CN101903646A - 主动流动控制装置和用于影响风力涡轮机叶片的流体边界层的方法 - Google Patents

主动流动控制装置和用于影响风力涡轮机叶片的流体边界层的方法 Download PDF

Info

Publication number
CN101903646A
CN101903646A CN2008801221061A CN200880122106A CN101903646A CN 101903646 A CN101903646 A CN 101903646A CN 2008801221061 A CN2008801221061 A CN 2008801221061A CN 200880122106 A CN200880122106 A CN 200880122106A CN 101903646 A CN101903646 A CN 101903646A
Authority
CN
China
Prior art keywords
flow control
control apparatus
effect device
flowing effect
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2008801221061A
Other languages
English (en)
Other versions
CN101903646B (zh
Inventor
伊玛德·阿卜杜拉
克里斯蒂安·巴斯施密特·戈斯克
托马斯·S·比耶特普·尼尔森
尼尔斯·克里斯蒂安·M·尼尔森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vestas Wind Systems AS
Original Assignee
Vestas Wind Systems AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vestas Wind Systems AS filed Critical Vestas Wind Systems AS
Publication of CN101903646A publication Critical patent/CN101903646A/zh
Application granted granted Critical
Publication of CN101903646B publication Critical patent/CN101903646B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0244Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
    • F03D7/0252Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking with aerodynamic drag devices on the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0256Stall control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • F05B2240/122Vortex generators, turbulators, or the like, for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/306Surface measures
    • F05B2240/3062Vortex generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/32Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor with roughened surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/90Braking
    • F05B2260/901Braking using aerodynamic forces, i.e. lift or drag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/20Purpose of the control system to optimise the performance of a machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/60Control system actuates through
    • F05B2270/606Control system actuates through mechanical actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

公开一种主动流动控制装置(10)和用于影响风力涡轮机叶片(100)的流体边界层的方法,以及包括多个该装置的独立模块(40)和包括该装置和/或模块的风力涡轮机叶片。一个或更多个流动效应器(14)在旋转平面内可以摆动运动(A)来回旋转。该流动效应器(14)还可在横向于旋转平面的方向上在缩回位置与伸展位置之间移动。

