CN101213131A - 可缩回的涡流发生器 - Google Patents

可缩回的涡流发生器 Download PDF

Info

Publication number
CN101213131A
CN101213131A CNA2006800237307A CN200680023730A CN101213131A CN 101213131 A CN101213131 A CN 101213131A CN A2006800237307 A CNA2006800237307 A CN A2006800237307A CN 200680023730 A CN200680023730 A CN 200680023730A CN 101213131 A CN101213131 A CN 101213131A
Authority
CN
China
Prior art keywords
vortex generator
control surface
current control
extended configuration
retracted mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800237307A
Other languages
English (en)
Inventor
J·C·纳拉莫尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bell Helicopter Textron Inc
Original Assignee
Bell Helicopter Textron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bell Helicopter Textron Inc filed Critical Bell Helicopter Textron Inc
Publication of CN101213131A publication Critical patent/CN101213131A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/06Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Abstract

公开了一种流控制装置,其包括流控制表面(20),流体被设计成按预定方向(F)流过流控制表面(20)。涡流发生器(30)与流控制表面相联。各涡流发生器都具有相对于预定方向形成锐角(α)的枢轴(40),且能够被定位在伸展状态和缩回状态,在伸展状态,单个涡流发生器的作用是形成涡流流体流,在缩回状态,各涡流发生器经由枢轴旋转以便处于靠近流控制表面的位置。致动器与各涡流发生器相联,每个致动器都适合于将相联的涡流发生器定位在伸展状态和缩回状态之间。所公开的流控制装置将用于倾斜旋翼飞行器。

Description

可缩回的涡流发生器
相关申请的交叉引用
本申请要求2005年6月30日递交的美国临时专利申请No.60/695,181的优先权,该申请的全部内容在此以引用方式并入本文。
技术领域
本发明涉及带有可缩回的涡流发生器(retractable vortexgenerator)的流控制表面(flow control surface)。
背景技术
涡流发生器已与各种流控制表面一起使用,以便使与流控制表面的边界空气层有关联的低动量流体流和边界空气层外面的高动量流体流混合。这种涡流发生器在各种各样的航空器中的使用提高了机动效率。然而,永久安装的翼涡流发生器会产生阻力负担(drag penalty),且有可能会堆积例如冰形态的外来物质,这些外来物质显著地降低航空器的固有性能。
可缩回的涡流发生器已经研究出来弥补这些问题。
Bauer的US 4,039,161、Cox的US 5,253,828和Lisy等人的US6,105,904中的每一个都公开了可缩回到流控制表面中的涡流发生器。然而,这些文献中所描述的可缩回的涡流发生器需要修改在其上设置该涡流发生器的装置的结构以留出在涡流发生器不使用时涡流发生器可缩回到其中的内部空间。需要足够的空间来容纳涡流发生器的这种要求可能以消极方式影响翼或其它结构的设计。这还要求具有希望增加涡流发生器的流控制表面的翼或其它这种结构不能够针对这种涡流发生器轻易地进行改装。
Campbell的US 6,427,948公开了一种涡流发生器,其能够被选择性地移入偏转位置以产生顺流湍流,且能够被移入未偏转位置以减少阻力。Campbell的涡流发生器由形状记忆合金形成,当没有电信号施加到相联的加热器时,形状记忆合金处于偏转位置,且当电信号施加到相联的加热器时,形状记忆合金处于未偏转位置。然而,在偏转状态和未偏转状态下,涡流发生器都伸出流控制表面的外部,然而未偏转状态与偏转状态相比可产生较少阻力,但是伸出部分仍产生一些不希望的残余阻力,且没有减少暴露的涡流发生器上的积冰问题。
发明内容
本发明提供一种包括流控制表面的流控制装置,流体被设计成按预定方向流过流控制表面。涡流发生器与流控制表面相联。各涡流发生器都具有相对于预定方向形成锐角的枢轴,并且能够被定位在伸展状态和缩回状态,在伸展状态,各涡流发生器的作用是形成涡流流体流,在缩回状态,各涡流发生器经由枢轴旋转以便处于靠近流控制表面的位置。致动器与各涡流发生器相联,每个致动器用于将相联的涡流发生器定位在伸展状态和缩回状态之间。
在一个实施例中,当处于伸展状态时,涡流发生器与预定方向构成的锐角在5至45度之间。
在一个实施例中,致动器可以是启动由镍-钛合金制成的形状记忆材料的加热器。然而,也可使用其它类型的机电致动器。
在一个实施例中,涡流发生器可以是翼片形式,当处于缩回状态时,翼片与流控制表面平行,且当处于伸展状态时,翼片设置为0和180度之间的角度。
如所描述的,流控制装置使流控制表面上的阻力和积冰减少,而不需要在流控制装置中为缩回的涡流发生器留出空间。因此,本发明的可缩回的涡流发生器可应用于大量各种流控制表面,而不需要大量改装流控制表面。
附图说明
图1A是具有依据本发明的处于伸展或展开状态的涡流发生器的流控制装置的侧视图。
图1B是具有依据本发明的处于伸展或展开状态的涡流发生器的流控制装置的俯视图。
图2A是具有依据本发明的处于缩回状态的涡流发生器的流控制装置的侧视图。
图2B是具有依据本发明的处于缩回状态的涡流发生器的流控制装置的俯视图。
图3A是依据本发明一个实施例的当各涡流发生器处于缩回状态时沿其枢轴的视图。
图3B是当图3A的涡流发生器处于伸展或展开状态时沿其枢轴的视图。
图4A是依据本发明的另一个实施例的当各涡流发生器处于缩回状态时沿其枢轴的视图。
图4B是当图4A的涡流发生器处于伸展或展开状态时沿其枢轴的视图。
具体实施方式
图1A、1B、2A和2B显示了依据本发明的一个实施例的流控制装置10的示例。图1A显示了侧视图,以及图1B显示了流控制表面20的俯视图,流体介质设计成按矢量F所表示的方向流过流控制表面20。一列涡流发生器30示出处于伸展位置。涡流发生器30基本上为扁平结构,其在伸展时通常相对于控制表面的平面垂直。涡流发生器30的每一个都构造成可围绕枢轴40枢转。枢轴40与流动方向(或原始风向)F形成锐角α,以便方便产生流体涡流。锐角α可在5和45度之间(或-5到-45度,取决于所测量的方向),以在流控制表面20上产生涡流。在更具体的实施例中,角α在12和25度之间,且甚至更具体地在19和21度之间。图2A和2B显示了流控制表面20的侧视图和俯视图,流体介质设计成当一列涡流发生器30处于缩回状态时按预定方向F流过流控制表面20。如所显示的,涡流发生器围绕枢轴40枢转,以便通常处于与上部流控制表面20呈平行的、躺在其上的关系。在一个实施例中,缩回的涡流发生器处于与上部流控制表面20抵靠接触。在这种状态下,涡流发生器不阻挡流,因而基本上消除了来自涡流发生器的阻力影响。因此,涡流发生器在需要时被伸展,且在所有其它飞行状况下缩回,而不要求在流控制装置中具有任何空间用以储存在不用时的涡流发生器。在所示的实施例中,表面20具有基本上连续的、未修改的形状。因此,应当理解,如这里图中所示的涡流发生器可被改装到之前已经制造出的许多不同类型的表面20上。在另一实施例中(未显示),涡流发生器当展开时所置于其上的上部表面区域稍微凹进。这种凹进可具有与涡流发生器的厚度相同大小的深度,以便当缩回时涡流发生器的暴露表面基本上与表面20的相邻表面部分平齐。
图3A和3B显示了依据本发明的一个实施例在流控制表面20上操作涡流发生器30的示例。图3A是当涡流发生器30处于缩回状态时沿着涡流发生器30的枢轴40的方向得到的视图。图3B是当涡流发生器30处于伸展状态时沿涡流发生器30的枢轴40的视图。涡流发生器由马达或致动器50来致动,以便在缩回状态和伸展状态之间重新定位。伸展状态可以可变地选择,以使涡流发生器相对于流控制表面20倾斜角度θ。在本实施例中,致动器50可以是由电输入60(来自外部控制器)控制的电磁马达,且角θ可调节成相对于表面20处于0和180度之间。在一个实施例中,角θ以与表面20垂直(90°)的方位或角θ配置。在另一实施例中,涡流发生器30以相对于直角-4°到+4°的角度配置。
图4A和4B显示了用以将涡流发生器30定位在伸展位置和缩回位置之间的另一致动器的示例。在该示例中,致动器包括由电输入80(来自外部控制器)控制的加热器70。涡流发生器30由形状记忆合金如镍-钛合金形成,且在制造时初始变形成如图4B所显示的伸展位置。在图4B的伸展位置,涡流发生器30相对于表面20形成角θ。角θ可具有与如上述的图3A和3B的实施例相同的一个范围或多个范围。当由加热器70施加热量超过形状记忆材料的特定转变温度时,涡流发生器返回到未变形状态,如图4A所示的。在另一实施例中,形状记忆合金涡流发生器初始处于缩回(未展开)位置,如图4A所示的。当热量施加到形状记忆合金涡流发生器时,形状记忆合金涡流发生器从图4A的缩回位置移动到图4B的展开位置。
各种类型的致动器可用于执行如所描述的枢转功能,这对于本领域的普通技术人员是显而易见的。例如,热双压电晶片致动器(thermalbimorph actuators)、双压电晶片致动器(piezoelectric bimorphactuators)以及能够产生枢转动作的任何其它致动器都可用作本发明的致动器。
在一个实施例中,本发明的流控制装置用作倾斜旋翼航空器的翼的一部分。
尽管已经显示了涡流发生器的具体构造,但是本发明并不限于这种构造,且可使用各种各样的其它结构来产生同向旋转以及反向旋转效果。
尽管单个涡流发生器的形状已经显示为三角形,但是本发明并不限于这种形状,且可以使用其它形状的涡流发生器,例如矩形形状或其它形状。
尽管已经显示并描述了本发明的具体实施例,但是对于本领域的技术人员而言,很显然可进行各种改变而不偏离本发明的教导。

Claims (9)

1.一种流控制装置,其包括:
流控制表面,流体被设计成按预定方向流过所述流控制表面;
涡流发生器,其与所述流控制表面相联,各涡流发生器都具有相对于所述预定方向形成锐角的枢轴,并且能够被定位在伸展状态和缩回状态,在该伸展状态中,所述各涡流发生器起到形成涡流流体流的作用,在该缩回状态中,所述各涡流发生器经由所述枢轴旋转以便处于靠近所述流控制表面的位置;以及
致动器,其与所述各涡流发生器中的每个相联,每个致动器用于将相联的所述涡流发生器定位在所述伸展状态和所述缩回状态之间。
2.根据权利要求1所述的流控制装置,其中所述锐角在5度至45度之间。
3.根据权利要求1所述的流控制装置,其中所述涡流发生器由形状记忆材料形成,并且所述致动器包括启动所述形状记忆材料的加热器。
4.根据权利要求1所述的流控制装置,其中所述各涡流发生器都为翼片形式,当处于所述缩回状态时,所述翼片与所述流控制表面平行,当处于所述伸展状态时,所述翼片设置为相对于所述流控制表面成大于0度且小于180度的角度。
5.根据权利要求1所述的流控制装置,其中所述流控制表面是倾斜旋翼飞行器的一部分。
6.一种航空器,其包括:
倾斜旋翼的机翼;
流控制表面,其形成在所述倾斜旋翼的机翼上,流体被设计成按预定方向流过所述倾斜旋翼的机翼;
涡流发生器,其与所述流控制表面相联,各涡流发生器都具有相对于预定方向形成锐角的枢轴,并且能够被定位在伸展状态和缩回状态,在所述伸展状态中,所述各涡流发生器起到形成涡流流体流的作用,在所述缩回状态中,所述各涡流发生器经由所述枢轴转动以便处于靠近所述流控制表面的位置;以及
致动器,其与所述各涡流发生器相联,各致动器都适合于将相联的所述涡流发生器定位在所述伸展状态和所述缩回状态之间。
7.根据权利要求6所述的航空器,其中所述锐角在5度至45度之间。
8.根据权利要求6所述的航空器,其中所述致动器包括加热器,并且所述涡流发生器包括可基于所述加热器的启动而进行移动的形状记忆材料。
9.根据权利要求6所述的航空器,其中所述各涡流发生器都为翼片形式,当处于所述缩回状态时,所述翼片与所述流控制表面平行,当处于所述伸展状态时,所述翼片设置为相对于所述流控制表面成大于0度且小于180度的角度。
CNA2006800237307A 2005-06-30 2006-06-30 可缩回的涡流发生器 Pending CN101213131A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US69518105P 2005-06-30 2005-06-30
US60/695,181 2005-06-30

Publications (1)

Publication Number Publication Date
CN101213131A true CN101213131A (zh) 2008-07-02

Family

ID=37307191

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800237307A Pending CN101213131A (zh) 2005-06-30 2006-06-30 可缩回的涡流发生器

Country Status (12)

Country Link
US (1) US7878457B2 (zh)
EP (1) EP1896323B1 (zh)
JP (1) JP2008544921A (zh)
KR (1) KR20080025379A (zh)
CN (1) CN101213131A (zh)
AT (1) ATE433909T1 (zh)
AU (1) AU2006265854A1 (zh)
BR (1) BRPI0613492A2 (zh)
CA (1) CA2613446C (zh)
DE (1) DE602006007353D1 (zh)
RU (1) RU2008103327A (zh)
WO (1) WO2007005687A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297080A (zh) * 2010-06-22 2011-12-28 通用电气公司 涡流发生器组件和用于组装风力涡轮机转子叶片的方法
CN102862674A (zh) * 2011-07-05 2013-01-09 波音公司 用于降低失速速度的可缩回涡流发生器
CN107575341A (zh) * 2016-07-05 2018-01-12 西门子公司 带有涡流发生器的风力涡轮机转子叶片
CN108910019A (zh) * 2018-07-05 2018-11-30 中国空气动力研究与发展中心高速空气动力研究所 一种采用热双金属微锯齿结构的空气流动控制系统
CN110435876A (zh) * 2019-08-26 2019-11-12 中国空气动力研究与发展中心低速空气动力研究所 一种带有伸缩式涡流发生器的共轴旋翼桨毂整流罩

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2622938C (en) * 2005-12-28 2010-11-09 National University Corporation Nagoya University Smart vortex generator and aircraft, vessel and rotary machine being equipped with the same
US7900871B2 (en) * 2007-07-20 2011-03-08 Textron Innovations, Inc. Wing leading edge having vortex generators
FR2920130B1 (fr) 2007-08-24 2010-01-22 Airbus France Dispositif pour generer des perturbations aerodynamiques afin de proteger la surface exterieure d'un aeronef contre des temperatures elevees
WO2009060234A1 (en) * 2007-11-09 2009-05-14 Bae Systems Plc Improvements relating to methods of fabricating structural elements
US8047233B2 (en) * 2007-11-14 2011-11-01 The Boeing Company Apparatus and method for generating vortexes in fluid flow adjacent to a surface
US8286909B2 (en) * 2008-02-08 2012-10-16 Stratocomm Corporation Boundary layer propulsion airship with related system and method
US7939178B2 (en) * 2008-05-14 2011-05-10 Raytheon Company Shape-changing structure with superelastic foam material
DE102008033005A1 (de) 2008-07-14 2010-03-18 Airbus Deutschland Gmbh Aerodynamische Klappe und Flügel
US8087617B2 (en) * 2008-08-15 2012-01-03 The Boeing Company Retractable nacelle chine
US8870124B2 (en) * 2009-07-10 2014-10-28 Peter Ireland Application of elastomeric vortex generators
US8061986B2 (en) 2010-06-11 2011-11-22 General Electric Company Wind turbine blades with controllable aerodynamic vortex elements
US8047801B2 (en) 2010-06-23 2011-11-01 General Electric Company Wind turbine blades with aerodynamic vortex elements
US20110142595A1 (en) 2010-07-02 2011-06-16 General Electric Company Wind turbine blades with controlled active flow and vortex elements
CA2824611A1 (en) 2010-12-16 2012-06-21 Inventus Holdings, Llc A method for determining optimum vortex generator placement for maximum efficiency on a retrofitted wind turbine generator of unknown aerodynamic design
US8167554B2 (en) 2011-01-28 2012-05-01 General Electric Corporation Actuatable surface features for wind turbine rotor blades
US8852710B2 (en) 2011-04-08 2014-10-07 Robert B. Evans Surface flow enhancement device and method of using the same on a vehicle
EP2739528B1 (en) * 2011-07-22 2019-08-28 LM WP Patent Holding A/S A vortex generator arrangement for an airfoil
EP2548800A1 (en) 2011-07-22 2013-01-23 LM Wind Power A/S Method for retrofitting vortex generators on a wind turbine blade
US9416802B2 (en) 2012-12-31 2016-08-16 University Of Kansas Radar energy absorbing deformable low drag vortex generator
US9464532B2 (en) * 2013-03-05 2016-10-11 Bell Helicopter Textron Inc. System and method for reducing rotor blade noise
US9638176B2 (en) 2013-05-10 2017-05-02 The Boeing Company Vortex generator using shape memory alloys
DE102013210733B4 (de) * 2013-06-10 2021-03-25 Senvion Gmbh Rotorblatt und Vortexgenerator
US9267491B2 (en) 2013-07-02 2016-02-23 General Electric Company Wind turbine rotor blade having a spoiler
US9689374B2 (en) 2013-10-09 2017-06-27 Siemens Aktiengesellschaft Method and apparatus for reduction of fatigue and gust loads on wind turbine blades
US20150211487A1 (en) * 2014-01-27 2015-07-30 Siemens Aktiengesellschaft Dual purpose slat-spoiler for wind turbine blade
US9523279B2 (en) 2013-11-12 2016-12-20 General Electric Company Rotor blade fence for a wind turbine
US9752559B2 (en) 2014-01-17 2017-09-05 General Electric Company Rotatable aerodynamic surface features for wind turbine rotor blades
US9789956B2 (en) * 2014-09-19 2017-10-17 The Boeing Company Vortex generators responsive to ambient conditions
US10087912B2 (en) 2015-01-30 2018-10-02 General Electric Company Vortex generator for a rotor blade
DE102015101765A1 (de) * 2015-02-06 2016-08-11 Airbus Operations Gmbh Vortexgeneratoranordnung
DE102015101763A1 (de) 2015-02-06 2016-09-01 Airbus Operations Gmbh Seitenleitwerk für ein Flugzeug
US10252792B2 (en) * 2015-04-21 2019-04-09 The United States Of America As Represented By The Administrator Of Nasa Flow disruption devices for the reduction of high lift system noise
ES2667200T3 (es) * 2015-10-01 2018-05-10 Airbus Operations Gmbh Dispositivo generador de turbulencias, sistema de control de flujo y método para controlar un flujo sobre una superficie de timón
DE102015120958A1 (de) * 2015-12-02 2017-06-08 Dg Flugzeugbau Gmbh Aktives Positionieren von Turbulatorflächenelementen
FR3045012B1 (fr) * 2015-12-11 2017-12-08 Airbus Operations Sas Mat d'accrochage d'une turbomachine muni d'un element de protection thermique
US10259574B2 (en) 2015-12-18 2019-04-16 Amazon Technologies, Inc. Propeller surface area treatments for sound dampening
US10220939B2 (en) 2015-12-18 2019-03-05 Sikorsky Aircraft Corporation Active airflow system and method of reducing drag for aircraft
US20170175531A1 (en) * 2015-12-18 2017-06-22 Amazon Technologies, Inc. Propeller blade protrusions for improved aerodynamic performance and sound control
US10232929B2 (en) 2015-12-18 2019-03-19 Sikorsky Aircraft Corporation Plate member for reducing drag on a fairing of an aircraft
US20170174326A1 (en) * 2015-12-18 2017-06-22 Sikorsky Aircraft Corporation Vortex generators and method of creating vortices on an aircraft
US10259562B2 (en) 2015-12-18 2019-04-16 Amazon Technologies, Inc. Propeller blade trailing edge fringes for improved sound control
US10460717B2 (en) 2015-12-18 2019-10-29 Amazon Technologies, Inc. Carbon nanotube transducers on propeller blades for sound control
US10011346B2 (en) 2015-12-18 2018-07-03 Amazon Technologies, Inc. Propeller blade indentations for improved aerodynamic performance and sound control
US10933988B2 (en) 2015-12-18 2021-03-02 Amazon Technologies, Inc. Propeller blade treatments for sound control
US10099773B2 (en) 2015-12-18 2018-10-16 Amazon Technologies, Inc. Propeller blade leading edge serrations for improved sound control
JP6719933B2 (ja) * 2016-03-16 2020-07-08 三菱重工業株式会社 ジェットエンジン、飛しょう体、および、ジェットエンジンの動作方法
US10487796B2 (en) 2016-10-13 2019-11-26 General Electric Company Attachment methods for surface features of wind turbine rotor blades
EP3323716B1 (en) * 2016-11-21 2020-01-01 Airbus Operations GmbH Aircraft airflow modification device and vortex generator arrangement for an aircraft
US10352906B2 (en) 2016-12-15 2019-07-16 Bell Helicopter Textron Inc. Through-transmission ultrasonic testing apparatus
US9939391B1 (en) 2016-12-15 2018-04-10 Bell Helicopter Textron Inc. Inspection method using a film overlay
US10994826B2 (en) * 2017-01-12 2021-05-04 The Boeing Company Temperature sensitive self actuated heat boundary layer control device
US10465652B2 (en) 2017-01-26 2019-11-05 General Electric Company Vortex generators for wind turbine rotor blades having noise-reducing features
US10889370B2 (en) * 2018-07-02 2021-01-12 Textron Innovations Inc. Chord-wise variable vortex generator
US11163302B2 (en) 2018-09-06 2021-11-02 Amazon Technologies, Inc. Aerial vehicle propellers having variable force-torque ratios
DE102018127804A1 (de) 2018-11-07 2020-05-07 fos4X GmbH Verbesserung bzw. Optimierung des Ertrags einer Windenergieanlage durch Detektion eines Strömungsabrisses
US11130561B2 (en) * 2018-11-21 2021-09-28 The Boeing Company Airflow-dependent deployable fences for aircraft wings
US11066149B2 (en) * 2018-11-21 2021-07-20 The Boeing Company Airflow-dependent deployable fences for aircraft wings
US11059565B2 (en) 2018-11-21 2021-07-13 The Boeing Company Airflow-dependent deployable fences for aircraft wings
US11059564B2 (en) * 2018-11-21 2021-07-13 The Boeing Company Automated deployable fences for aircraft wings
US11407498B2 (en) 2019-08-30 2022-08-09 The Boeing Company Vortex generator passive deployment system
US11905983B2 (en) 2020-01-23 2024-02-20 Deep Science, Llc Systems and methods for active control of surface drag using electrodes
WO2021150755A1 (en) * 2020-01-23 2021-07-29 Deep Science, Llc Systems and methods for active control of surface drag using intermittent or variable actuation
US11643190B2 (en) * 2020-01-30 2023-05-09 Airbus Operations Gmbh Vortex generator apparatus for an aircraft
GB2597660A (en) * 2020-07-23 2022-02-09 Bae Systems Plc Duct arrangements and methods
GB2597661A (en) * 2020-07-23 2022-02-09 Bae Systems Plc Arrangements, duct arrangements and methods thereof
GB2597659A (en) * 2020-07-23 2022-02-09 Bae Systems Plc Arrangements, duct arrangements and methods
EP4281361A1 (en) * 2021-01-22 2023-11-29 Blue Spirit Aero SAS Aircraft having retractable vortex generators
EP4032810A1 (en) 2021-01-22 2022-07-27 Blue Spirit Aero SAS Aircraft with electric propulsion module
EP4294720A1 (en) 2021-02-17 2023-12-27 Enterprise Science Fund, Llc In-plane transverse momentum injection to disrupt large-scale eddies in a turbulent boundary layer

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1763257A (en) * 1928-04-25 1930-06-10 David L Roscoe Aerofoil
US2764373A (en) 1953-05-18 1956-09-25 Boeing Co Heated vortex generator
US2959377A (en) * 1957-03-15 1960-11-08 Poly Ind Inc Airfoil structure with boundary layer control means
US3090580A (en) * 1962-04-13 1963-05-21 Alan B Kehlet Space and atmospheric re-entry vehicle
US4039161A (en) 1975-10-16 1977-08-02 Mcdonnell Douglas Corporation Hidden vortex generators
US4017041A (en) * 1976-01-12 1977-04-12 Nelson Wilbur C Airfoil tip vortex control
US4466586A (en) 1980-03-10 1984-08-21 The Boeing Company Directional control device for aircraft
SE8101793L (sv) * 1980-03-25 1981-09-26 Nat Res Dev Luftplan
SE450480B (sv) * 1982-08-30 1987-06-29 Tech Gerete Und Entwicklungsge Styvvingad flygkropp
US4932610A (en) 1986-03-11 1990-06-12 The United States Of America As Represented By The United States National Aeronautics And Space Administration Active control of boundary layer transition and turbulence
US4739957A (en) 1986-05-08 1988-04-26 Advanced Aerodynamic Concepts, Inc. Strake fence flap
US5209438A (en) 1988-06-20 1993-05-11 Israel Wygnanski Method and apparatus for delaying the separation of flow from a solid surface
US5094412A (en) 1989-10-13 1992-03-10 Bell Helicopter Textron Inc. Flaperon system for tilt rotor wings
US5062595A (en) * 1990-04-26 1991-11-05 University Of Southern California Delta wing with lift enhancing flap
US5253828A (en) 1992-07-17 1993-10-19 The Board Of Regents Of The University Of Oklahoma Concealable flap-actuated vortex generator
US5634613A (en) 1994-07-18 1997-06-03 Mccarthy; Peter T. Tip vortex generation technology for creating a lift enhancing and drag reducing upwash effect
US5697468A (en) * 1994-10-04 1997-12-16 Flarecraft Corporation Spoiler system for ground effect vehicles
US5598990A (en) * 1994-12-15 1997-02-04 University Of Kansas Center For Research Inc. Supersonic vortex generator
US5755408A (en) 1995-04-03 1998-05-26 Schmidt; Robert N. Fluid flow control devices
US5788191A (en) * 1995-08-18 1998-08-04 Sikorsky Aircraft Corporation Half-plow vortex generators for rotor blades for reducing blade-vortex interaction noise
US5785282A (en) 1995-08-18 1998-07-28 Sikorsky Aircraft Corporation Half-plow vortex generators for rotorcraft blades for reducing blade-vortex interaction noise
US6065934A (en) * 1997-02-28 2000-05-23 The Boeing Company Shape memory rotary actuator
US6168111B1 (en) * 1997-03-03 2001-01-02 The United States Of America As Represented By The Secretary Of The Army Fold-out fin
US6095459A (en) * 1997-06-16 2000-08-01 Codina; George Method and apparatus for countering asymmetrical aerodynamic process subjected onto multi engine aircraft
US6105904A (en) * 1998-03-30 2000-08-22 Orbital Research Inc. Deployable flow control device
US6220550B1 (en) 1998-03-31 2001-04-24 Continuum Dynamics, Inc. Actuating device with multiple stable positions
US6161800A (en) * 1999-05-04 2000-12-19 The Boeing Company Pivoting spanwise-flow redirector for tiltrotor aircraft
DE1282555T1 (de) 2000-05-16 2003-09-18 Bell Helicopter Textron Inc Multimodales schwenkrotorgondel-steuerungssystem mit integriertem flugbereichsschutz
US6427948B1 (en) * 2000-10-30 2002-08-06 Michael Campbell Controllable vortex generator
US6478541B1 (en) 2001-08-16 2002-11-12 The Boeing Company Tapered/segmented flaps for rotor blade-vortex interaction (BVI) noise and vibration reduction
US6837465B2 (en) 2003-01-03 2005-01-04 Orbital Research Inc Flow control device and method of controlling flow
US6892982B2 (en) * 2003-01-29 2005-05-17 Northrop Grumman Corporation Aircraft with forward opening inlay spoilers for yaw control

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297080A (zh) * 2010-06-22 2011-12-28 通用电气公司 涡流发生器组件和用于组装风力涡轮机转子叶片的方法
CN102297080B (zh) * 2010-06-22 2015-09-16 通用电气公司 涡流发生器组件和用于组装风力涡轮机转子叶片的方法
CN102862674A (zh) * 2011-07-05 2013-01-09 波音公司 用于降低失速速度的可缩回涡流发生器
CN102862674B (zh) * 2011-07-05 2015-02-25 波音公司 用于降低失速速度的可缩回涡流发生器
CN107575341A (zh) * 2016-07-05 2018-01-12 西门子公司 带有涡流发生器的风力涡轮机转子叶片
CN107575341B (zh) * 2016-07-05 2019-12-17 西门子歌美飒可再生能源公司 带有涡流发生器的风力涡轮机转子叶片
US10598149B2 (en) 2016-07-05 2020-03-24 Siemens Gamesa Renewable Energy A/S Wind turbine rotor blade with vortex generators
CN108910019A (zh) * 2018-07-05 2018-11-30 中国空气动力研究与发展中心高速空气动力研究所 一种采用热双金属微锯齿结构的空气流动控制系统
CN108910019B (zh) * 2018-07-05 2020-03-31 中国空气动力研究与发展中心高速空气动力研究所 一种采用热双金属微锯齿结构的空气流动控制系统
CN110435876A (zh) * 2019-08-26 2019-11-12 中国空气动力研究与发展中心低速空气动力研究所 一种带有伸缩式涡流发生器的共轴旋翼桨毂整流罩
CN110435876B (zh) * 2019-08-26 2020-06-19 中国空气动力研究与发展中心低速空气动力研究所 一种带有伸缩式涡流发生器的共轴旋翼桨毂整流罩

Also Published As

Publication number Publication date
US20070018056A1 (en) 2007-01-25
JP2008544921A (ja) 2008-12-11
EP1896323B1 (en) 2009-06-17
US7878457B2 (en) 2011-02-01
ATE433909T1 (de) 2009-07-15
EP1896323A1 (en) 2008-03-12
BRPI0613492A2 (pt) 2011-01-11
DE602006007353D1 (de) 2009-07-30
WO2007005687A1 (en) 2007-01-11
RU2008103327A (ru) 2009-08-10
CA2613446A1 (en) 2007-01-11
AU2006265854A1 (en) 2007-01-11
KR20080025379A (ko) 2008-03-20
CA2613446C (en) 2016-11-22

Similar Documents

Publication Publication Date Title
CN101213131A (zh) 可缩回的涡流发生器
US7939178B2 (en) Shape-changing structure with superelastic foam material
US8616846B2 (en) Aperture control system for use with a flow control system
US8240616B2 (en) Method and system for global flow field management using distributed, surface-embedded, nano-scale boundary layer actuation
US8434293B2 (en) High stiffness shape memory alloy actuated aerostructure
US7321185B2 (en) Active multistable twisting device
CN108327895B (zh) 升力面
JP2008543673A5 (zh)
EP3608223B1 (en) Methods, systems, and apparatuses for in-line variably porous surfaces
Johnston et al. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil
US20150226156A1 (en) Non-Axisymmetric Fixed or Variable Fan Nozzle for Boundary Layer Ingestion Propulsion
IL137925A (en) Active flaperon assembly
CN109795674A (zh) 旋涡发生器控制系统、飞行器及控制气流改变装置的方法
CN110194269A (zh) 拉胀双稳态结构
US8646729B2 (en) Deployable aerodynamic devices with reduced actuator loads
Jones et al. Functional flexibility: The potential of morphing composites
CN109795675A (zh) 用于飞行器的旋涡发生器结构以及飞行器
US8235329B1 (en) Dynamically actuated adaptive control structures
EP2125511B1 (en) Surface structure
Ciobaca et al. Wind tunnel experiments with active flow control for an outer wing model
EP3744628B1 (en) System for re-energizing streamflow in control surfaces of aircrafts
Spiteri et al. Design of a morphing Bi-Stable composite air intake
JP2012250705A (ja) アクチュエータ負荷を低減した展開可能な空気力学的装置
Schultz Active multistable twisting device
Leung et al. Design of shape memory alloy actuated deformable airfoil for subsonic flight

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication