CN101324218B - 具有抗噪声装置的风力涡轮机 - Google Patents

具有抗噪声装置的风力涡轮机 Download PDF

Info

Publication number
CN101324218B
CN101324218B CN2008100982442A CN200810098244A CN101324218B CN 101324218 B CN101324218 B CN 101324218B CN 2008100982442 A CN2008100982442 A CN 2008100982442A CN 200810098244 A CN200810098244 A CN 200810098244A CN 101324218 B CN101324218 B CN 101324218B
Authority
CN
China
Prior art keywords
blade
arrow
wind turbine
advanced
sophisticated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008100982442A
Other languages
English (en)
Other versions
CN101324218A (zh
Inventor
阿尔瓦罗·马特桑斯希尔
路易斯米格尔·加西良鲁埃达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Gamesa Renewable Energy Innovation and Technology SL
Gamesa Eolica SA
Original Assignee
Gamesa Eolica SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamesa Eolica SA filed Critical Gamesa Eolica SA
Publication of CN101324218A publication Critical patent/CN101324218A/zh
Application granted granted Critical
Publication of CN101324218B publication Critical patent/CN101324218B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • F05B2240/122Vortex generators, turbulators, or the like, for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/306Surface measures
    • F05B2240/3062Vortex generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/10Geometry two-dimensional
    • F05B2250/18Geometry two-dimensional patterned
    • F05B2250/183Geometry two-dimensional patterned zigzag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • F05B2260/962Preventing, counteracting or reducing vibration or noise by means creating "anti-noise"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/127Vortex generators, turbulators, or the like, for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/183Two-dimensional patterned zigzag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • F05D2260/962Preventing, counteracting or reducing vibration or noise by means of "anti-noise"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/17Purpose of the control system to control boundary layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/914Device to control boundary layer

Abstract

包括至少一个叶片(11)的风力涡轮机,叶片(11)的空气动力外形具有前导边缘(13)、拖尾边缘(15)和在前导边缘(13)与拖尾边缘(15)之间的吸入侧和压力侧,叶片(11)包括放置在吸入侧的由改变边界层噪声频谱的元件(33)构成的抗噪声装置(31)。优选抗噪声装置(31)放置在两截面之间的吸入侧,所述两截面对应于从前导边缘(13)开始测量的范围在弦长度的40%-95%的弦位置。

Description

具有抗噪声装置的风力涡轮机
技术领域
本发明涉及具有抗噪声装置的风力涡轮机叶片,更具体地涉及具有用于降低分贝(A)中所产生的空气动力可听见噪声的装置的叶片。 
背景技术
在运行期间产生的噪声严重制约风力涡轮机中的功率产生。具体地,由于边界层与拖尾边缘之间的相互作用风力涡轮机叶片产生空气动力可听见噪声。 
在开始转换之后及与拖尾边缘相互作用时,风力涡轮机叶片上的湍流边界层产生噪声。边界层中湍流的各向异性、变化和长度范围影响机翼产生的噪声。 
现有几种公知的方案降低风力涡轮机叶片产生的空气动力噪声。 
其中之一是利用锯齿形的拖尾边缘。在这一方面,EP0652367具体公开了具有以锯齿形式不规则地形成的后边缘的转子叶片。EP1314885公开了具有锯齿形拖尾边缘的转子叶片,每一个叶片具有多个沿展翼方向的周期性的锯齿形缺口,锯齿的形式是相邻顶点之间的夹角在约60度以内。EP1338793公开了转子叶片,其中在叶片的拖尾边缘部分形成锯齿形缺口,锯齿的形状是三角齿、梯形齿或锯形齿。 
在WO2006/122547中公开的另一方案是利用湍流生成装置作为噪声减小装置。所述装置放置在风力涡轮机叶片的背风表面侧和在叶尖方向的风力涡轮机叶片的外截面。 
现有技术还提出利用风力涡轮机的运行控制方法减小空气动力噪声,特别是控制转子转速。在这方面,1996年Wagner等在Springer-Verlag Berlin Heidelberg出版的Wind Turbine Noise中总结了风力涡轮机产生的噪声引起的问题和一些减小噪声的方法。 
本发明提供了减小风力涡轮机产生的空气动力噪声的不同方案。 
发明内容
本发明的目标是提供一种风力涡轮机叶片,其具有允许改变边界层特性并因此减轻发出的噪声的装置。 
本发明的另一目标是提供具有可听见噪声减弱装置的风力涡轮机叶片。虽然发出的噪声中声学能量保持不变,但是产生的可听见噪声减少。 
本发明的这些和其他目标通过提供包括至少一个叶片的风力涡轮机实现,叶片的空气动力外形具有前导边缘、拖尾边缘和在前导边缘与拖尾边缘之间的吸入和压力侧,且叶片包括放置在吸入侧的由改变边界层噪声频谱的元件构成的抗噪声装置。 
如下详细所示,所述元件由于其降噪机构不易于产生湍流,该降噪机构除了相干射流结构外与WO 2006/122547的类似。湍流的引入意味着引入边界层中的随机运动,同时引入相干结构与引入边界层中的有序运动相关。 
从以下结合附图的详细说明可以理解本发明的其他特征和优点。 
附图说明
图1是根据本发明具有抗噪声装置的风力涡轮机叶片的示意性侧视图。 
图2是根据本发明抗噪声装置的单个元件的立体图。 
图3是图2所示单个元件的平面图。 
图4、5和6是根据本发明抗噪声装置的三个不同实施例的立体图。 
图7示意性地表示根据本发明抗噪声装置的单个元件产生的相干旋涡结构。 
图8是在叶片表面上相干结构的表面油可视化效果。 
具体实施方式
当气流流过叶片时,边界层形成。边界层是流场中的区域,其中速度从远离叶片的流体速度变化到自然附着在叶片表面上的不滑动状态。边界层的本质是层流或湍流。层流边界层可以看作气流平滑移动的边界层,好像平行于表面的层。层流边界层自然地发展为湍流边界层,其中有大量的随机运动。从层流到湍流的变化出现在称为转换区的区域,其中不同射流结构的演化改变了边界层的本质。第一个出现的湍流结构是湍流斑。湍流斑顺流传播,结合并形成Λ结构(也称为发夹结构)。后者的结构促进边界层中的混合,且由于在气流中引入的运动模式,后者的结构能够自维持。Λ结构出现之后,气流很快完全变为湍流,没有瞬时的有序。在湍流边界层中,真正的粘滞效果(由于粘性导致的)只出现在粘性子层中,粘性子层是靠近壁面的非常小的区域。在湍流边界层的其余部分,粘滞效应仅仅是表面上的,因为这里的粘滞效应是由于随机运动及没有粘性与剪应力能量消耗。 
发出的噪声能量等级及其频率分布很大程度上取决于湍流的长度范围和在叶片表面上由湍流运动引起的压力波动的能谱。在边界层内湍流结构的范围约为边界层的厚度,其特征长度范围和能谱分布很大程度上取决于所考虑位置的边界层逆流的变化,对于空气声学目的,所考虑位置通常是拖尾边缘。 
本发明的思想是通过使用引入相干射流结构的元件改变湍流的范围及其在频域的能量分布,元件放置在转换线位置之后,转换线是出现从层流边界层到湍流边界层的变化的位置。 
图1是具有前导边缘13和拖尾边缘15的风力涡轮机叶片11,其包括根据本发明放置在从风向17的观察点看转换线21的右侧的抗噪声装置31,在转换线出现从层流边界层到湍流边界层的变化。 
当靠近叶片的气流流过抗噪声装置时,产生与自由流对准的相干旋涡结构35(见图7),动态地改变边界层并改变其射流特性。流向对准的相干旋涡已经显示出对边界层上的速度分布及其湍流特性有重大影响,所述特性如湍流等级、湍流动能的产生等。 
在现代风力涡轮机叶片中,对于中等角度的冲击,可以认为转换线是固定在对应于从前导边缘13开始测量、范围在弦长度的40%-95%的弦位置的两截面之间。 
图1表示从根部19延伸到尖端21的抗噪声装置31。可以认为抗噪声装置31应当沿叶片11的截面放置,从叶片的根部19开始测量在其长度的5%-100%之间延伸。 
在另一实施例中,抗噪声装置31沿叶片11的截面放置,从叶片的根部19开始测量在其长度的66%-100%之间延伸。 
图2表示可以用于抗噪声装置31的单个元件33的实施例,其所在位置相对于x轴指示的气流方向和z轴指示的叶片跨度方向。 
根据图2和3,可以看出单个元件33的主体是箭头形,其放置在叶片11的吸入侧,箭头尖端41指向前导边缘13。 
在另一实施例中,单个元件33固定在叶片11的吸入侧,箭头尖端41指向拖尾边缘15。 
元件33由具有从箭头尖端41到箭头中心43的公共中心面的左上、右上、左下、右下梯形表面51、53、55、57和在所述上、下表面51、53、55、57之间延展的侧面61、63、65、67、69、71限定。 
在优选实施例中,箭头尖端41、箭头中心43和箭头左右端45、47的高度t1、t2、t3和t4分别在0-10毫米之间。 
在另一优选实施例中,箭头尖端41的高度t1小于箭头中心43的高度t2,箭头左右端45、47的高度t3、t4小于箭头中心43的高度t2并大于箭头尖端41的高度t1。 
在优选实施例中,在左上表面51的外侧75与箭头轴77之间的角θ1在5-60度之间,在右上表面53的外侧79与箭头轴77之间的角θ2在5-60度之间,在左上表面51的内侧81与箭头轴77之间的角θ3 在30-90度之间,在右上表面53的内侧83与箭头轴77之间的角θ4 在30-90度之间。 
在优选实施例中,连接左上表面51的内外侧81、75的侧面85的长度λ1在0-20厘米之间,连接右上表面53的内外侧83、79的侧 面87的长度λ2在0-20厘米之间,元件33的侧面投影的长度λ3在0-20厘米之间,元件33的正面投影的长度λ4在0-20厘米之间。 
图4表示单个放置在叶片上的多个元件33构成的抗噪声装置31,元件之间留有间隔。 
图5表示分组放置在叶片上的多个元件33构成的抗噪声装置31,各组之间留有间隔。 
图6表示并排放置在叶片上的多个元件33构成的抗噪声装置31,元件之间不留间隔。 
改变已经定义的几何尺寸,在元件33之间留出间隔,可以获得针对相干旋涡结构的不同旋涡强度和核心尺寸。元件33的几何尺寸影响所形成的细丝的射流特性,因此为了减少噪声的目的将元件33的几何尺寸调节为使用于较宽范围的风力涡轮机运行特性。在所有情况下,边界层内的速度和旋涡分布的变化预期能转移噪声能谱分布(分贝(A))。 
虽然参考优选实施例充分描述了本发明,但不应当视为本发明受具体实施例的限制。显然,在本发明的范围内可以引入修改。 