Description

主动流动控制装置和用于影响风力涡轮机叶片的流体边界层的方法
技术领域
本发明构思的技术领域是对风力涡轮机叶片的流体边界层动力学特性的主动控制。
更具体而言,本发明构思涉及主动流动控制装置和用于影响风力涡轮机叶片的流体边界层的方法。该发明构思还涉及包括多个该主动流动控制装置的独立模块,以及涉及包括多个该主动装置或多个该模块的风力涡轮机叶片。
背景技术
已知通过利用涡轮机叶片上的涡流发生器来改善风力涡轮机的性能。涡流发生器用于使较快的流动空气从自由空气流拉入边界层,以通过提供强紊流边界层来避免流动分离和过早失速。
当流动在表面上从前缘流到后缘时被称作“附着”(参见图8a)。然而,当迎角超过某一临界角时,流动达不到后缘,而在分离线处离开叶片表面(图8a和8b)。超过该线后,流动方向反向,即,其从后缘回流至分离线。失速急剧降低叶片的升力,因此急剧降低由风力涡轮机产生的功率,并由此急剧降低风力涡轮机的经济性。
在最简单的形式中,涡流发生器是许多小翅片,这些小翅片与叶片的前缘相邻布置且从叶片垂直向外延伸,同时与风穿过叶片的流动方向形成一角度,由此产生涡流。
通过相对于流动方向以交替的正反角布置翅片,而产生沿叶片外形的反转涡流。结果,向叶片的边界层供应更多的能量,由此增大叶片外形周围的气流离开叶片表面并使叶片失速之处的风速。
然而,使用涡流发生器还导致叶片的气动阻力增大。
WO 99/50141公开了一种流动效应器,该流动效应器可展开到翼面中并可从翼面缩回,以影响翼上的流体边界层。流动效应器显示为多个成对的相对倾斜的涡流发生器,以产生反转涡流。该文献涉及军用航空器的流动控制。
总体目的是加强风力涡轮机叶片的流动表面处的流体边界动力学特性的控制。以下将进一步描述该目的和其它目的。
发明内容
根据第一方面,提供一种与风力涡轮机发电机叶片一起使用的流动控制装置,所述装置包括用于影响所述叶片处的流体边界层的一个或更多个流动效应器,其中,所述一个或更多个流动效应器可在旋转平面中以摆动运动来回旋转。所述一个或更多个流动效应器的可旋转的来回摆动运动由于通过所述摆动的流动效应器形成的有效涡流而用于在风力涡轮机操作期间在叶片上流体的高效附着。
所述一个或更多个流动效应器还可沿横向于所述旋转平面的方向在缩回位置与伸展位置之间移动。因此,当不需要所述一个或更多个流动效应器作用时,它们可缩回并与所述叶片的表面齐平。当需要所述流动效应器作用时,它们可从所述叶片的表面延伸,并且影响所述叶片上的流动,并由此改善流动的附着。
在它们的完全或部分伸展位置中,所述一个或更多个流动效应器将影响流体边界层。在它们的缩回位置中,所述一个或更多个流动效应器优选至少与所述风力涡轮机叶片齐平,即,在它们的最大缩回位置中,它们优选不突出到所述流体边界层中。
所述流动控制装置的所述一个或更多个流动效应器可包括一个或更多个涡流发生器。在优选实施方式中,各装置包括一对布置成产生反转涡流的涡流发生器。所述成对的涡流发生器通常相对倾斜而形成V形结构,以朝进来的空气流打开或关闭。产生的这些涡流可沿叶片外形相对于彼此反转,并向所述叶片的表面处的边界层供应能量,由此提高气流离开所述表面和所述叶片失速之处的风速。
在各流动控制装置中还可以仅具有一个单一的涡流发生器,并且还使单一涡流流动控制装置成对布置,以产生反转涡流。
主动流动效应器可在旋转平面中以摆动运动来回旋转以及可沿横向于所述旋转平面的方向伸展/缩回,这种设置导致主动流动控制装置具有两个自由度。在优选实施方式中,流动效应器基本垂直于所述旋转平面延伸。
在不对所要求保护的范围有任何限制的情况下,在下列说明中,将伸展/缩回运动称作“竖直运动”,同时将来回旋转称作“水平摆动”。
本发明构思提出可以以各种频率和幅度控制竖直伸展以及控制水平摆动的频率和幅度。由此,可实现相交流的混合(即沿翼展方向)的较大且受控制地增加,而导致在相反压力梯度下有效抑制失速。同时,在较低迎角和/或在运输期间,可使流动效应器分别完全或部分地缩回,以降低阻力和噪声,并避免损坏流动效应器。
本发明构思提供流动效应器的水平摆动的可能性、并可以使其通过将流动引向叶片上的有关区域而产生增大的相交流混合。这还提供了不需要在叶片的整个翼展范围内设置流动控制装置的优点。
所述流动控制装置可包括壳体或框架,该壳体或框架铰接地支撑所述一个或更多个流动效应器,并且该壳体适于来回旋转,以实现所述水平摆动。
所述流动控制装置可包括第一驱动装置,该第一驱动装置用于实现所述竖直运动,即,用于使所述一个或更多个流动效应器在所述伸展位置与所述缩回位置之间移动。为了控制目的,所述第一驱动装置可布置成将所述一个或更多个流动效应器定位在所述伸展位置与所述缩回位置之间的任意选择的位置中。在所述缩回位置中,所述流动增强装置优选与叶片表面完全齐平。该第一驱动装置可优选被布置在上述壳体内。
为了进一步提高高能量空气与自由流的混合,以取代边界层空气,所述流动控制装置还可以包括用于使所述一个或更多个流动效应器产生振动的振动驱动装置。所述振动的方向可横向于所述旋转平面,并且尤其可与供所述一个或更多个流动效应器在其中伸展和缩回的方向一致。
用于产生竖直展开运动的上述第一驱动装置还可用于产生振动,借此,该振动将叠加在竖直展开运动上。
根据第二方面,提供一种流动控制模块,该流动控制模块包括支撑主体,该支撑主体适于被安装在风力涡轮机叶片中,并且支撑多个流动控制装置。所述流动控制装置在所述模块中可以以线性分布的方式布置,或者以其它合适的构造布置。
为了能够使所述模块的流动效应器进行摆动运动,这些流动效应器可由所述模块主体可旋转地支撑。
所述模块的所述流动控制装置可被驱动地互连成一组或多组,由此所述摆动运动对每组中的所有流动效应器是共同的。
根据其它方面,提供一种用于影响风力涡轮机叶片的流动表面处的流体边界层的方法,该方法包括:
控制一个或更多个流动效应器的展开/缩回度的步骤,所述一个或更多个流动效应器可展开至所述流体边界层中并可从所述流体边界层缩回,并且
当所述一个或更多个流动效应器至少部分展开至所述流体边界层中时,控制所述一个或更多个流动效应器在基本平行于所述流动表面的旋转平面中以摆动运动来回旋转的步骤。
在优选实施方式中,所述方法进一步包括还控制所述流动效应器的振动的步骤,尤其是横向于所述叶片的流动表面的振动。该振动将有效地有助于增强混合。振动频率范围将取决于各个安装和实际操作条件。然而,可行的振动频率范围可以是40-70Hz,如果检测到即刻失速风险,则该范围可临时增大到例如90-100Hz。
在利用振动的实施方式中,振动可被致动成“最终”失速防止措施,以增大混合。例如,可采用以下顺序的控制模式:
模式Ⅰ.用于低迎角,流动效应器可完全缩回(与叶片齐平),以降低阻力。
模式Ⅱ.随着迎角的增大,流动效应器逐渐展开至边界层中,以增大其混合。
模式Ⅲ.随着仰角进一步增大且叶片开始失速,流动效应器被致动(开始振动),以进一步增大混合。
流动效应器的水平摆动运动可以以模式2和/或模式Ⅲ致动。
通过利用一个或更多个传感器来优选调节这些控制模式,所述一个或更多个传感器用于检测迎角的大小或任何其它相关流动控制参数。
为了获得最有效且高效的操作,流动效应器在叶片表面上的高度优选被主动且连续地控制,以与局部边界层厚度相配,该局部边界层厚度又取决于雷诺数。该雷诺数与叶片的翼展上的雷诺数不同,也不是风速的函数。从而,可基于局部操作雷诺数在叶片的翼展上主动利用各种高度水平或展开度。沿叶片翼展可具有不同的竖直伸展度。例如,可优选在叶片根部具有较大伸展。
因此,用于主动控制展开度的一个控制参数可涉及局部边界层厚度或局部雷诺数和压力分布。
各情况下的输入控制参数取决于控制目标,该控制目标在目前情况下可能很多。可行的局部控制参数包括下列参数中的一个或更多个:
-沿叶片的翼展的数个截面上的压力分布
-流入角/迎角
-雷诺数
-边界层厚度
-局部风速测量和/或风向测量
更全局的输入参数可涉及加载:
-叶片尖端移位
-根部沿翼转矩
另外,在风力涡轮机的完全旋转期间,因风速下降到基级的情况,或者因为疾风、偏航失准、空气动力载荷不平衡等还可以上下地主动控制流动效应器。
如果测量表面上的压力,则风力涡轮机叶片可以是形成局部控制参数的一种方式。该测量本身通过使用位于风力涡轮机叶片的表面中的压力传感器来进行。该压力可被局部测量并可局部致动流动效应器。然而,流动效应器可遍布于风力涡轮机叶片的翼展上,即,从根部到尖端,并且从前缘到后缘。自然地,压力传感器也可遍布于风力涡轮机叶片的翼展上。
本发明的流动控制装置的特定应用是将一个或更多个该流动控制装置定位在风力涡轮机叶片的尖端,以修正并消除叶片翼端涡流的几何形状。
主动流动控制装置将用作:
1.虚拟小翼
2.尖端/尾流涡旋消散器
如果用作叶片尖端/尾流涡旋消散器,则主动流动控制装置修正尾流附近区域的布局,以分配增大区域上的环流并降低加载于下游涡轮机上的尾流。在大型风电场(例如离岸电场)中操作涡轮机时,这具有主要影响。如果用作虚拟小翼/尾流涡旋消散器,则主动流动控制装置将用于抑制翼端涡流引起的噪声。
如今,通过减载(降低RPM)涡轮机和较小地变桨距(pitching lessaggressive)来进行噪声调节。然而,这样做降低了涡轮机的功率输出。为了抑制该结果,主动流动控制装置可用于控制/屏蔽由叶片发出的噪声。
本发明的流动控制装置的另一个特定应用是将一个或更多个流动控制装置定位在风力涡轮机叶片的根部处,以抑制根部处的3D和失速流动。
风力涡轮机叶片沿其整个长度的空气动力学效率不同。可对叶片根部进行特定的设计考虑,以允许叶片承受其自身重量并允许叶片被安装在涡轮机上。这些设计因素对叶片的性能具有负面影响。
上述的发明的各方面具有许多优点:
1.在低速下,风力涡轮机叶片可以以光滑叶片外形(降低阻力)操作,同时在需要时流动效应器可在高风速下以被调节的方式逐渐展开。
2.低迎角下无阻力损失(与现有技术的固定涡流发生器不同)
3.低风速下无噪声损失(与现有技术的固定涡流发生器不同)
4.由于边界层处的空气混合增加,因此最大升力可能比现有技术的固定涡流发生器高。
5.由于自由度的数量增多(展开/缩回和摆动以及(可任选地)振动),因此可以以非常有效的方式主动且连续地调节对流体边界表面的影响。
6.可以在风力涡轮机叶片的尖端和/或根部的附近利用本发明的构思,以消除针对这些部位的反向流动动力学状态。
附图说明
现在将参照附图通过非限制性实施方式来描述本发明构思和其它优点。
图1是根据本发明构思的实施方式的流动控制装置的立体图。
图2是设置有布置在模块中的多个流动控制装置的风力涡轮机叶片的立体图。
图3是用于使多个流动控制装置摆动的示意的简化的驱动机构的立体图。
图4是设置有多个流动控制装置的流动控制模块的实施方式的示意性立体图。
图5是设置有流动控制模块和不同传感器的风力涡轮机叶片的立体图。
图6是图5中的流动控制模块的俯视图。
图7是安装在风力涡轮机叶片中的模块的剖视图。
图8a是风力涡轮机叶片处的流体边界层的第一状态的示意图。
图8b是图8a中标出部分的放大图。
图9是风力涡轮机叶片处的流体边界层的第二状态的示意图。
具体实施方式
图1示意性示出待被安装在风力涡轮机(未示出)的叶片100(图2)中的主动流动控制装置10的实施方式。主动流动控制装置10包括:框架或壳体12(由筒状壁和底形成);和一对翅状流动效应器14,这对流动效应器14通过枢轴16在它们的尖端处铰接地支撑在壳体12中。
流动效应器14用于控制流体边界层动力学特性,以抵消并控制空气边界层分离并以便提供叶片的流动表面的总体有益操作。流动效应器14还可用于叶片的尖端和/或根部处的特定目的。
图8a示意地示出朝风力涡轮机叶片100流动并在形成边界层BL的叶片表面102上流动的气流F。在图8a中的情形下,当在图8b中以较大比例观看时,流动F达不到叶片100的后缘101。边界层BL在分离线或过渡区域103处与叶片表面102分离。超过该区域103,流动方向在形成紊流边界层的104处反向。
图9示意地示出使用流动效应器14可如何影响边界层动力学特性,从而使分离被充分延迟,如在105处所表示的。
在所示的实施方式中,流动效应器14呈两个相对倾斜的反转涡流发生器14的形式。在风力涡轮机叶片100操作期间,涡流发生器14的侧表面产生涡流,该涡流沿叶片外形相对于彼此反转,并向叶片表面处的边界层供应能量,借此可提高气流离开该表面并且叶片失速之处的风速。更具体而言,所产生的涡流结构与来自自由流的高能量空气混合,以取代因与表面相互作用而已丧失动能的边界层流体。因此,借助对边界表面层供应能量,流动效应器可抑制失速。
壳体12被布置成通过使形成旋转轴线的主轴18旋转而以摆动运动如由箭头A所示来回旋转。当安装到叶片100时且在操作期间,壳体12和支撑在其中的流动效应器14被布置成在几何旋转平面中来回旋转。该旋转平面可与叶片表面102基本平行。下面,该运动将被称作“水平摆动”。
用于产生水平摆动(A)的驱动装置可以与装置10成一体,或者,如在图3中所示的实施方式中一样,被设置成公用驱动装置50,用于同时控制呈推拉杆机构的形式的多个流动控制装置10-1、10-2、10-3。公用平移杆52的来回线性运动(箭头D)通过连杆臂54传递到固定地连接到流动控制装置10-1、10-2和10-3的主轴18的臂56,以使流动效应器14以合适的且优选可调节的频率和幅度摆动。通过任何合适的驱动装置产生杆52的线性运动。
驱动装置20布置在壳体12内,如箭头B所示,以使涡流发生器14在一方面的展开位置与另一方面的缩回位置之间绕枢轴16以枢转运动移动。该移动在下面被称作竖直展开运动,并且横向于旋转平面引导。
在所示的实施方式中,用于竖直运动的驱动装置20呈压电线性电机20的形式,该线性电机包括:压电叠堆22,该压电叠堆22由壳体12支撑;以及滑动件24,该滑动件24可沿叠堆22线性移动到全缩回位置与全延伸或展开位置之间的任何所选的竖直位置。滑动件24的线性驱动运动通过连接杆26、28和30转换成两个流动效应器14的枢转运动(B),用于连续地调节其展开/缩回的程度。
在优选的实施方式中,为了进一步提高空气混合效果,涡流发生器14还被布置成如由图1中的箭头C所示进行振动。优选在横向(例如垂直)于旋转平面的方向上产生振动。在所述的实施方式中,还通过枢轴16处的竖直运动产生振动,借此,驱动装置20可用于双重目的,并且该振动叠加在竖直展开/缩回运动上。该振动可在不同的展开度被致动,并且应优选以合适的频率和幅度被主动控制。
如上所述,流动控制装置10适于被安装在风力涡轮机叶片100中。这当然能够通过将装置10一个接一个地安装在叶片表面102中来进行。然而,在如图中所示的一个优选实施方式中,流动控制装置10最初被组装或集成在形成独立模块40的堆叠中(图4),所述模块40被顺序地安装在叶片100中。可在制造时安装流动控制装置10,或者可在任意时间对现有叶片进行改装。
图4是具有四个流动控制装置10-1至10-4的该独立模块40的立体图,这四个流动控制装置10-1至10-4以隔开的关系线性排列。模块40包括盒状的细长支撑体42,在该细长支撑体42中,可旋转地接收多个流动控制装置10(作为非限定实施例示出四个装置)。
如图2中所示,该模块40可沿叶片100的翼展被安装在不同位置。另外,还可在叶片中布置大量单独的装置10。
在所示的实施方式中,模块40通过插塞108安装在叶片蒙皮107中。可穿过叶片外壳107设置(例如钻出)矩形槽110。这些槽110于是排列有插入的插塞108。插塞108可利用合适的热塑性或热固性材料成型。该材料优选UV稳定,且能够耐受零下温度。ABS塑料或尼龙是合适的选择。
之后,如图7中所示,将承载装置10的模块40插入(通过例如树脂/胶)插塞108中。由于钻出了槽110,因此,为了稳定性目的可能需要叶片结构的一些重新设计。
插塞108可具有一个或更多个孔或槽112,用于接收装置10的主轴18,并且还任选地用于接收通向驱动装置20的电线(未示出)。
如图3中所示,模块40的流动控制装置10-1至10-3可被驱动地互连成一组或更多组,借此,各组中的所有流动效应器进行共同的水平摆动。
图5示意地示出两类传感器,该两类传感器可用于产生用于主动控制不同运动(竖直展开、水平摆动、竖直振动)的控制输入。这些传感器包括:(i)压力计接头60,该压力计接头60用于测量迎角的幅度以及其它流动特性;以及(ii)剪切传感器62,该剪切传感器62用于检测边界层或任何其它流动传感器的状态。
所示出且描述的实施方式可在要求保护的范围内以多种方式修改。
流动效应器14可进行不同的成形或设计,例如,成形或设计为协同旋转的涡流发生器、紊流形成器等。形状可以为矩形、三角形、半圆等,枢转点可被不同地定位。
流动效应器14可以以线性运动伸展/缩回,以替代枢转运动,或者它们的结合。
各流动控制装置10可仅具有一个流动效应器14或多于两个的流动效应器14。
展开驱动装置20可被替换成其它驱动装置,例如气动、液压或电驱动装置。另选地,用于竖直展开运动的驱动力可通过连杆机构等从叶片中的另一个位置传递。
可通过与驱动装置20分开布置的振动驱动装置来有选择地产生竖直振动,驱动装置20使涡流发生器14展开和缩回。
可增加附加振动以进一步提高效果。例如,可在水平摆动运动上叠加涡流发生器14的水平振动,或者可沿使两个流动效应器14互连的杆30提供振动。

Claims (28)

1.一种与风力涡轮机发电机叶片(100)一起使用的流动控制装置(10),所述流动控制装置包括用于影响所述叶片处的流体边界层(BL)的一个或更多个流动效应器,
其中,所述一个或更多个流动效应器(14)能够在旋转平面中以摆动运动(A)来回旋转。
2.根据权利要求1所述的流动控制装置(10),其中,所述一个或更多个流动效应器(14)能够沿横向于所述旋转平面的方向在缩回位置与伸展位置之间移动。
3.根据权利要求1或2所述的流动控制装置(10),其中,所述一个或更多个流动效应器(14)包括一个或更多个涡流发生器。
4.根据权利要求3所述的流动控制装置(10),其中,所述一个或更多个涡流发生器包括布置成产生反转涡流的一对涡流发生器(14)。
5.根据前述任一项权利要求所述的流动控制装置(10),该流动控制装置还包括壳体(12),该壳体(12)铰接地支撑所述一个或更多个流动效应器(14),并且该壳体(12)适于来回旋转,以实现所述摆动运动(A)。
6.根据前述权利要求2至5中任一项所述的流动控制装置(10),该流动控制装置还包括第一驱动装置(20),该第一驱动装置用于使所述一个或更多个流动效应器(14)在所述伸展位置与所述缩回位置之间移动。
7.根据权利要求6所述的流动控制装置(10),其中,所述第一驱动装置(20)布置成将所述一个或更多个流动效应器(14)定位在所述伸展位置与所述缩回位置之间的任意的选定位置中。
8.根据前述任一项权利要求所述的流动控制装置(10),该流动控制装置还包括用于使所述流动效应器(14)产生振动(C)的振动驱动装置。
9.根据权利要求8所述的流动控制装置(10),其中,所述振动(C)的方向横向于所述旋转平面。
10.根据权利要求9所述的流动控制装置(10),其中,所述振动(C)的方向与供所述一个或更多个流动效应器(14)在其中伸展和缩回的方向一致。
11.根据权利要求8的在从属于权利要求7时所述的流动控制装置(10),其中,所述第一驱动装置(20)还用作所述振动驱动装置。
12.一种流动控制模块(40),该流动控制模块包括:
支撑主体(42),该支撑主体适于被安装在风力涡轮机叶片(100)中,以及
多个根据前述任一项权利要求所述的流动控制装置(10-1、10-2、…),所述流动控制装置由所述支撑主体(42)支撑。
13.根据权利要求12所述的流动控制模块(40),其中,该模块(40)的所述流动控制装置(10-1、10-2、…)由所述支撑主体(42)可旋转地支撑,以能够使所述流动效应器(14)进行所述摆动运动(A)。
14.根据权利要求12或13所述的流动控制模块(40),其中,该模块(40)的所述流动控制装置(10-1、10-2、…)驱动地互连成一组或更多组,借此所述摆动运动(A)对每组中的所有流动效应器(14)是共同的。
15.根据权利要求14所述的流动控制模块(40),该流动控制模块还包括第二驱动装置(50),该第二驱动装置与所述多个流动控制装置(10-1、10-2、…)可操作地连接,以实现所述模块(40)中的所有所述流动效应器(14)的共同摆动运动(A)。
16.一种风力涡轮机叶片(100),该风力涡轮机叶片包括多个根据权利要求1至11中任一项所述的流动控制装置(10)。
17.根据权利要求16所述的风力涡轮机叶片(100),其中,所述多个流动控制装置(10)中的一个或更多个定位在所述叶片(100)的根部。
18.根据权利要求16或17所述的风力涡轮机叶片(100),其中,所述多个流动控制装置(10)中的一个或更多个定位在所述叶片(100)的尖端。
19.根据权利要求16至18中任一项所述的风力涡轮机叶片(100),其中,所述流动控制装置(10)安装在所述叶片(100)的流动表面(102)中,其中,所述旋转平面与所述流动表面(102)基本平行。
20.一种风力涡轮机叶片(100),该风力涡轮机叶片包括多个根据权利要求12至15中任一项所述的流动控制模块(40)。
21.根据权利要求20中所述的风力涡轮机叶片(100),其中,所述模块(40)被接收于设置在所述叶片的叶片表面(102)中的开(110)中。
22.一种用于影响风力涡轮机叶片(100)的流动表面(102)处的流体边界层的方法,该方法包括:
控制一个或更多个流动效应器(14)的展开/缩回度(B)的步骤,所述一个或更多个流动效应器(14)能够展开至所述流体边界层中以及能够从所述流体边界层缩回,以及
当所述一个或更多个流动效应器(14)至少部分展开至所述流体边界层中时,控制所述一个或更多个流动效应器(14)在基本平行于所述流动表面(102)的旋转平面中以摆动运动(A)来回旋转的步骤。
23.根据权利要求22所述的方法,该方法还包括控制所述流动效应器(14)的振动(C)的步骤。
24.根据权利要求23所述的方法,其中,所述振动(C)的方向横向于所述流动表面(102)。
25.根据权利要求22所述的方法,其中,所述控制展开/缩回度(B)的步骤包括检测下列参数中的一个或更多个参数作为控制输入参数的步骤:迎角、流速、压力分布和雷诺数。
26.根据权利要求22所述的方法,其中,所述控制展开/缩回度(B)的步骤包括检测所述流体边界层的厚度作为控制输入参数的步骤。
27.根据权利要求22所述的方法,其中,所述控制摆动运动(A)的步骤包括检测下列参数中的一个或更多个参数作为控制输入参数的步骤:迎角、流速、压力分布和雷诺数。
28.根据权利要求22所述的方法,其中,所述控制所述流动效应器(14)的振动(C)的步骤包括检测下列参数中的一个或更多个参数作为控制输入参数的步骤:迎角、流速、压力分布和雷诺数。
CN2008801221061A 2007-12-21 2008-12-19 主动流动控制装置和用于影响风力涡轮机叶片的流体边界层的方法 Expired - Fee Related CN101903646B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA200701845 2007-12-21
DKPA200701845 2007-12-21
PCT/EP2008/010938 WO2009080316A2 (en) 2007-12-21 2008-12-19 Active flow control device and method for affecting a fluid boundary layer of a wind turbine blade

Publications (2)

Publication Number Publication Date
CN101903646A true CN101903646A (zh) 2010-12-01
CN101903646B CN101903646B (zh) 2012-09-05

Family

ID=40801603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801221061A Expired - Fee Related CN101903646B (zh) 2007-12-21 2008-12-19 主动流动控制装置和用于影响风力涡轮机叶片的流体边界层的方法

Country Status (5)

Country Link
US (1) US20110110777A1 (zh)
EP (1) EP2235366B1 (zh)
CN (1) CN101903646B (zh)
AT (1) ATE525569T1 (zh)
WO (1) WO2009080316A2 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102536632A (zh) * 2010-12-17 2012-07-04 维斯塔斯风力系统有限公司 风轮机叶片和制造具有涡流发生器的风轮机叶片的方法
CN102562461A (zh) * 2010-12-21 2012-07-11 通用电气公司 操纵横跨风力涡轮机转子叶片的空气的边界层的主动流动控制系统和方法
CN102650262A (zh) * 2012-04-24 2012-08-29 李�杰 风叶失速可控制的垂直轴风力发电机
CN102953926A (zh) * 2011-08-25 2013-03-06 通用电气公司 转子叶片组件以及用于调整转子叶片负载能力的方法
CN105822511A (zh) * 2016-05-16 2016-08-03 宜春学院 一种安装涡流发生器或类似流动控制装置的方法和装置
CN107762732A (zh) * 2017-10-25 2018-03-06 南京航空航天大学 一种用于大型风力机柔性叶片气动性能改善的装置
CN111348062A (zh) * 2020-03-21 2020-06-30 东莞理工学院 流体中高速移动物体降低阻力结构
CN112519901A (zh) * 2019-09-19 2021-03-19 陈贺章 一种用于降低表面阻力系数的装置
CN113090442A (zh) * 2019-12-23 2021-07-09 江苏金风科技有限公司 可调节翼叶片、其控制方法、控制装置和风力发电机组
CN113232837A (zh) * 2021-05-27 2021-08-10 南京航空航天大学 一种用于主动控制的动态涡流发生器
CN114852316A (zh) * 2022-07-07 2022-08-05 南京航空航天大学 一种感知-驱动一体化智能动态涡流发生器

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847696A1 (de) * 2006-04-21 2007-10-24 Siemens Aktiengesellschaft Bauteil für eine gestufte Verbrennung in einer Gasturbine und entsprechende Gasturbine.
US8321062B2 (en) * 2009-11-05 2012-11-27 General Electric Company Systems and method for operating a wind turbine having active flow control
US8876064B2 (en) 2009-12-21 2014-11-04 Ramot At Tel-Aviv University Ltd. Oscillatory vorticity generator and applications thereof
US8829706B1 (en) * 2010-06-21 2014-09-09 Johann Quincy Sammy Adaptive control ducted compound wind turbine
US8038396B2 (en) * 2010-06-22 2011-10-18 General Electric Company Vortex generator assembly for use with a wind turbine rotor blade and method for assembling a wind turbine rotor blade
CN101865081B (zh) * 2010-07-01 2012-02-29 北京大学 一种利用前缘舵片调节旋转叶片输出功率的装置及方法
EP2444658B1 (en) * 2010-10-21 2016-10-19 Siemens Aktiengesellschaft Method to retrofit a blade of a wind turbine
US8167554B2 (en) * 2011-01-28 2012-05-01 General Electric Corporation Actuatable surface features for wind turbine rotor blades
DK177421B1 (en) 2011-04-29 2013-04-22 Envision Energy Denmark Aps A Wind Turbine and Partial Pitch Wind Turbine Blade
CN103974878B (zh) * 2011-07-22 2019-07-30 Lm Wp 专利控股有限公司 用于翼型的涡流发生器装置
EP2548800A1 (en) * 2011-07-22 2013-01-23 LM Wind Power A/S Method for retrofitting vortex generators on a wind turbine blade
US9458825B2 (en) 2013-03-15 2016-10-04 Frontier Wind, Llc Actuation mechanisms for load management devices on aerodynamic blades
DE102013204879A1 (de) * 2013-03-20 2014-09-25 Senvion Se Rotorblatt einer Windenergieanlage, Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage
KR101447874B1 (ko) * 2013-05-24 2014-10-07 삼성중공업 주식회사 와류 발생 조립체 및 이를 포함하는 풍력 발전기용 블레이드
DE102013210733B4 (de) * 2013-06-10 2021-03-25 Senvion Gmbh Rotorblatt und Vortexgenerator
US9309903B2 (en) * 2013-09-30 2016-04-12 The Boeing Company Vortex generators
EP3055556A1 (en) * 2013-10-09 2016-08-17 Siemens Aktiengesellschaft Hinged vortex generator for excess wind load reduction on wind turbine
US9523279B2 (en) 2013-11-12 2016-12-20 General Electric Company Rotor blade fence for a wind turbine
KR101559014B1 (ko) 2014-01-08 2015-10-08 두산중공업 주식회사 풍력발전장치의 블레이드, 이를 포함하는 풍력발전장치, 블레이드의 공력특성향상 방법 및 제어방법
WO2015132882A1 (ja) * 2014-03-04 2015-09-11 中国電力株式会社 風力発電装置
US9592920B2 (en) * 2014-04-25 2017-03-14 The Boeing Company Boundary layer flow sensor
US10385826B2 (en) * 2014-09-12 2019-08-20 Ge Infrastructure Technology, Llc Wind turbine air deflector system control
ES2750683T3 (es) * 2015-12-01 2020-03-26 Airbus Operations Gmbh Dispositivo generador de torbellinos para un avión
CN109996956B (zh) 2016-08-30 2021-12-28 西门子歌美飒可再生能源公司 用于风力涡轮机转子叶片的流控制装置
EP3553306B1 (de) * 2018-04-11 2022-08-10 Nordex Energy SE & Co. KG Windenergieanlagenrotorblatt mit einem vortex-generator
DE102018127804A1 (de) * 2018-11-07 2020-05-07 fos4X GmbH Verbesserung bzw. Optimierung des Ertrags einer Windenergieanlage durch Detektion eines Strömungsabrisses
EP3667072A1 (en) 2018-12-13 2020-06-17 Siemens Gamesa Renewable Energy A/S Adaptable spoiler for a wind turbine blade
EP3667068A1 (en) 2018-12-13 2020-06-17 Siemens Gamesa Renewable Energy A/S Adaptable spoiler for a wind turbine blade
US11591097B2 (en) * 2019-05-20 2023-02-28 The Boeing Company Aircraft nacelles having adjustable chines
US11613345B2 (en) 2019-05-20 2023-03-28 The Boeing Company Aircraft nacelles having adjustable chines
US11535362B2 (en) 2019-05-20 2022-12-27 The Boeing Company Aircraft nacelles having adjustable chines
US11235857B2 (en) * 2019-05-20 2022-02-01 The Boeing Company Aircraft nacelles having adjustable chines
US11072416B2 (en) 2019-05-20 2021-07-27 The Boeing Company Aircraft nacelles having adjustable chines
US11873078B2 (en) 2019-05-20 2024-01-16 The Boeing Company Aircraft nacelles having adjustable chines
US20200369377A1 (en) * 2019-05-20 2020-11-26 The Boeing Company Aircraft nacelles having adjustable chines
US11745860B2 (en) 2019-05-20 2023-09-05 The Boeing Company Aircraft nacelles having adjustable chines
US11174004B2 (en) 2019-05-20 2021-11-16 The Boeing Company Aircraft nacelles having adjustable chines
EP3750800A1 (en) * 2019-06-12 2020-12-16 Airbus Operations, S.L.U. Razor vortex generator
EP3798443A1 (de) 2019-09-24 2021-03-31 Wobben Properties GmbH Windenergieanlage
EP3875752A1 (en) * 2020-03-05 2021-09-08 Siemens Gamesa Renewable Energy A/S Method and device for controlling a wind turbine to reduce noise
IT202100000296A1 (it) 2021-01-08 2022-07-08 Gen Electric Motore a turbine con paletta avente un insieme di fossette
KR102596143B1 (ko) * 2021-12-03 2023-11-01 삼성중공업 주식회사 풍력 발전기용 블레이드
WO2023138823A1 (en) * 2022-01-18 2023-07-27 Siemens Gamesa Renewable Energy A/S Control system for maintaining stall margin of a wind turbine blade with an active aerodynamic device

