CN101220799B - 具有扰流器的风轮机转子叶片 - Google Patents

具有扰流器的风轮机转子叶片 Download PDF

Info

Publication number
CN101220799B
CN101220799B CN2008100024335A CN200810002433A CN101220799B CN 101220799 B CN101220799 B CN 101220799B CN 2008100024335 A CN2008100024335 A CN 2008100024335A CN 200810002433 A CN200810002433 A CN 200810002433A CN 101220799 B CN101220799 B CN 101220799B
Authority
CN
China
Prior art keywords
alar part
rotor blade
wind turbine
blade
flow spoiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008100024335A
Other languages
English (en)
Other versions
CN101220799A (zh
Inventor
佩德·B·埃尼沃尔德森
索伦·约尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Gamesa Renewable Energy
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38089110&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101220799(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN101220799A publication Critical patent/CN101220799A/zh
Application granted granted Critical
Publication of CN101220799B publication Critical patent/CN101220799B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/306Surface measures
    • F05B2240/3062Vortex generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/32Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor with roughened surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

本发明涉及一种具有翼(5)的风轮机叶片(1),所述翼(5)具有吸入侧(13)和压力侧(15)。翼(5)包括内翼部(7)和外翼部(6),内翼部(7)比外翼部(6)略厚,且其设有扰流器(21)。内翼部(7)的厚度介于内翼部(7)的弦长的30%和80%之间,并且扰流器(21)位于内翼部(7)的吸入侧(13)从翼部(7)的前缘(9)量起的8%到12%弦长之处之间。

Description

具有扰流器的风轮机转子叶片
技术领域
本发明涉及一种具有扰流器的风轮机转子叶片以及具有至少一个这种转子叶片的风轮机。
背景技术
现有技术的风轮机转子叶片的状态例如在EP1314885A1中描述。这种叶片包括具有柱形截面的叶根、转子毂和具有气动形截面的翼部,其中,转子叶片由所述叶根固定。
通常将翼部名义上细分成相对较厚的内翼部和相对较薄的外翼部,其中,内翼部位于叶根和外翼部之间。
在EP1314885A1中公开的风轮机转子叶片设有位于内翼部吸入侧的扰流器。
由WO02/08600A1中已知在风轮机转子叶片上靠近毂部的扰流器。此外,在WO00/15961以及EP0947693A2中也描述了对扰流器的使用。
在Van Rooij,R.P.J.O.M.;Timmer,W.A.发表于Journal of Solar EnergyEngineering(太阳能工程期刊,第125卷,第4期,2003年11月,第468-478页,XP00807970美国纽约)的“Roughness sensitivity consideration for thick rotorblade airfoils”(“厚转子叶片翼的粗糙敏感性”)和Peter Fuglsang,Christian Bak,在马德里的2003 EWEC的范本,第7卷,第2期,2004年5月24日,第145-162页,XP002436915 John Wiley&Sons有限公司)的“Development ofthe RisφWindTurbine Airfoils”(“Risφ风轮机翼的进展”)中,描述了厚度为弦长的25%-40.1%之间的不同风轮机转子叶片。转子叶片配备有扰流器,该扰流器位于翼的吸入侧从翼前缘量起的20%或30%弦长处。
在所提及的现有技术中,描述了为了改进风轮机转子叶片的气动特性而使用扰流器。然而,扰流器的最优位置取决于很多参数。因此,不能期望扰流器在转子叶片外翼部的最优位置一定也是该扰流器在转子叶片内翼部的最优位置。然而,与外翼部相比,尤其是转子叶片的内翼部具有降低的气动特性。原因在于涡轮机转子叶片的内部需要承担整个叶片的负荷。这意味着为了使转子叶片获得足够的刚性而会受到很多设计限制。与外翼部相比,内翼部气动特性的减少降低了风轮机的整体效率。因此期望改进内翼部的气动特性。
发明内容
考虑到前面所述的,本发明所要解决的技术问题是提供一种改进的具有扰流器的风轮机转子叶片,该扰流器布置成能同时获得足够的气动特性和高负荷的支承。
本发明所要解决的另一技术问题是提供一种改进的风轮机。
第一个技术问题是通过根据权利要求1所述的风轮机转子叶片加以解决的,而第二个技术问题是通过根据权利要求6所述的风轮机加以解决的。从属权利要求限定了本发明的进一步发展。
一种本发明的风轮机转子叶片,其包括具有吸入侧和压力侧的翼。所述翼还包括内翼部和外翼部,其中内翼部比外翼部略厚。此外,内翼部设有扰流器。在本发明的风轮机转子叶片中,内翼部的厚度介于内翼部弦长的30%和80%之间。扰流器位于内翼部吸入侧从翼部的前缘测量起的8%和12%弦长处之间。
与具有相当的内翼部气动特性的现有技术转子叶片相比,本发明的风轮机转子叶片提供了改进的刚性。高的刚性是通过介于40%和80%弦长之间的极厚的内翼部实现的。然而,较厚的叶片通常与较低的气动特性有关。在本发明中,通过将扰流器布置在厚的内翼部的吸入侧上,克服了极厚翼部的较低气动特性。因此,内翼部的极端厚度和合适布置的扰流器的组合使风轮机转子叶片能在内翼部上具有高刚性,并且同时具有满意的气动特性。到目前为止,扰流器对极厚叶片的使用还是未知的。即使在扰流器靠近叶根布置的WO02/08600A1中,带有扰流器的翼部也并不是厚的翼部。
通过介于40%和65%弦长之间的厚度,还可以使风轮机转子叶片内翼部获得足够的强度。
为了达到扰流器的最大效果,有利的是当扰流器存在于沿着内翼部的整个跨度上时。所有的扰流器可以布置在相同弦长之处。应当注意的是,本发明并不排除在较薄的外翼部中使用扰流器。
一种本发明的风轮机转子,其包括至少一个根据本发明的转子叶片。特别是风轮机的所有转子叶片,例如三叶片风轮机转子的全部三个转子叶片,都是根据本发明的转子叶片。
附图说明
下面根据对本发明实施例的说明并结合附图将使本发明的其它特征、特性和优点变得清楚。
图中:
图1显示了风轮机转子叶片在叶片跨度和叶片弦长所限定的平面上的平面图。
图2显示了通过图1所示的叶片外翼部的弦向截面。
图3显示了根据本发明的第一实施例、通过图1所示的叶片内翼部的弦向截面。
图4显示了根据本发明第二实施例、通过图1所示的叶片内翼部的弦向截面。
图5显示了根据本发明第三实施例、通过图1所示的叶片翼部的弦向截面。
图6显示了作为气流迎角的函数的本发明的转子叶片所达到的升力系数。
图7显示了作为气流迎角的函数的本发明的转子叶片的阻力系数。
具体实施方式