Claims (14)

1.包括至少一个叶片(11)的风力涡轮机,叶片的空气动力外形具有前导边缘(13)、拖尾边缘(15)和在前导边缘(13)与拖尾边缘(15)之间的吸入侧和压力侧,其特征在于:叶片(11)包括放置在吸入侧的由多个元件(33)构成的抗噪声装置(31),所述元件(33)主体是箭头形,所述主体由具有从箭头尖端(41)到箭头中心(43)的公共中心面的左上、右上、左下、右下梯形表面(51、53、55、57)和在所述左上、右上、左下、右下梯形表面(51、53、55、57)之间延展的侧面(61、63、65、67、69、71)限定,并形成改变边界层噪声频谱的流向对准的相干旋涡(35)。
2.根据权利要求1所述的风力涡轮机,其特征在于:所述抗噪声装置(31)放置在叶片的两个弦位置之间的吸入侧上,一个弦位置在从前导边缘(13)开始的从前导边缘(13)到拖尾边缘(15)测量的弦长度的40%处,另一个弦位置在从前导边缘(13)开始该弦长度的95%处。
3.根据权利要求2所述的风力涡轮机,其特征在于:所述抗噪声装置(31)沿叶片(11)的长度放置在从叶片的根部(19)开始的从叶片的根部(19)到其尖端测量的叶片长度的5%-100%之间。
4.根据权利要求3所述的风力涡轮机,其特征在于:所述抗噪声装置(31)沿叶片(11)的长度放置在从叶片的根部(19)开始的从叶片的根部(19)到其尖端测量的叶片长度的66%-100%之间。
5.根据权利要求1-4任一所述的风力涡轮机,其特征在于:所述抗噪声装置(31)由单个放置在叶片(11)上的多个元件(33)构成,元件之间留有间隔。
6.根据权利要求1-4任一所述的风力涡轮机,其特征在于:所述抗噪声装置(31)由分组放置在叶片(11)上的多个元件(33)构成,各组之间留有间隔。
7.根据权利要求1-4任一所述的风力涡轮机,其特征在于:所述抗噪声装置(31)由并排放置在叶片(11)上的多个元件(33)构成,元件之间不留间隔。
8.根据权利要求1所述的风力涡轮机,其特征在于:所述元件(33)放置在叶片(11)上,箭头尖端(41)指向前导边缘(13)。
9.根据权利要求1所述的风力涡轮机,其特征在于:所述元件(33)放置在叶片(11)上,箭头尖端(41)指向拖尾边缘(15)。
10.根据权利要求1所述的风力涡轮机,其特征在于:箭头尖端(41)、箭头中心(43)和箭头左右端(45、47)的高度t1、t2、t3和t4分别在0-10毫米之间。
11.根据权利要求10所述的风力涡轮机,其特征在于:箭头尖端(41)的高度t1小于箭头中心(43)的高度t2,箭头左右端(45、47)的高度t3、t4小于箭头中心(43)的高度t2并大于箭头尖端(41)的高度t1。
12.根据权利要求1所述的风力涡轮机,其特征在于:在左上表面(51)的外侧(75)与箭头轴(77)之间的角θ1在5-60度之间,在右上表面(53)的外侧(79)与箭头轴(77)之间的角θ2在5-60度之间。
13.根据权利要求1所述的风力涡轮机,其特征在于:在左上表面(51)的内侧(81)与箭头轴(77)之间的角θ3在30-90度之间,在右上表面(53)的内侧(83)与箭头轴(77)之间的角θ4在30-90度之间。
14.根据权利要求1所述的风力涡轮机,其特征在于:连接左上表面(51)的内外侧(81、75)的侧面(85)的长度λ1在0-20厘米之间,连接右上表面(53)的内外侧(83、79)的侧面(87)的长度λ2在0-20厘米之间,所述元件(33)的侧面投影的长度λ3在0-20厘米之间,及所述元件(33)的正面投影的长度λ4在0-20厘米之间。
CN2008100982442A 2007-05-31 2008-05-28 具有抗噪声装置的风力涡轮机 Active CN101324218B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200701494 2007-05-31
ES200701494A ES2345583B1 (es) 2007-05-31 2007-05-31 Pala de aerogenerador con dispositivos anti-ruido.

Publications (2)

Publication Number Publication Date
CN101324218A CN101324218A (zh) 2008-12-17
CN101324218B true CN101324218B (zh) 2012-09-05

Family

ID=40088438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100982442A Active CN101324218B (zh) 2007-05-31 2008-05-28 具有抗噪声装置的风力涡轮机

Country Status (5)