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1893065A (en) * 1931-04-03 1933-01-03 Zap Dev Company Aircraft and control thereof
US2622686A (en) * 1942-07-21 1952-12-23 Chevreau Rene Louis Pier Marie Wind motor
US2740596A (en) * 1953-08-19 1956-04-03 United Aircraft Corp Vortex generator
FR2235832B1 (zh) * 1973-07-05 1976-09-17 Anxionnaz Rene
US4297076A (en) * 1979-06-08 1981-10-27 Lockheed Corporation Wind turbine
US4355955A (en) * 1981-04-06 1982-10-26 The Boeing Company Wind turbine rotor speed control system
US4504192A (en) * 1983-09-15 1985-03-12 The United States Of America As Represented By The United States Department Of Energy Jet spoiler arrangement for wind turbine
US5209438A (en) * 1988-06-20 1993-05-11 Israel Wygnanski Method and apparatus for delaying the separation of flow from a solid surface
US5445346A (en) * 1990-09-27 1995-08-29 Gilbert; Raymond D. Aircraft tail surface spoilers
US5570859A (en) * 1995-01-09 1996-11-05 Quandt; Gene A. Aerodynamic braking device
US5755408A (en) * 1995-04-03 1998-05-26 Schmidt; Robert N. Fluid flow control devices
JP3638745B2 (ja) * 1997-02-07 2005-04-13 富士重工業株式会社 ロータリスポイラ付ロータブレード
US6042059A (en) * 1997-02-20 2000-03-28 Continuum Dynamics, Inc. System and method of vortex wake control using vortex leveraging
US6105904A (en) * 1998-03-30 2000-08-22 Orbital Research Inc. Deployable flow control device
NL1012949C2 (nl) * 1999-09-01 2001-03-06 Stichting Energie Blad voor een windturbine.
US6302360B1 (en) * 2000-01-10 2001-10-16 The University Of Toledo Vortex generation for control of the air flow along the surface of an airfoil
DK174261B1 (da) * 2000-09-29 2002-10-21 Bonus Energy As Anordning til brug ved regulering af luftstrømning omkring en vindmøllevinge
AU2002237648A1 (en) * 2000-10-10 2002-05-21 The Regents Of The University Of California Microfabricated translational stages for control of aerodynamic loading
US6837465B2 (en) * 2003-01-03 2005-01-04 Orbital Research Inc Flow control device and method of controlling flow
DK200300670A (da) * 2003-05-05 2004-11-06 Lm Glasfiber As Vindmölleving med opdriftsregulerende organer
US6890152B1 (en) * 2003-10-03 2005-05-10 General Electric Company Deicing device for wind turbine blades
FR2863320B1 (fr) * 2003-12-09 2007-11-16 Ocea Sa Pale d'aerogenerateur equipee de moyens deflecteurs, et aerogenerateur correspondant
US7387491B2 (en) * 2004-12-23 2008-06-17 General Electric Company Active flow modifications on wind turbine blades
US20070231151A1 (en) * 2005-10-10 2007-10-04 General Electric Company Active flow control for wind turbine blades
AU2006344292A1 (en) * 2006-06-09 2007-12-13 Vestas Wind Systems A/S A wind turbine blade and a pitch controlled wind turbine
US7748958B2 (en) * 2006-12-13 2010-07-06 The Boeing Company Vortex generators on rotor blades to delay an onset of large oscillatory pitching moments and increase maximum lift
US20130108457A1 (en) * 2011-10-28 2013-05-02 Carsten Thrue Wind turbine blade comprising a vortex-generator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102536632A (zh) * 2010-12-17 2012-07-04 维斯塔斯风力系统有限公司 风轮机叶片和制造具有涡流发生器的风轮机叶片的方法
CN102562461A (zh) * 2010-12-21 2012-07-11 通用电气公司 操纵横跨风力涡轮机转子叶片的空气的边界层的主动流动控制系统和方法
CN102562461B (zh) * 2010-12-21 2016-07-06 通用电气公司 操纵横跨风力涡轮机转子叶片的空气的边界层的主动流动控制系统和方法
CN102953926A (zh) * 2011-08-25 2013-03-06 通用电气公司 转子叶片组件以及用于调整转子叶片负载能力的方法
CN102650262A (zh) * 2012-04-24 2012-08-29 李�杰 风叶失速可控制的垂直轴风力发电机
CN105822511A (zh) * 2016-05-16 2016-08-03 宜春学院 一种安装涡流发生器或类似流动控制装置的方法和装置
CN105822511B (zh) * 2016-05-16 2018-06-19 宜春学院 一种安装涡流发生器或类似流动控制装置的方法和装置
CN107762732A (zh) * 2017-10-25 2018-03-06 南京航空航天大学 一种用于大型风力机柔性叶片气动性能改善的装置
CN112519901B (zh) * 2019-09-19 2023-04-18 陈贺章 一种用于降低表面阻力系数的装置
CN112519901A (zh) * 2019-09-19 2021-03-19 陈贺章 一种用于降低表面阻力系数的装置
CN113090442A (zh) * 2019-12-23 2021-07-09 江苏金风科技有限公司 可调节翼叶片、其控制方法、控制装置和风力发电机组
CN111348062A (zh) * 2020-03-21 2020-06-30 东莞理工学院 流体中高速移动物体降低阻力结构
CN113232837B (zh) * 2021-05-27 2022-04-08 南京航空航天大学 一种用于主动控制的动态涡流发生器
CN113232837A (zh) * 2021-05-27 2021-08-10 南京航空航天大学 一种用于主动控制的动态涡流发生器
CN114852316A (zh) * 2022-07-07 2022-08-05 南京航空航天大学 一种感知-驱动一体化智能动态涡流发生器
CN114852316B (zh) * 2022-07-07 2022-10-21 南京航空航天大学 一种感知-驱动一体化智能动态涡流发生器

