方向减小。 However, the width can be reduced in the longitudinal direction of the blade.

[0020] 在根据本发明的一种实施例中,从叶片的前缘观察,在至少中心纵向部分内的起点被设置在弦长的55%至88%之间的区域内,或者在57%至87%之间的区域内,或者在60%至85%之间的区域内。 [0020] In accordance with one embodiment of the present invention, observed from the blade leading edge, at least at the starting point of the central longitudinal portion being disposed in the region of between 55 to 88% of the chord length, or 57% to 87% in the region between, or in the region between 60 to 85 percent of the. 在根据本发明的另一实施例中,从叶片的前缘观察,在至少中心纵向部分内的终点被设置在弦长的70%至90%之间的区域内,或者在75%至88%之间的区域内,或者在80%至87%之间的区域内。 In accordance with another embodiment of the present invention, observed from the front edge of the blade, the end of at least a central longitudinal section is provided in the area between 70-90% of the chord length, or 75-88% the area between or within the region 80-87% between.

[0021 ] 在根据本发明的又一实施例中,在终点和叶片的后缘之间的距离沿纵向长度朝向叶片的尖端增加。 [0021] In accordance with still another embodiment of the present invention, the distance between the end and the trailing edge of the blade along the longitudinal length between the blade tip toward increased.

[0022] 根据优选实施例,叶片被部分制造为由纤维增强聚合物材料制成的外壳构造。 [0022] According to a preferred embodiment, the blade portion is manufactured by a fiber-reinforced polymeric material housing construction.

[0023] 在一种有利实施例中,流动引导装置与叶片整体成形。 [0023] In an advantageous embodiment, the flow guide means is formed integrally with the blade. 因此,流动引导装置可以与叶片一同制造,例如通过如VARTM工艺的模制工艺被制造。 Thus, the flow guiding means can be manufactured together with the blade, for example, it is manufactured by processes such as VARTM molding process. 在这种情况下,成形轮廓被认为是从入流表面的起点向入流表面的终点附近的第二点延伸的假想平滑连续表面。 In this case, forming smooth contour are considered hypothetical continuous surface extending from the second end point to the starting point of the inflow surface inflow surface nearby. 在另一有利实施例中,流动引导装置被装配在叶片的表面上。 In another advantageous embodiment, the flow guide means is mounted on the surface of the blade. 因此,叶片和流动引导装置可以被分别制造,并且之后流动引导装置被装配到叶片的表面。 Thus, the blades and the flow guiding means can be manufactured separately, and then the flow guide means is fitted to the surface of the blade. 从而,用于制造叶片的模具的模制表面可以具有更加简单的形式而不需要有任何间断。 Thus, the molding surface of a mold for manufacturing a blade may have a more simple form without any interruption. 这减少了当叶片在固化后要从模具被移除时叶片表面粘附于模制表面且因而被毁坏的可能性。 This reduces the possibility when the blade is removed from the mold after curing, adheres to the molding surface of the blade surface and therefore destroyed. 根据又一有利实施例,流动引导装置可以主动地从成形轮廓显现或缩回到成形轮廓。 According to a further advantageous embodiment, the flow guide means may take the initiative to appear from the contoured or contoured to retract. 流动引导装置可以被主动控制,以便根据工况,叶片可以使用或不使用从叶片的成形轮廓突出的流动引导装置来工作。 Flow directing means can be actively controlled so as to work in accordance with working conditions, the blades can be used with or without the blade from protruding contoured flow directing means.

[0024] 如上所述,流动引导装置优选地基本沿叶片的过渡区域的整个纵向尺度延伸。 [0024] As described above, the flow guide means preferably extends substantially along the entire longitudinal dimension of the transition region of the blade. 不过,流动引导装置还可以延伸到根部区域内。 However, the flow guide means may also extend into the root region.

[0025] 根据一种实施例,流动引导装置具有带一定后方边缘高度的后方边缘,并且其中在流动引导装置的至少中心纵向部分内该后方边缘高度沿纵向方向朝向尖端减小。 [0025] According to one embodiment, the flow guide means having a certain height with the rear edge of the rear edge, and wherein at least the central portion of the flow guide means longitudinally towards the rear edge of the tip to reduce the height in the longitudinal direction. 因而,获得了具有从叶片的过渡区域到翼型区域的平滑过渡的特别简单的形状,并且其中后方边缘高度和外形厚度之间的比任选地可以保持基本恒定。 Thus, to obtain a particularly simple shape having a smooth transition from the transition region into the blade airfoil region, and wherein the ratio between the height and shape of the rear edge thickness optionally can be kept substantially constant.

[0026] 根据另一实施例,流动引导装置具有带一定后方边缘高度的后方边缘,并且其中在流动引导装置的至少中心纵向部分内该后方边缘高度基本恒定。 [0026] According to the rear center edge of at least a further embodiment, the flow guide means having a certain height with the rear edge of the rear edge, and wherein the longitudinal portion of the flow guide means substantially constant height. 后方边缘高度可以从中心纵向部分向流动引导装置的纵向端部减小,以便获得向流动引导装置的纵向端部附近的成形轮廓的平滑过渡。 The height of the longitudinal ends of the rear edge of the flow guide means may be from the central longitudinal portion is reduced, so as to obtain a smooth transition to the vicinity of the flow guide means forming longitudinal ends of the profile. 后方边缘高度对应沿垂直于弦的方向在终点和成形轮廓之间的距离。 Rear edge height corresponding to a direction perpendicular to the chord distance between the end point and the shaping profile.

[0027] 根据有利实施例,流动引导装置具有后方边缘,该后方边缘具有一定后方边缘高度,并且成形轮廓具有最大厚度,其中在至少所述中心纵向部分内后方边缘高度和最大厚度之间的比位于3%至25%之间的区间内,或者位于5%至25%之间的区间内,或者位于3%至20%之间的区间内,或者位于5%至20%之间的区间内,或者甚至位于10%至20%之间的区间内。 [0027] According to an advantageous embodiment, the flow guide means having a rear edge, the rear edge of the rear edge has a certain height, and the shaping profile has a maximum thickness, wherein at least the central longitudinal portion of the rear edge ratio between the maximum height and thickness located within the range between 3-25%, or located within the range of between 5 to 25%, or located within the range of 3-20% among or between 5-20% of the interval or even located between 10 to 20% of the interval. 虽然这样的高度也提供了从成形轮廓的高度气流分离,从而导致了阻力的实质性增加,但是这样的后方边缘高度已经证明具有优异的效果。 While this provides a highly contoured height from flow separation, leading to a substantial increase in resistance, but this has proven highly rear edge has an excellent effect.

[0028] 流动引导装置的后方边缘可以向后指向叶片的后缘或者向前指向叶片的前缘。 The rear edge [0028] The flow guiding means can be directed rearwardly of the trailing edge of the blade or vane leading edge point forward. 后方边缘可以是凹的、直的或凸的。 The rear edge may be concave, straight or convex.

[0029] 根据叶片的有利实施例,叶片被设计用于工作于在过渡区域的中心纵向部分内具有15-20度的攻角的情况。 [0029] According to an advantageous embodiment of the blade, the blade is designed to work with a case in 15-20 degree angle of attack in the central longitudinal portion of the transition region.

[0030] 流动引导装置能够以不同方式来设计。 [0030] The flow guiding means can be designed in different ways. 例如,其可以被形成作为肋、三角形或稍弯曲的形状。 For example, it may be formed as ribs, triangular or slightly curved shape. 沿纵向方向,流动引导装置的形状和弦位置可以变化。 In the longitudinal direction, the shape of the flow guide means may vary the position of the chord. 根据有利实施例,流动引导装置是阻流板装置。 According to an advantageous embodiment, the flow guide means is a baffle plate arrangement.

[0031] 根据另一有利实施例,叶片还具有在叶片的过渡区域和/或根部区域处的涡流发生器。 [0031] According to another advantageous embodiment, the blade further having a blade in the transition region and / or vortex generators at the root region. 当涡流发生器与流动引导装置被优化地放置在一起时,使得特别是叶片根部区具有甚至更好的性能。 When the vortex generator and the flow guiding means are placed together optimally, so that the blade root zone in particular, have an even better performance.

附图说明 Brief Description

[0032] 在下文中参考附图中所示的实施例具体解释了本发明,附图中: [0032] In an embodiment shown in the drawings with reference to the following detailed explanation of the present invention, wherein:

[0033] 图1示出了风力涡轮机, [0033] Figure 1 shows a wind turbine,

[0034] 图2示出了具有根据本发明的流动引导装置的风力涡轮机叶片的第一实施例的示意图, [0034] FIG. 2 shows a schematic view of a first embodiment of a guiding device according to the present invention, the flow of wind turbine blades,

[0035] 图3示出了翼型外形的示意图, [0035] FIG. 3 shows a schematic view of the airfoil shape,

[0036] 图4示出了根据本发明的风力涡轮机叶片的截面; [0036] Figure 4 shows a wind turbine blade of the present invention, a cross-section;

[0037] 图5示出了具有根据本发明的流动引导装置的风力涡轮机叶片的第二实施例的示意图, [0037] FIG. 5 shows a schematic view of a guiding device according to the present invention, the flow of the wind turbine blade of the second embodiment,

[0038] 图6示出了作为距毂的径向距离的函数的、根据本发明的第一流动引导装置的后方边缘高度, [0038] Figure 6 shows, as a function of the radial distance from the hub, according to the present invention, a first flow guide means of the rear edge height,

[0039] 图7示出了作为距毂的径向距离的函数的、根据本发明的第二流动引导装置的后方边缘高度, [0039] FIG. 7 shows as a function of the radial distance from the hub, according to the present invention, the second flow guide means of the rear edge height,

[0040] 图8示出了用于根据本发明的流动引导装置的第一后方边缘形状, [0040] FIG. 8 shows a first rear edge shape for directing the flow of the apparatus according to the invention,

[0041] 图9示出了用于根据本发明的流动引导装置的第二后方边缘形状, [0041] FIG. 9 shows a second form for the rear edge of the flow guide means according to the present invention,

[0042] 图10示出了用于根据本发明的流动引导装置的第三后方边缘形状, [0042] FIG. 10 shows a third apparatus for guiding the rear edge shape of the flow according to the present invention,

[0043] 图11示出了作为入射气流的攻角的函数的升力系数的图示,以及 [0043] FIG. 11 shows, as an illustration of the incident airflow lift coefficient as a function of the angle of attack, as well as

[0044] 图12示出了作为入射气流的攻角的函数的升力-阻力比的图示。 [0044] FIG. 12 shows, as a function of angle of attack incident airflow lift - drag ratio. FIG. 具体实施方式 DETAILED DESCRIPTION

[0045] 图1示出了根据所谓的“Danish概念”的常规现代逆风风力涡轮机,其具有塔4、机舱6和具有基本水平转子轴的转子。 [0045] Figure 1 shows a so-called "Danish concept" conventional modern upwind wind turbine having a tower 4, nacelle 6 and a rotor having a substantially horizontal rotor shaft. 转子包括毂8和从毂8径向延伸的三个叶片10,每个叶片10均具有最靠近毂的叶片根部16和最远离毂8的叶片尖端14。 The rotor includes a hub 8 and the blade root 16 radially from the hub 8 extend three blades 10 of each blade 10 have the closest and farthest from the hub of the hub 8 of the blade tip 14.

[0046] 图3示出了使用各种参数描述的风力涡轮机的典型叶片的翼型外形50的示意图,所述参数通常用于限定翼型的几何形状。 [0046] FIG. 3 shows a schematic view of an airfoil shape is described using various parameters of a typical wind turbine blade 50, the parameter generally used to define the geometry of the airfoil. 翼型外形50具有压力侧52和吸力侧54,在使用期间,即在转子旋转期间,所述压力侧52和所述吸力侧54通常分别面向迎风侧和背风侧。 Airfoil shape 50 has a pressure side 52 and suction side 54, during use, ie during rotation of the rotor, the pressure side of the suction side 52 and 54, respectively, for usually the windward side and leeward side. 翼型50具有弦60,该弦60具有在叶片的前缘56和后缘58之间延伸的弦长C。 Airfoil 50 has a chord 60, the chord between the blade 60 has a leading edge 56 and a trailing edge 58 extending chord C. 翼型50具有厚度t,该厚度t被定义为压力侧52和吸力侧54之间的距离。 Airfoil 50 has a thickness t, the thickness t is defined as the distance the pressure side 52 and suction side 54 between. 翼型的厚度t沿弦60变化。 Airfoil thickness t 60 along the chord changes. 通过拱弧线62来得到距对称外形的偏移,该拱弧线62是穿过翼型外形50的中线。 By arch arc 62 to get away from the symmetrical shape of the offset, the arch 62 is an arc shape across the center line 50 of the airfoil. 可以通过从前缘56向后缘58画内切圆来找到该中线。 Through from the leading edge 56 toward the trailing edge 58 to locate the painting inscribed circle centerline. 中线遵循这些内切圆的中心,并且距弦60的偏移或距离被称作拱度f。 Middle follow these inscribed circle in the center and away from the strings 60 of the offset or distance is called camber f. 可以通过使用所谓的上拱度和下拱度的参数来定义不对称性,所述上拱度和所述下拱度被定义为分别从弦60到吸力侧54和压力侧52的距离。 Asymmetry can be defined through the use of so-called camber and camber parameters, the camber of the lower crown and is defined as the distance from the chord 60 respectively to the suction side 54 and pressure side 52.

[0047] 图2示出了根据本发明的风力涡轮机叶片10的第一实施例的示意图。 [0047] FIG. 2 shows a schematic view of a first embodiment according to the present invention, a wind turbine blade 10. 风力涡轮机10具有常规风力涡轮机叶片的形状并且包括最靠近毂的根部区域30、最远离毂的成形或翼型区域34以及在根部区域30和翼型区域34之间的过渡区域32。 Wind turbine 10 has the shape of a conventional wind turbine blade and comprises a root region 30 closest to the hub, or farthest from the hub of the airfoil forming region 34 and a transition region between the root region 30 and the region 34 of the airfoil 32. 叶片10包括当叶片被安装在毂上时面向叶片10的旋转方向的前缘18以及面向前缘18的相反方向的后缘20。 When the blade 10 includes a blade is mounted on the hub 10 while facing the direction of rotation of the blade leading edge 18 and a trailing edge facing the opposite direction of the leading edge 18 20.

[0048] 关于产生升力,翼型区域34 (也被称为成形区域)具有理论上或几乎理论上的叶片形状,而由于结构性考虑的原因,根部区域30具有基本圆形或椭圆形截面,这例如使得更容易且更安全地将叶片10安装于毂。 [0048] generating lift on the airfoil region 34 (also referred to as the forming region) having theoretical or nearly theoretical blade shape, but because of structural considerations, the root region 30 having a substantially circular or oval cross-section, This example makes it easier and safer to the blade 10 is mounted on the hub. 根部区域30的直径(或弦)通常沿整个根部区30是恒定的。 Diameter (or chord) of the root region 30 generally along the entire root area 30 is constant. 过渡区域32具有从根部区域30的圆形或椭圆形形状40向翼型区域34的翼型外形50逐渐变化的过渡外形42。 The transition region from the base region 32 having a circular or elliptical shape 30 of the airfoil 40 to the region 50 of the airfoil shape 34 changes gradually transition shape 42. 过渡区域32的宽度通常随着距毂的距离r的增加而基本线性增加。 The width of the transition region 32 typically increases as the distance r from the hub and substantially linear increase.

[0049] 翼型区域34具有翼型外形50,且翼型外形50具有在叶片10的前缘18和后缘20之间延伸的弦。 [0049] 34 having the airfoil shape of the airfoil region 50, and the shape of the airfoil 50 having a leading edge in the chord of the blade 10 extending between 20 and trailing edge 18. 弦的宽度随距毂的距离r的增加而减小。 Chord width with increasing distance r from the hub increases.

[0050] 应该注意到,叶片的不同段的弦通常不位于公共平面内,因为叶片会扭曲和/或弯曲(即,预弯曲),因此提供了具有相应扭曲和/或弯曲过程的弦平面,这种情况是常见的,以便补偿取决于距毂的半径的叶片的局部速度。 [0050] It is noted that the different sections of the blade chord is usually not located in a common plane, since the blade will distort and / or curved (i.e. pre-bent), thus providing the chord plane with a corresponding twisting and / or bending process, This is a common situation, in order to compensate for the local velocity of the blade pitch depending on the radius of the hub.

[0051] 根据本发明的风力涡轮机叶片10具有流动引导装置70,该装置70在叶片的过渡区域32内从叶片的压力侧突出。 [0051] The wind turbine blade 10 of the present invention has a flow directing means 70, which means 70 in a transition region 32 of the blade protruding from the blade pressure side.

[0052] 图4示出了在过渡区域32内的风力涡轮机叶片10的截面。 [0052] FIG. 4 shows a cross-section in the transition area 32 of a wind turbine blade 10. 在这个区域内的风力涡轮机包括具有过渡外形42的成形轮廓,该过渡外形42从根部区域32的圆形外形40逐级变化成翼型区域的翼型外形50。 In this region the wind turbine includes a transition contoured shape 42, the shape of the transition area 42 from the base 40 of the circular shape 32 changes stepwise into the airfoil shape of the airfoil region 50. 过渡外形是来自于非理想状态的空气动力学观点。 Transitional view aerodynamic shape is derived from non-ideal conditions. 可以看出外形具有平滑形状,流动引导装置70在叶片的压力侧上从其突出。 Shape having a smooth shape can be seen, the flow guide means 70 on the pressure side of the blade projecting therefrom. 流动引导装置70包括具有起点74和终点76的入流表面72,在起点74处入流表面72连续地延展到叶片的成形轮廓42,在终点76处流动从外形脱离。 Flow guide device 70 includes a start and end point of the inflow surface 76 74 72 74 at the beginning of the inflow surface 72 to extend continuously contoured blade 42, at the end of 76 from flowing out of shape. 如果流动引导装置被改装到叶片10的表面,则起点74也可以被看作是流动引导装置70的连接点。 If the flow guide means 10 is adapted to the surface of the blade, the starting point 74 can also be seen as a connection point of the flow guide means 70. 流动引导装置70还包括后方边缘84,该后方边缘84从终点76延伸到叶片10的成形轮廓42。 Flow directing means 70 further comprises a rear edge 84, the edge 84 extends from the rear end 76 shaped to the contour 42 of the blade 10. 流动引导装置70的入流表面72和成形轮廓42之间的距离朝向叶片的后缘增加,以便流动引导装置具有楔形形状。 The distance between the flow guide 72 and the inflow contoured surface 42 of the device 70 increases toward the trailing edge of the blade, so that the flow guide means having a wedge shape. 入流表面72可以是基本直的或者可以如图4所示是稍弯曲的。 Inflow surface 72 may be substantially straight or may be shown in Figure 4 is slightly curved.

[0053] 入流表面72被成形为,针对过渡区域32的至少中心纵向部分71中的各横向截面,在终点76处入流表面72的终点切线80在交叉点82处相交于成形轮廓42,在该交叉点82处成形轮廓42具有与成形轮廓相切的外形切线78。 [0053] The inflow surface 72 is shaped, at least for the transition region 32 of the longitudinal center portion 71 of each transverse cross-section, at the end of the end 76 of the tangential inflow surface 72 at the intersection 82 80 intersecting contoured 42, in the 82 intersection 42 has a contoured shape and contoured tangent tangent 78. 终点切线80和外形切线78形成彼此间的交叉角度a。 End tangents 80 and 78 form a cross shape tangent angle between them a. 应该注意到,终点切线和外形切线形成多于一个角。 It should be noted, the end tangents and shape tangent form more than a corner. 从下述具体描述中可以显而易见,角度a是在终点切线的外部和外形切线的朝向叶片的后缘延伸的部分之间的角。 From the following detailed description may be apparent, the angle of a tangent at the end of the outer shape and the tangent of the corner portion toward the trailing edge of the blade extending between. 换言之,角度a位于叶片外形外部最靠近叶片的后缘的象限内。 In other words, the angle of a trailing edge of the blade is located in the outer shape of the quadrant closest to the blade. 两条切线78、80形成锐角和钝角(除非它们彼此垂直)。 Two tangents 78, 80 forms an acute angle and an obtuse angle (unless they are perpendicular to each other). 因此,从说明书中显而易见到这是锐角,是至少45度。 Thus, apparent from the description that this is an acute angle of at least 45 degrees.

[0054] 此外,另一设计参数可以用于流动引导装置70的设计,并且具体地是,入流表面72的形状,即第二角度Θ,其是流动引导装置70的入流表面72的中线86与成形轮廓42的弦44之间的角度。 [0054] In addition, other design parameters may be used in the design of the flow guide means 70, and specifically, the shape of the inflow surface 72, i.e., the second angle Θ, which is a flow inflow surface 70 of the guide means 72 and the center line 86 shaped contour angle between chord 44 42.

[0055] 入流引导装置70用于阻碍在外形的压力侧上的流动。 [0055] The inflow guide device 70 is used to block in the shape of the pressure side of the flow. 这种阻碍导致了,由于流动从表面脱离,在流动引导装置70之后,即在流动引导装置70和风力涡轮机叶片的后缘之间具有更大压力。 This obstruction leads, since the flow detachment from the surface, after the flow directing means 70, i.e. the pressure in the flow between the guide 70 and having a larger wind turbine blade trailing edge devices. 在流动引导装置70之后,即在流动引导装置70和风力涡轮机叶片的后缘之间,产生气流分离。 After the flow directing means 70, i.e. between the flow guide 70 and the trailing edge of a wind turbine blade means for generating flow separation.

[0056] 当角度a是至少45度时,实验已经证明相比于具有简单流动引导装置的现有技术叶片,过渡区域32的截面的升力-阻力比能够显著增加。 [0056] When the angle a is at least 45 degrees, experiments have proved that, compared with the prior art in a simple flow guide vane means, the lift section of the transition region 32 - than can significantly increase the resistance. 这是不希望的,因为由于来自流动引导装置的气流具有更大的“释放角”,分离度且因而外形上引起的阻力会显著增加。 This is undesirable because the airflow due from the flow guide means having a greater "release angle", separation and thus resistance appearance will cause a significant increase. 实验已经证明大于60度且高达90度的更大角度对于升力-阻力比提供了进一步的改善。 Experiments have shown that more than 60 degrees and an angle up to 90 degrees for a greater lift - drag ratio provides a further improvement.

[0057] 在第一实施例中,在图2和图7中可见,流动引导装置的后方边缘84的高度h沿纵向方向(或距毂的径向方向)朝向叶片的尖端r减小。 [0057] In the first embodiment, in FIG. 2 and FIG. 7 shows, the rear edge of the flow guide means of the height h 84 of the longitudinal direction (or from the hub in a radial direction) decreases toward the blade tip r. 后方边缘84的高度被示作是距离毂的径向距离r的函数,如图7所示。 The height of the rear edge 84 is shown as a function of the radial distance r from the hub, as shown in Fig. 在流动引导装置70最靠近毂的纵向端部处,流动引导装置70被倒圆角或呈锥形以便获得向叶片的成形轮廓的平滑过渡。 At the longitudinal ends of the flow guide means 70 closest to the hub, the flow guide means 70 is rounded or tapered so as to obtain a smooth transition to the contoured blades. 后方边缘高度h对应沿与弦垂直的方向在流动引导装置的终点与成形轮廓之间的距离。 Rear edge height h along a chord corresponding to a direction perpendicular to the end of the flow guide means and forming distance between the profiles.

[0058] 图5示出了根据本发明的叶片110的第二实施例,其中类似附图标记指代图2所示第一实施例中的类似部件。 [0058] FIG. 5 shows a second embodiment of the present invention, the blades 110, which is similar to the first embodiment of the member shown in Figure 2 like reference numerals refer to FIG. 因此,仅描述两种实施例间的区别。 Therefore, only the differences between the two cases of embodiment. 第二实施例的不同之处在于流动引导装置170的后方边缘184的高度至少在中心部分171内沿叶片的纵向方向基本恒定。 It differs from the second embodiment in that the flow guide means 170 of the rear edge of the height of at least 184 in the central portion 171 along the longitudinal direction of the blade is substantially constant. 这也在图6中被示出。 This is also shown in Figure 6, it is shown. 如图6所示,流动引导装置170在流动引导装置170的纵向端部附近能够被倒圆角或呈锥形以便获得向叶片的成形轮廓的平滑过渡。 As shown in Figure 6, the flow guide means 170 can be rounded or near tapered shaped contour so as to obtain a smooth transition to the blade longitudinal end portion of the guide means 170 in the flow.

[0059] 流动引导装置70、170的后方边缘84、184的形状可以具有各种形状。 [0059] flow directing means of the shape of the rear edge 70, 170 84, 184 may have various shapes. 后方边缘可以例如如图8所示向后指向叶片的后缘,如图4所示被定向为基本横于弦,或者向前指向叶片的前缘(未示出)。 The rear edge 8 may, for example as shown in FIG rearwardly directed rear edge of the blade, as shown in Figure 4 is oriented substantially transverse to the string or the leading edge of the blade pointing forward (not shown). 后方边缘可以如图8所示是直的,如图9所示是凹的,或者如图10所示是凸的。 The rear edge may be straight as shown in FIG. 8, shown in Figure 9 is concave, or convex as shown in Fig.

[0060] 根据本发明的流动引导装置70、170必须被设计成使得针对流动引导装置70、170的中心部分71、171内的每个横向截面而言角度a是至少45度。 [0060] According to the present invention, the flow guide means 70, 170 must be designed such that the center of the flow directing means 70, 170 for each transverse section in terms of the angle of a portion of at least 71,171 within 45 degrees. 此外,流动引导装置70、170被设置在某一位置,以便当叶片10、110被入射气流冲击时,在流动引导装置70、170和叶片10、110的后缘20、120之间的点处沿流动引导装置70、170的至少中心纵向部分71、171从叶片的压力侧产生气流分离。 In addition, flow guide means 70, 170 is provided at a position so that when an incident airflow blade 10,110 is the impact point between the flow guide means 70, 170 and 10, 110 of the trailing edge of the blade 20, 120 along the flow guide means at least 70,170 of 71,171 central longitudinal section from the pressure side of the blade to produce flow separation. 在流动引导装置70、170的纵向端部附近,设计多样性可以落在这些设计参数的范围之外。 In the longitudinal flow guide means near the end, the design diversity 70,170 may fall outside the scope of these design parameters. 优选地,流动引导装置的中心部分71、171沿流动引导装置70、170的纵向尺度的至少80%延伸。 Preferably, the center, part of the flow guide means 71,171 longitudinally along the flow directing means 70, 170 of the scale of at least 80% elongation.

[0061] 图11和图12分别示出了在变化角度a和流动引导装置的恒定后方边缘高度的情况下作为攻角AOA的函数的升力系数C1和升力-阻力比Cl/Cd的图示。 [0061] Figures 11 and 12 show the rear edge at the height of the constant changes in the angle of a flow guide means and as a function of the angle of attack of the lift coefficient C1 AOA and lift - drag ratio Cl / Cd icon. 在这些测量中已经被测试的具体外形被设计为在落入近似15至20度范围内的攻角AOA的情况下工作。 Concrete shape in these measurements have been tested are designed to fall at the approximate angle of attack AOA within a range of 15-20 degrees work. 此外,入流表面是基本直的。 In addition, the inflow surface is substantially straight.

[0062] 在图11中,第一图示210示出了a=25度情况下作为攻角AOA的函数的升力系数C1,第二图示220示出了a=65度情况下作为攻角AOA的函数的升力系数C1,并且第三图示230示出了a=85度情况下作为攻角AOA的函数的升力系数Cl。 [0062] In Figure 11, the first diagram 210 shows the case of a = 25 degrees AOA as a function of the angle of attack of the lift coefficient C1, the second diagram 220 shows the case of a = 65 degrees as the angle of attack AOA function of the lift coefficient C1, and the third diagram 230 shows a case of a = 85 degrees AOA as a function of the angle of attack of the lift coefficient Cl. 可以看出,在设计AOA的范围内升力系数显著增加。 As can be seen, a significant increase in the lift coefficient in the design AOA range. a=85度情况下的升力系数比a=25度情况下的升力系数例如大10-12%。 a = lift coefficient of 85 degrees in case of a = lift coefficient than 25 degrees, for example, the case of large 10-12%.

[0063] 在图12中,第一图示240示出了a=25度的情况下作为攻角AOA的函数的升力-阻力比Cl/Cd,第二图示250示出了a=65度的情况下作为攻角AOA的函数的升力-阻力比C1/cd,并且第三图示260示出了a=85度的情况下作为攻角AOA的函数的升力_阻力比Cl/Cd。 [0063] In Figure 12, the first diagram 240 shows a case where a = 25 degrees of lift as a function of the angle of attack of the AOA - drag ratio Cl / Cd, the second diagram 250 shows a = 65 degrees The case of lift as a function of the angle of attack of the AOA - at drag ratio C1 / cd, and the third diagram 260 shows a case where a = 85 degrees AOA as a function of the angle of attack _ lift drag ratio Cl / Cd. 可以看出,在设计AOA的范围内升力-阻力比显著增加。 It can be seen in the design AOA lift range - significantly more than the resistance. a=85度情况下的升力系数比a=25度情况下的例如大近似5%。 a = lift coefficient than 85 degrees in case of a = 5%, for example approximately 25 degrees large case.

[0064] 应该注意到,第二角度Θ可以用作设计流动引导装置的补充或替代参数。 [0064] It should be noted, the second angle Θ can be used to supplement or replace the design parameters of the flow guide means. 在这种情况下,根据本发明,第二角度Θ应该是至少25度。 In this case, according to the present invention, the second angle Θ should be at least 25 degrees. 图11和图12示出的图示分别对应于 11 and FIG. 12 shows an illustration corresponding to FIG.

0、45和60度的第二角度Θ。 The second angle 0,45 and 60 degrees Θ. 因为入流表面是直的,所以第二角度Θ也对应于终点切线和弦之间的角度。 Because the inflow surface is straight, the second end tangent angle Θ angle between chords also corresponds.

[0065] 已经参考优选实施例描述了本发明。 [0065] have been described with reference to a preferred embodiment of the present invention. 不过本发明的范围不限于所示实施例,并且在不偏离本发明范围的情况下能够实现替代方式和改型。 But the scope of the present invention is not limited to the illustrated embodiment, and without departing from the scope of the present invention can realize alternative ways and variations.

[0066] 附图标记列表 [0066] List of reference numerals

[0067] 2风力涡轮机 [0067] 2 wind turbines

[0068] 4 塔 [0068] 4 column

[0069] 6 机舱 [0069] 6 cabin

[0070] 8 毂 [0070] 8 Hub

[0071] 10 叶片 [0071] 10 leaves

[0072] 14叶片尖端 [0072] 14 blade tip

[0073] 16叶片根部 [0073] 16 of the blade root

[0074] 18 前缘 [0074] 18 leading edge

[0075] 20 后缘 [0075] 20 the trailing edge

[0076] 30根部区域 [0076] 30 root area

[0077] 32过渡区域 [0077] 32 transition area

[0078] 34翼型区域 [0078] 34 airfoil region

[0079] 40,42,50成形轮廓/外形 [0079] 40,42,50 shaping profile / shape

[0080] 44 弦 [0080] 44 chord

[0081] 52压力侧[0082] 54吸力侧 [0081] 52 on the pressure side [0082] 54 suction side

[0083] 56 前缘 [0083] 56 leading edge

[0084] 58 后缘 [0084] 58 the trailing edge

[0085] 60 弦 [0085] 60 chord

[0086] 62拱弧线/中线 [0086] 62 Arch Arc / midline

[0087] 70流动引导装置/阻流板 [0087] flow guiding means 70 / spoiler

[0088] 71中心纵向部分 [0088] 71 central longitudinal section

[0089] 72入流表面 [0089] 72 inflow surface

[0090] 74 起点 [0090] 74 start

[0091] 76 终点 [0091] 76 end

[0092] 78外形切线 [0092] 78 appearance tangent

[0093] 80终点切线 [0093] 80 end tangent

[0094] 82交叉点 [0094] 82 intersection

[0095] 84流动引导装置的后方边缘 [0095] 84 the rear edge of the flow guide means

[0096] 86入流表面的中线 [0096] 86 inflow neutral surface

[0097] 210-260 图示 [0097] 210-260 icon

[0098] a在外形切线和终点切线之间的角度 [0098] a tangent of the angle between the shape and the end tangents

[0099] c 弦长 [0099] c chord

[0100] C1升力系数 [0100] C1 lift coefficient

[0101] Cl/Cd升力-阻力比 [0101] Cl / Cd lift - drag ratio

[0102] dt最大厚度的位置 [0102] position of maximum thickness dt

[0103]七最大拱度的位置 [0103] position of maximum camber seven

[0104] f 拱度 [0104] f Camber

[0105] t 厚度 [0105] t Thickness

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
CN101321949A5 Dec 200610 Dec 2008Lm玻璃纤维制品有限公司Blade for a wind turbine rotor
EP1845258A110 Apr 200617 Oct 2007Siemens AktiengesellschaftWind turbine rotor blade
US2004/0013512 Title not available
WO2007/118581A1 Title not available
WO2008/113350A3 Title not available
Classifications
International ClassificationF03D1/06
Cooperative ClassificationY02E10/721, F05B2250/712, F05B2240/301, F05B2200/263, F03D1/0641, F03D1/0675
Legal Events
DateCodeEventDescription
16 Nov 2011C06Publication
8 Feb 2012C10Request of examination as to substance