图1显示了通常用在三叶片转子中的风轮机叶片。然而,本发明不限于三叶片转子的叶片。实际上,它也可以应用在其它转子中,例如单叶片转子或双叶片转子、甚至用在多于三叶片的转子中。
图1所示的转子叶片1包括柱形的叶根3和形成叶片的最外部分的尖端2。叶根3的柱形轮廓用于将叶片1固定到转子毂的轴承上。转子叶片1还包括所谓的叶肩4,其由叶片最大轮廓深度--也就是它的最大弦长的位置限定。
翼5沿着所谓的跨度(图1中点划线)在叶根3与尖端2之间延伸。翼5可以名义上细分成薄的外翼部6和厚的内翼部7。由于薄翼部和厚翼部之间的界线没有公知的定义,因此如果翼部厚度与弦长的比值大于30%,本发明就认为该翼部是厚的。
在图2中显示了沿着线I-I通过转子叶片的薄翼部6的弦向截面。图2所示的翼部的气动轮廓包括凸起的吸入侧13和凸起得较少的压力侧15。从叶片前缘9延伸到其后缘11的点划线表示该轮廓的弦。虽然图2中压力侧15包括凸起部分17和凹入部分19,它也能在根本没有凹入部分的情况下实施,只要吸入侧13比压力侧15更凸就行。
在图3中显示了本发明第一实施例的、沿着图1中的线II-II通过转子叶片的厚翼部7的弦向截面。厚翼部横截面的大体形状与薄翼部横截面的大体形状相应,因此不再详细描述。此外,用相同的附图标记来标示与图2的截面中所示的元件相对应的图3的截面的元件。
图3中所示的厚翼部的截面与图2中所示的薄翼部的截面之间的主要差别在于:轮廓的最大厚度与轮廓弦长之间的比值大于30%,而图2所示轮廓的相应比值小于30%,所述的轮廓最大厚度是由垂直于弦向从吸入侧13到压力侧15的最长直线来限定的。
在根据第一实施例的厚翼部的截面中还显示出了扰流器21,按照所测得的那样,所述扰流器21位于吸入侧13从前缘9量起的25%到30%弦长之处之间。
在图4和图5中显示了在厚翼部的吸入侧13上的扰流器21’、21”的可选位置。除扰流器的位置外,图3至图5所示的截面形状相同。在图4所示的横截面中,扰流器21’位于大约18%-22%弦长之处,而图5所示的横截面中,扰流器21”位于8%和12%弦长之处之间。
应当注意的是,扰流器的最优位置可以改变,这取决于轮廓的厚度与弦长的比值以及横截面的整体形状。然而,对于厚度与弦长的比值在30%和80%之间,尤其是对于比值在40%和65%之间的范围内的厚翼部,如果扰流器位于5%和30%弦长之处之间的范围中,则非常有利。
在图6中显示了在图3至图5所示的位置处的扰流器21、21’、21”对风轮机叶片1的升力的影响。图中显示了作为气流迎角(AOA)函数的涡轮叶片1的升力系数c1,气流迎角也就是从转子叶片1的前缘9所见的、弦与相对气流之间的角度。总而言之,较高的升力系数提高了涡轮叶片的效率。
线A是对没有任何扰流器的风轮机叶片的升力系数的测量结果。线B、C和D显示了具有扰流器的涡轮叶片的结果,所述扰流器位于厚翼部的吸入侧在图3(B)、图4(C)和图5(D)所示的位置。除了扰流器的存在和各自的位置之外,所有的四个涡轮叶片相同。
从图6可以容易地看出,一旦气流迎角大于大约3度,处在厚翼部的扰流器就增加了升力系数。随着气流迎角提高,不同风轮机转子叶片的升力系数再次汇合。在具有图3所示的扰流器的转子叶片B的情形下,升力系数c1对于大于约15度的迎角与不具任何扰流器的转子叶片A差不多相同。在具有在如图4所示位置的扰流器的风轮机叶片C的情形下,升力系数c1对于大于约18度的迎角差不多与不具扰流器的转子叶片相同。在扰流器位于图5所示位置的情况下,风轮机转子叶片的升力系数c1在较宽的迎角范围中(即在大约3度和23度之间)明显高于没有有扰流器的转子叶片A的升力系数。因此,叶片D代表本发明特别有利的实施例。
作为普遍趋势,可以注意到,当扰流器的位置朝着轮廓的前缘移动时,叶片的最大升力系数朝着较高迎角移动。此外,升力系数c1的最大值相应增加。
图7显示了图6所示的四个叶片的阻力系数cd。在这四个叶片A、B、C、D之间的阻力系数cd的差别不如升力系数c1之间的差别显著。尽管在从3度迎角范围到23度迎角的范围内的不同叶片之间的升力系数c1强烈不同,但叶片的阻力系数可能仅仅在从大约3度迎角到大约12度迎角之间才有较大差别。对于具有扰流器的转子叶片,在该范围中的阻力的减少是由扰流器所造成的脱流延迟(delay in stall)引起的。
基于对应图3至图5所示的不同扰流器结构的升力系数c1和阻力系数cd的差别,计算出全年能量产额(AEP)。与不具有扰流器的涡轮叶片(叶片A)相比较,图3所示的扰流器结构的全年能量产额可以增加大约1个百分点,图4所示的扰流器结构可以增加大约1.5个百分点,而图5所示的扰流器结构可以增加大约1.7个百分点。
虽然扰流器的主要优点是改进能量产额,但也可以实现其它优点。如图6的升力系数的下降所代表的那样,升力的下降对于塔上的负荷非常重要。通过将下降移到其它迎角,可以影响塔的动态负荷。此外,通过参照图7所讨论的脱流延迟可以降低由转子产生的噪音。

Claims (5)

1.一种风轮机转子叶片(1),其具有翼(5),所述翼(5)具有吸入侧(13)和压力侧(15),且包括内翼部(7)和外翼部(6),该内翼部(7)比该外翼部(6)略厚,该内翼部(7)的厚度处于该内翼部(7)的弦长的30%和80%之间,并且该内翼部(7)设有扰流器(21、21’、21”),其特征在于:
所述扰流器(21,21’,21”)位于该内翼部(7)的吸入侧(13)从该翼部(7)的前缘(9)量起的8%和12%弦长处之间。
2.根据权利要求1所述的风轮机转子叶片(1),其特征在于:所述内翼部(7)的厚度在弦长的40%到65%之间。
3.根据权利要求1所述的风轮机转子叶片(1),其特征在于:所有的扰流器处在相同弦长之处。
4.根据权利要求1所述的风轮机转子叶片(1),其特征在于:所述扰流器处在沿着所述内翼部(7)的整个跨度上。
5.具有至少一个根据上述权利要求中任一项所述的转子叶片(1)的风轮机。
CN2008100024335A 2007-01-12 2008-01-07 具有扰流器的风轮机转子叶片 Expired - Fee Related CN101220799B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07000617A EP1944505B1 (en) 2007-01-12 2007-01-12 Wind turbine rotor blade with vortex generators
EP07000617.6 2007-01-12

Publications (2)

Publication Number Publication Date
CN101220799A CN101220799A (zh) 2008-07-16
CN101220799B true CN101220799B (zh) 2011-12-14

Family

ID=38089110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100024335A Expired - Fee Related CN101220799B (zh) 2007-01-12 2008-01-07 具有扰流器的风轮机转子叶片

Country Status (7)

Country Link
US (1) US20080317600A1 (zh)
EP (1) EP1944505B1 (zh)
JP (1) JP5787462B2 (zh)
CN (1) CN101220799B (zh)
CA (1) CA2617750C (zh)
DK (1) DK1944505T3 (zh)
ES (1) ES2396702T3 (zh)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017466A1 (en) * 2007-07-20 2009-01-21 Siemens Aktiengesellschaft Wind turbine rotor blade and turbine rotor
EP2031241A1 (en) * 2007-08-29 2009-03-04 Lm Glasfiber A/S Blade for a rotor of a wind turbine provided with barrier generating means
US8186950B2 (en) 2008-12-23 2012-05-29 General Electric Company Aerodynamic device for detection of wind turbine blade operation
DK2404055T3 (en) * 2009-03-06 2016-12-12 Vestas Wind Sys As The wind turbine which provides increased power
EP2253838A1 (en) * 2009-05-18 2010-11-24 Lm Glasfiber A/S A method of operating a wind turbine
EP2253839A1 (en) * 2009-05-18 2010-11-24 Lm Glasfiber A/S Wind turbine blade provided with flow altering devices
EP2253835A1 (en) * 2009-05-18 2010-11-24 Lm Glasfiber A/S Wind turbine blade with base part having non-positive camber
EP2253834A1 (en) * 2009-05-18 2010-11-24 Lm Glasfiber A/S Wind turbine blade with base part having inherent non-ideal twist
EP2253836A1 (en) * 2009-05-18 2010-11-24 Lm Glasfiber A/S Wind turbine blade
EP2253837A1 (en) * 2009-05-18 2010-11-24 Lm Glasfiber A/S Method of manufacturing a wind turbine blade having predesigned segment
US7857597B2 (en) 2009-05-28 2010-12-28 General Electric Company Boundary layer fins for wind turbine blade
US8061986B2 (en) 2010-06-11 2011-11-22 General Electric Company Wind turbine blades with controllable aerodynamic vortex elements
US8038396B2 (en) * 2010-06-22 2011-10-18 General Electric Company Vortex generator assembly for use with a wind turbine rotor blade and method for assembling a wind turbine rotor blade
US8047801B2 (en) 2010-06-23 2011-11-01 General Electric Company Wind turbine blades with aerodynamic vortex elements
ES2856894T3 (es) 2010-07-16 2021-09-28 Lm Wind Power As Pala de turbina eólica con hombro estrecho y perfiles aerodinámicos relativamente gruesos
WO2012082324A1 (en) 2010-12-16 2012-06-21 Inventus Holdings, Llc A method for determining optimum vortex generator placement for maximum efficiency on a retrofitted wind turbine generator of unknown aerodynamic design
US9039381B2 (en) 2010-12-17 2015-05-26 Vestas Wind Systems A/S Wind turbine blade and method for manufacturing a wind turbine blade with vortex generators
US8167554B2 (en) 2011-01-28 2012-05-01 General Electric Corporation Actuatable surface features for wind turbine rotor blades
EP2484898B1 (en) * 2011-02-04 2014-04-23 LM WP Patent Holding A/S Vortex generator device with tapered sections for a wind turbine
US20110268576A1 (en) * 2011-03-22 2011-11-03 General Electric Company System and method for increasing energy capture by wind turbines
EP2514962B1 (en) * 2011-04-19 2017-08-02 Siemens Aktiengesellschaft Spoiler for a wind turbine blade
GB201109412D0 (en) * 2011-06-03 2011-07-20 Blade Dynamics Ltd A wind turbine rotor
CN104114857B (zh) * 2012-02-17 2017-03-08 Lm Wp 专利控股有限公司 具有定形失速栅或偏流器的风轮机叶片
US10060274B2 (en) * 2012-03-13 2018-08-28 Corten Holding Bv Twisted blade root
EP2713044B2 (en) 2012-09-28 2022-12-07 Siemens Gamesa Renewable Energy A/S Wind turbine rotor blade
US20140093380A1 (en) * 2012-10-03 2014-04-03 General Electric Company Noise reduction tab and method for wind turbine rotor blade
DE102013207640A1 (de) 2012-10-16 2014-04-17 Wobben Properties Gmbh Windenergieanlagen-Rotorblatt
KR101331961B1 (ko) 2012-10-23 2013-11-22 한국에너지기술연구원 공력제어장치 삽입이 가능한 뒷전 형상을 갖는 풍력발전기의 블레이드 에어포일
CN103939278A (zh) * 2013-01-21 2014-07-23 远景能源(江苏)有限公司 风力涡轮机叶片
CN103939277A (zh) * 2013-01-21 2014-07-23 远景能源(江苏)有限公司 风力涡轮机叶片
DE102013202666A1 (de) 2013-02-19 2014-08-21 Senvion Se Rotorblatt einer Windenergieanlage
US9562513B2 (en) 2013-05-03 2017-02-07 General Electric Company Wind turbine rotor blade assembly with surface features
US20140328688A1 (en) 2013-05-03 2014-11-06 General Electric Company Rotor blade assembly having vortex generators for wind turbine
US9267491B2 (en) 2013-07-02 2016-02-23 General Electric Company Wind turbine rotor blade having a spoiler
CN103321857B (zh) * 2013-07-08 2015-05-06 国电联合动力技术有限公司 一种大型风机的大厚度钝尾缘翼型叶片
US9624782B2 (en) 2013-11-11 2017-04-18 General Electric Company Template for aligning surface features on a rotor blade
US9523279B2 (en) 2013-11-12 2016-12-20 General Electric Company Rotor blade fence for a wind turbine
US9752559B2 (en) 2014-01-17 2017-09-05 General Electric Company Rotatable aerodynamic surface features for wind turbine rotor blades
US10087912B2 (en) 2015-01-30 2018-10-02 General Electric Company Vortex generator for a rotor blade
JP6148312B2 (ja) 2015-11-12 2017-06-14 三菱重工業株式会社 ボルテックスジェネレータ、風車翼および風力発電装置
US11015569B2 (en) 2015-11-12 2021-05-25 Mitsubishi Heavy Industries, Ltd. Vortex generator, wind turbine blade, and wind turbine power generating apparatus
JP6153989B2 (ja) 2015-11-13 2017-06-28 三菱重工業株式会社 ボルテックスジェネレータ、風車翼および風力発電装置
JP2017106427A (ja) * 2015-12-13 2017-06-15 好美 篠田 翼形羽根板の揚力を利用する水平式揚力回転発電装置
US10487798B2 (en) 2016-08-05 2019-11-26 General Electric Company System and method for locating airflow modifiers for installation on a wind turbine rotor blade
JP6154050B1 (ja) 2016-08-08 2017-06-28 三菱重工業株式会社 風車翼、風車ロータ及び風力発電装置並びにボルテックスジェネレータの取付方法
US10487796B2 (en) 2016-10-13 2019-11-26 General Electric Company Attachment methods for surface features of wind turbine rotor blades
US10465652B2 (en) 2017-01-26 2019-11-05 General Electric Company Vortex generators for wind turbine rotor blades having noise-reducing features
JP6732697B2 (ja) 2017-07-05 2020-07-29 三菱重工業株式会社 風車翼へのボルテックスジェネレータの配置位置決定方法、風車翼アセンブリの製造方法及び風車翼アセンブリ
US11001374B2 (en) 2017-09-14 2021-05-11 The Boeing Company System and method for vertical take-off in an autogyro
JP6783212B2 (ja) * 2017-10-20 2020-11-11 三菱重工業株式会社 風車翼へのボルテックスジェネレータの配置位置決定方法、風車翼アセンブリの製造方法及び風車翼アセンブリ
DE102018121190A1 (de) * 2018-08-30 2020-03-05 Wobben Properties Gmbh Rotorblatt, Windenergieanlage und Verfahren zum Optimieren einer Windenergieanlage
US11111013B2 (en) 2018-11-15 2021-09-07 The Boeing Company Updraft assisted rotorcraft take-off
EP3736211B1 (en) 2019-05-07 2022-08-31 The Boeing Company A system and method for enhanced altitude control of an autogyro
EP3981981A1 (de) 2020-10-09 2022-04-13 Wobben Properties GmbH Rotorblatt für eine windenergieanlage, windenergieanlage und verfahren zur auslegung eines rotorblatts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000015961A1 (en) * 1998-09-16 2000-03-23 Lm Glasfiber A/S Wind turbine blade with vortex generator
EP1674723A2 (en) * 2004-12-23 2006-06-28 General Electric Company Active flow modification on wind turbine blades
WO2006122547A1 (en) * 2005-05-17 2006-11-23 Vestas Wind Systems A/S A pitch controlled wind turbine blade, a wind turbine and use hereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6705838B1 (en) * 1999-08-25 2004-03-16 Forskningscenter Riso Modified wind turbine airfoil
US7059833B2 (en) * 2001-11-26 2006-06-13 Bonus Energy A/S Method for improvement of the efficiency of a wind turbine rotor
CA2488151C (en) * 2002-06-05 2009-04-28 Aloys Wobben Rotor blade for a wind power plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000015961A1 (en) * 1998-09-16 2000-03-23 Lm Glasfiber A/S Wind turbine blade with vortex generator
EP1674723A2 (en) * 2004-12-23 2006-06-28 General Electric Company Active flow modification on wind turbine blades
WO2006122547A1 (en) * 2005-05-17 2006-11-23 Vestas Wind Systems A/S A pitch controlled wind turbine blade, a wind turbine and use hereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R.P.J.O.M.VAN ROOIJ,W.A.TIMMER.ROUGHNESS SENSITIVITY CONSIDERATIONS FOR THICK ROTOR BLADE AIRFOILS.《JOURNAL OF SOLAR ENERGY ENGINEERING》.NEW YORK NY US,2003,第125卷(第4期),468-478. *

Also Published As

Publication number Publication date
ES2396702T3 (es) 2013-02-25
EP1944505A1 (en) 2008-07-16
CN101220799A (zh) 2008-07-16
JP2008169846A (ja) 2008-07-24
CA2617750A1 (en) 2008-07-12
US20080317600A1 (en) 2008-12-25
JP5787462B2 (ja) 2015-09-30
CA2617750C (en) 2015-05-05
EP1944505B1 (en) 2012-11-28
DK1944505T3 (da) 2013-01-07

Similar Documents

Publication Publication Date Title
CN101220799B (zh) 具有扰流器的风轮机转子叶片
CN101405504B (zh) 风力涡轮机转子叶片
US8944776B2 (en) Wind turbine blade having a flow guiding device with optimised height
US8944775B2 (en) Wind turbine blade having a spoiler with effective separation of airflow
CN103089536B (zh) 安装在风力涡轮机叶片上的失速栅上的副翼面
US8834130B2 (en) Wind turbine blade with an auxiliary airfoil
US7914259B2 (en) Wind turbine blades with vortex generators
EP2834517B1 (en) Twisted blade root
EP2292926B1 (en) Wind generator blade with hyper-supporting elements
EP2404055B1 (en) A wind turbine providing increased power output
KR101787294B1 (ko) 풍력 발전 설비의 로터 블레이드 그리고 풍력 발전 설비
CN105715449B (zh) 具有涡流发生器的转子叶片和风力涡轮机
DK1963671T3 (da) Vinge til en vindmøllerotor
CN102606385B (zh) 风力涡轮机转子叶片元件和风力涡轮机转子叶片
US8936435B2 (en) System and method for root loss reduction in wind turbine blades
CN109690072A (zh) 风能设备转子叶片
CN100443720C (zh) 大弯度风力机翼型
US8517690B2 (en) Double leading edge airfoil for wind turbine blade root
Godsk The Effect of Add-Ons on Wind Turbine Blades
CN102562442A (zh) 垂直轴风力发电机叶片

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190808

Address after: Tango barley

Patentee after: Siemens Gamesa Renewable Energy

Address before: Munich, Germany

Patentee before: Siemens AG

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111214

Termination date: 20200107

CF01 Termination of patent right due to non-payment of annual fee