Also Published As

Publication number Publication date
CN101903646B (zh) 2012-09-05
EP2235366B1 (en) 2011-09-21
ATE525569T1 (de) 2011-10-15
WO2009080316A2 (en) 2009-07-02
US20110110777A1 (en) 2011-05-12
WO2009080316A3 (en) 2010-04-29
EP2235366A2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
CN101903646B (zh) 主动流动控制装置和用于影响风力涡轮机叶片的流体边界层的方法
EP2341245B1 (en) Apparatus for increasing lift on wind turbine blade
US8240995B2 (en) Wind turbine, aerodynamic assembly for use in a wind turbine, and method for assembling thereof
EP2185810B1 (en) Transverse-axis turbine with twisted foils
US8167554B2 (en) Actuatable surface features for wind turbine rotor blades
CN101175918B (zh) 竖直轴风力涡轮机
Armstrong et al. Flow separation on a high Reynolds number, high solidity vertical axis wind turbine with straight and canted blades and canted blades with fences
KR100936076B1 (ko) 프로펠러 시스템 및 프로펠러 시스템의 작동 방법
EP1365106B1 (en) Fluid machinery
KR20120042746A (ko) 수중 동력 발생기
US7112034B2 (en) Wind turbine assembly
KR20140040713A (ko) 디퓨저 부착형 풍력 터빈
CN102312771A (zh) 具有受控制的主动流动和旋流元件的风力涡轮叶片
WO2011097024A1 (en) Wind power generation system
US11719224B2 (en) Rotor blade of a wind turbine, having a splitter plate
ES2862156T3 (es) Estructura de redireccionamiento de fluidos
Cooper Development and analysis of vertical-axis wind turbines
JP2010121518A (ja) 縦軸式マグナス型風力発電装置
Ibrahim et al. Power augmentation of Darrieus wind turbine blades using trapped vortex cavity
US20140112780A1 (en) Wind turbine and method of operating the same
Somoano et al. Bio-inspired blades with local trailing edge flexibility increase the efficiency of vertical axis wind turbines
WO2018177493A1 (en) Wind turbine including wake flow reducing structures and method of using same
JP3987960B2 (ja) 流体機械
CA2628855A1 (en) Vertical multiple blade turbine
Keisar et al. Atypical Aerodynamics of Large Chord/Radius Vertical Axis Wind Turbines

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120905

Termination date: 20121219