Country Link
US (1) US8157532B2 (zh)
EP (1) EP2028366B1 (zh)
CN (1) CN101324218B (zh)
DK (1) DK2028366T3 (zh)
ES (2) ES2345583B1 (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0803730D0 (en) * 2008-02-29 2008-04-09 Airbus Uk Ltd Shock bump array
DE102008061838A1 (de) * 2008-12-15 2010-06-17 Repower Systems Ag Rotorblatt einer Windenergieanlage mit einem Turbulator
DE102009035689A1 (de) * 2009-07-30 2011-02-03 Eads Deutschland Gmbh Fluiddynamisch wirksamer Rotor
US9488386B2 (en) * 2009-09-18 2016-11-08 Massachusetts Institute Of Technology Concentrated solar power system receiver
US8328516B2 (en) * 2009-09-29 2012-12-11 General Electric Company Systems and methods of assembling a rotor blade extension for use in a wind turbine
DK2343450T3 (en) * 2009-10-08 2019-04-15 Lm Wind Power As Wind turbine blade with longitudinal flow guiding device having a plate-shaped element.
US8083488B2 (en) 2010-08-23 2011-12-27 General Electric Company Blade extension for rotor blade in wind turbine
US7976276B2 (en) 2010-11-04 2011-07-12 General Electric Company Noise reducer for rotor blade in wind turbine
US7976283B2 (en) 2010-11-10 2011-07-12 General Electric Company Noise reducer for rotor blade in wind turbine
US8523515B2 (en) 2010-11-15 2013-09-03 General Electric Company Noise reducer for rotor blade in wind turbine
EP2646682A4 (en) * 2010-11-30 2014-08-06 Gen Electric NOISE MUFFLER FOR RUNNING WHEELS ON A WIND TURBINE
US8267657B2 (en) 2010-12-16 2012-09-18 General Electric Company Noise reducer for rotor blade in wind turbine
US20110268558A1 (en) * 2010-12-20 2011-11-03 General Electric Company Noise reducer for rotor blade in wind turbine
DK2508750T3 (en) * 2011-04-04 2015-08-10 Siemens Ag Process for optimizing a wind farm design
US8414261B2 (en) 2011-05-31 2013-04-09 General Electric Company Noise reducer for rotor blade in wind turbine
US20130047978A1 (en) * 2011-08-31 2013-02-28 Massachusetts Institute Of Technology Vortex-induced cleaning of surfaces
US8834117B2 (en) 2011-09-09 2014-09-16 General Electric Company Integrated lightning receptor system and trailing edge noise reducer for a wind turbine rotor blade
US8834127B2 (en) 2011-09-09 2014-09-16 General Electric Company Extension for rotor blade in wind turbine
US8430638B2 (en) 2011-12-19 2013-04-30 General Electric Company Noise reducer for rotor blade in wind turbine
US8933576B2 (en) 2012-05-02 2015-01-13 United Technologies Corporation Hybrid friction wheel gearbox drivetrain for wind turbine applications
US9091250B2 (en) 2012-05-02 2015-07-28 United Technologies Corporation Ultra high efficiency low friction drive chain for wind turbine applications
US8598725B1 (en) 2012-06-11 2013-12-03 United Technologies Corporation Utilizing flux controllable PM electric machines for wind turbine applications
US9297357B2 (en) 2013-04-04 2016-03-29 General Electric Company Blade insert for a wind turbine rotor blade
US20150050154A1 (en) * 2013-05-23 2015-02-19 Kristian R. DIXON Airfoil trailing edge apparatus for noise reduction
US9506452B2 (en) 2013-08-28 2016-11-29 General Electric Company Method for installing a shear web insert within a segmented rotor blade assembly
HRP20211937T1 (hr) 2013-09-02 2022-03-18 Wobben Properties Gmbh Generator vrtloga za vjetroturbinu
EP2851556A1 (en) * 2013-09-18 2015-03-25 Siemens Aktiengesellschaft Arrangement to reduce noise of a wind turbine rotor blade
US9494134B2 (en) 2013-11-20 2016-11-15 General Electric Company Noise reducing extension plate for rotor blade in wind turbine
US9670901B2 (en) * 2014-03-21 2017-06-06 Siemens Aktiengesellschaft Trailing edge modifications for wind turbine airfoil
US9476406B2 (en) * 2014-04-14 2016-10-25 Siemens Aktiengesellschaft Vortex generators aligned with trailing edge features on wind turbine blade
JP2017519173A (ja) 2014-05-13 2017-07-13 マサチューセッツ インスティテュート オブ テクノロジー 集光型太陽熱発電用の安価な放物面円筒形トラフ
GB201410675D0 (en) 2014-06-16 2014-07-30 Univ Brunel Noise reduction to the trailing edge of fluid dynamic bodies
US10180125B2 (en) 2015-04-20 2019-01-15 General Electric Company Airflow configuration for a wind turbine rotor blade
EP3181895A1 (en) * 2015-12-17 2017-06-21 LM WP Patent Holding A/S Splitter plate arrangement for a serrated wind turbine blade
ES2715511T3 (es) * 2016-02-12 2019-06-04 Lm Wp Patent Holding As Panel de borde de salida dentado para una pala de turbina eólica
US10400744B2 (en) 2016-04-28 2019-09-03 General Electric Company Wind turbine blade with noise reducing micro boundary layer energizers
US20180038342A1 (en) * 2016-08-05 2018-02-08 General Electric Company Vortex generators for wind turbine rotor blades
KR102600955B1 (ko) * 2016-09-21 2023-11-13 삼성전자주식회사 프로펠러 팬 및 이를 구비하는 공기조화기
US10487796B2 (en) 2016-10-13 2019-11-26 General Electric Company Attachment methods for surface features of wind turbine rotor blades
US10465652B2 (en) 2017-01-26 2019-11-05 General Electric Company Vortex generators for wind turbine rotor blades having noise-reducing features
DE102017114414B3 (de) * 2017-06-28 2018-07-05 Hochschule Rhein-Waal Aerodynamische Struktur, Verfahren zur Herstellung und Verwendung einer solchen
CN107893739A (zh) * 2017-12-15 2018-04-10 江苏金风科技有限公司 叶片及风力发电机组
US10767623B2 (en) * 2018-04-13 2020-09-08 General Electric Company Serrated noise reducer for a wind turbine rotor blade
CN108716451A (zh) * 2018-07-30 2018-10-30 中科国风检测(天津)有限公司 一种结合了增功、降噪、防雷功能的后缘装置及安装方法
US10746157B2 (en) 2018-08-31 2020-08-18 General Electric Company Noise reducer for a wind turbine rotor blade having a cambered serration
JP7277316B2 (ja) 2019-08-30 2023-05-18 三菱重工業株式会社 風車翼装置及び風車翼アタッチメント部材

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2800291A (en) * 1950-10-24 1957-07-23 Stephens Arthur Veryan Solid boundary surface for contact with a relatively moving fluid medium
US5734990A (en) * 1995-03-10 1998-04-07 Waring; John Wearable article for athlete with vortex generators to reduce form drag
CN1793643A (zh) * 2004-12-23 2006-06-28 通用电气公司 风力涡轮机叶片上的主动流修正

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3578264A (en) * 1968-07-09 1971-05-11 Battelle Development Corp Boundary layer control of flow separation and heat exchange
US5058837A (en) * 1989-04-07 1991-10-22 Wheeler Gary O Low drag vortex generators
NL9301910A (nl) 1993-11-04 1995-06-01 Stork Prod Eng Windturbine.
WO2000015961A1 (en) * 1998-09-16 2000-03-23 Lm Glasfiber A/S Wind turbine blade with vortex generator
DK174319B1 (da) * 2000-06-20 2002-12-02 Lm Glasfiber As Vindmøllevinge med støjdæmpningsmidler
US7059833B2 (en) 2001-11-26 2006-06-13 Bonus Energy A/S Method for improvement of the efficiency of a wind turbine rotor
EP1338793A3 (en) 2002-02-22 2010-09-01 Mitsubishi Heavy Industries, Ltd. Serrated wind turbine blade trailing edge
JP2003254227A (ja) * 2002-03-05 2003-09-10 Ebara Corp 風車の気流騒音低減装置及び低減方法
JP2003254225A (ja) * 2002-03-05 2003-09-10 Ebara Corp 風車の気流騒音低減装置
DE10340978B4 (de) * 2003-09-05 2008-09-18 Moosdorf, Reinhard W. Kunstfaserelement für Rotorblätter
JP2005256829A (ja) * 2004-03-11 2005-09-22 Motoji Takano 風力発電機の羽根(プロペラ型)回転音を消去する羽根製造工法
ES2627790T3 (es) * 2005-05-17 2017-07-31 Vestas Wind Systems A/S Pala de turbina eólica controlada por cabeceo que tiene medios de generación de turbulencia, turbina eólica y uso de la misma
US7604461B2 (en) * 2005-11-17 2009-10-20 General Electric Company Rotor blade for a wind turbine having aerodynamic feature elements
US20070284848A1 (en) * 2006-05-23 2007-12-13 Nike, Inc. Drag-reducing structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2800291A (en) * 1950-10-24 1957-07-23 Stephens Arthur Veryan Solid boundary surface for contact with a relatively moving fluid medium
US5734990A (en) * 1995-03-10 1998-04-07 Waring; John Wearable article for athlete with vortex generators to reduce form drag
CN1793643A (zh) * 2004-12-23 2006-06-28 通用电气公司 风力涡轮机叶片上的主动流修正

Also Published As

Publication number Publication date
ES2925301T3 (es) 2022-10-14
US8157532B2 (en) 2012-04-17
EP2028366B1 (en) 2022-06-22
EP2028366A3 (en) 2016-05-25
EP2028366A2 (en) 2009-02-25
US20080298967A1 (en) 2008-12-04
ES2345583B1 (es) 2011-07-28
ES2345583A1 (es) 2010-09-27
DK2028366T3 (da) 2022-08-29
CN101324218A (zh) 2008-12-17

Similar Documents

Publication Publication Date Title
CN101324218B (zh) 具有抗噪声装置的风力涡轮机
JP6657259B2 (ja) 鋸歯形状を有するロータブレード
EP3177524B1 (en) Wind turbine rotor blade
JP6088065B2 (ja) ロータブレード後方縁部
JP6351759B2 (ja) 風力タービンのロータブレードに用いられる騒音低減手段
WO2009025549A1 (en) Wind turbine and rotor blade with reduced trailing edge noise
KR100936076B1 (ko) 프로펠러 시스템 및 프로펠러 시스템의 작동 방법
CN101790637B (zh) 风力涡轮机以及具有减小的负载波动的转子叶片
EP2000665A2 (en) Anti-noise wind-powered generator
EP3348826B1 (en) A wind turbine blade comprising a trailing edge noise reducing device
EP1214521A1 (en) Modified wind turbine airfoil
CN103270296A (zh) 风车叶片及具备该风车叶片的风力发电装置以及风车叶片的设计方法
EP2783107A1 (en) A wind turbine blade
WO2008077403A2 (en) Wind turbine with rotor blades equipped with winglets and blades for such rotor
JP2001233295A (ja) 回転翼航空機の回転翼羽根
JP2016524075A (ja) 風力発電装置のロータブレード及び風力発電装置
CN111742137B (zh) 风能设施的具有导流板的转子叶片
CN106574600A (zh) 风能设备转子叶片,风能设备转子叶片尖端后缘,用于制造风能设备转子叶片的方法和风能设备
JP2020529546A (ja) 風力タービンのローターのローターブレード、風力タービン、および風力タービンのローターの効率を改善する方法
CN103168172A (zh) 风车叶片及具备该风车叶片的风力发电装置以及风车叶片的设计方法
EP2940292B1 (en) Device for a rotor blade of a wind turbine
Herr On the design of silent trailing-edges
Panagakos et al. Tip vortex control via an active trailing-edge tab
Hong et al. Analysing and optimizing the aerodynamic performance of wind turbine blades using injected-air jets at variable frequency and amplitude for flow control
Lee et al. Tip vortex control via a tab deflecting at higher harmonic frequencies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant