CN101009475B - 风轮机泄放负载系统及方法 - Google Patents

风轮机泄放负载系统及方法 Download PDF

Info

Publication number
CN101009475B
CN101009475B CN2007100842014A CN200710084201A CN101009475B CN 101009475 B CN101009475 B CN 101009475B CN 2007100842014 A CN2007100842014 A CN 2007100842014A CN 200710084201 A CN200710084201 A CN 200710084201A CN 101009475 B CN101009475 B CN 101009475B
Authority
CN
China
Prior art keywords
generator
wind turbine
resistance
coupled
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007100842014A
Other languages
English (en)
Other versions
CN101009475A (zh
Inventor
H·吕策
T·艾登费尔德
P·高赫尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Renovables Espana SL
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101009475A publication Critical patent/CN101009475A/zh
Application granted granted Critical
Publication of CN101009475B publication Critical patent/CN101009475B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/06Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors
    • H02H7/067Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors on occurrence of a load dump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0288Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to clearance between the blade and the tower, i.e. preventing tower strike
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/90Braking
    • F05B2260/903Braking using electrical or magnetic forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • F05B2270/1011Purpose of the control system to control rotational speed (n) to prevent overspeed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/107Purpose of the control system to cope with emergencies
    • F05B2270/1071Purpose of the control system to cope with emergencies in particular sudden load loss
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/337Electrical grid status parameters, e.g. voltage, frequency or power demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

风轮机制动系统(10)包括:一包括涡轮机叶片(18)和控制系统(28)的风轮机(16);一耦合至涡轮机叶片的发电机(20);一耦合至发电机并连接至用电电网(26)的发电机转换器(24);至少一个耦合至发电机和发电机转换器的泄放电阻(32),当用电电网损失能量时,泄放电阻为发电机转换器施加一电气负载。

Description

风轮机泄放负载系统及方法
技术领域
本发明涉及风轮机发出的电能的产生和分配。更具体地说,本发明涉及对风轮机所带电气功率负载快速损失的适应,如电网负载的损失。
背景技术
电力传输配电网(“电网”)将电能从风力发电设备传输至电气用户。电网为风力发电机提供电气负载。该发电机的电气负载向发电机的转子施加转矩。该转子由风轮机转动,而风轮机由风转动。从电网施加给转子的转矩引起一个转矩施加到风轮机上。风轮机基于来自电网的转矩而被平衡。如果电网负载损失,则风轮机将会变得不平衡。
电网的损失从发电机卸下负载,并具有代表性地引起发电机上转矩负载的快速损失。这种转矩的快速损失将导致风轮机转子显著和快速地加速。为了避免转子超速,必须起动急剧的制动过程,这导致高负载的力和力矩作用在风轮机结构上,如大的弯曲力矩施加于风轮机机架塔上。
风轮机通常被设计成能耐受电网损失所产生的力。例如,风轮机机架塔具有厚墙壁和大连接螺栓,部分地,用以经受由突然的电网损失引起的大的弯曲力矩。风轮机的基座通常被设计成用来吸收由电网负载的损失所引起的施加给机架塔的力。长时间以来需要适应电网损失而不对风轮机施加大的力的结构和方法。
发明内容
风轮机的电源电路包含一个泄放负载电阻(a dump load resistor)。当电网损失发生时,该泄放负载电阻立即将一个电气吸收负载应用到发电机并因此避免从发电机和风轮机过度卸载。该泄放负载至少将一个负载应用到发电机几秒钟直至转子速度减低,如,通过叶片变距。这个过程避免了转子的急剧加速。其它能量储存装置,如,飞轮,同样可被使用。
泄放负载电阻避免当电网损失发生时转子速度的快速增加,该快速增加导致严重的制动过程进而又导致了大的和快速的力,如,弯曲力矩,施加到风轮机上。泄放负载电阻使得风轮机可被设计为耐受更小电网损失负载,该电网损失负载是典型的风轮机设计中所需要的。
在一个实施例中,本发明包括一种风轮机系统,包括:包括涡轮机叶片和控制系统的风轮机;耦合至涡轮机叶片的发电机;耦合至发电机并可连接至用电电网的发电机转换器;至少一个泄放电阻,耦合至发电机和发电机转换器,如果并且当用电电网损失功率时,泄放电阻施加一电气负载给发电机转换器。
在另一实施例中,本发明为一种风轮机能量负载系统,包括:适于将风轮机发电机与发电机转换器耦合起来的连接器,和并联耦合至连接器的泄放负载电阻。
在再一实施例中,本发明为一种为耦合至用电电网的风轮机加载的方法,该方法包括:当从用电电网损失电能时,向风轮机施加泄放负载电阻,并经由发电机和发电机转换器释放从风轮机的转动惯量到泄放负载电阻。
附图说明
图1是一具有泄放负载电阻的风轮机的示意图;
图2是该风轮机电气部件的框图;
图3是由一组电阻构成的泄放负载电阻及其控制电路的电气示意图;
图4是由一组电阻构成的泄放负载电阻及其控制电路的电气示意图;
图5是风轮机电网损失过程流程图。
具体实施方式
图1是风轮机系统10的示意图。该风轮机可能包括机架塔12,该机架塔12固定在基座14上、并被覆以一具有一系列大叶片18的风轮机16。风转动驱动发电机的叶片。风轮机叶片之间的桨距可以通过传统的齿轮传动装置来调节。
图2是风轮机10的特定部件的详细框图。发电机20包括一由风轮机叶片转动的轴21所旋转驱动的电机。从发电机发出的电能经连接器22传输至发电机转换器24。发电机转换器24可耦合至一公用电网功率转换器(a utility grid power converter)25,该公用电网功率转换器25依序按传统方式耦合至电网26。该公用电网功率转换器25可固定安装于风轮机基座14附近的地面上并为一台或多台风轮机10服务。
发电机转子的励磁器31可由不间断电源(UPS)33驱动,以确保在电网能量损失时被供电。另一方面,发电机也可是不需要被供电的励磁器的永磁发电机。
一控制器28对风轮机进行监测和控制。该控制器包括一电网损失检测器29,该电网损失检测器对电网26进行监测并当电网发生能量损失时进行检测。电网能量损失可表现为电网中的欠压或电网中的偏离频率(out of frequency)。电能损失快速地减少发电机和风轮机上的功率负载。当电网损失被检测出时,控制器切换连接器22以使泄放负载电阻32耦合至发电机20和发电机转换器24。控制器也可命令风轮机的齿轮传动装置以调节叶片桨距并从而减小风轮机的转速。另外,控制器可激活连接器22以耦合至发电机。另一能量储存负载30,如飞轮,电池或其它储存装置。可快速连接泄放负载电阻,例如,在0.1至1秒以内。调节叶片桨距和/或耦合另一储存装置相对较慢,例如,3秒至几分钟。
泄放负载电阻连接至连接器22。该泄放负载电阻可配置为与转换器并联并连接至发电机的输出端。
图3是发电机,转换器,电网,泄放负载电阻32及泄放负载电阻控制电路的原理图。泄放负载电阻耗散发电机20产生的电能。泄放负载电阻的实例为缠绕在固体散热器上的电阻丝,在水中或其它液体散热器或其它散热装置中的电阻元件。泄放负载电阻的阻值与由电网施加给发电机20的负载阻值相当。举例来说,泄放负载电阻可具有吸收1000至4000千瓦(kW)范围且较好的是约3000kW的功率的额定功率。
图3中所示的泄放负载电阻32具体为用于永磁发电机(PMG)36的三相电源输出中每一相的一1000kW额定电阻34,其中永磁发电机36由风轮机驱动。当电网26接通时,由PMG产生的电能经由一传统的实际容量(full size)发电机转换器24和一传统的实际容量(full size)电网转换器25被传输,上述发电机转换器24和电网转换器25将PMG发出的三相电能转换为具有适合电网26的相位,电压和电流的三相电源。
可编程逻辑电路(PLC)42,其可以是风轮机的控制器,监控与电网的连接并检测电网负载的损失。当检测到电网损失时,PLC就开关晶闸管桥44以将各泄放负载电阻34连接至PMG36的电源输出中的一相。泄放负载电阻消耗来自PMG的功率,直至电网负载与转换器重新连接,风轮机叶片速度减小,或直至一能量储存装置(图3中未示出)连接到PMG和/或转换器上。阻抗装置46,如滤波器和/或电感器,将泄放负载电阻32耦合到发电机36的三相输出上。
如图4所示,泄放负载电阻32可以是多组并联配置的电阻组48。每一电阻组48可以是一组用于PMG的每相输出的三个750kW的额定电阻。PLC控制何时以及电阻组48中的哪些,如果有任一组需要连接的话,连接到PMG的输出上。电阻组的总阻值可由PLC42实时或接近实时控制,以使其与由电网通过转换器施加给发电机的负载相同或相当。例如,假定共有四组电阻组且每组由750kW的额定电阻构成,如果所有电阻组48均施加到PMG的输出,则总泄放电阻负载将为额定3000kW。当电网负载降至预定负载等级以下时,PLC将会施加一组,两组或三组(但少于全部)的电阻组48以施加部分泄放负载到PMG上。例如,当电网负载减小至接近完全的电网损失时,PLC将陆续施加电阻组以逐渐增加泄放负载。陆续地施加电阻组使得能够相对平滑的、逐渐的施加泄放电阻负载。
图5为调节电网损失的过程的示范性流程图。步骤60中,风轮机10发出施加给电网26的电能(图2)。特别是,由发电机发出的电能被施加给发电机转换器,由该发电机转换器将电能转换为适于电网应用的频率,相位和电压等级。这个转换可由发电机转换器和公用电网功率转换器25共同完成(图2)。
控制器28,特别是电网损失检测器29对电网26进行监控,例如通过监控转换器24和/或25与电网26之间连接处上的频率,相位和电压等级对电网26进行监控。控制器28调节泄放负载电阻32的总阻值使其与由电网施加的负载相匹配。控制器可延迟其调节,如,延迟一分钟,一小时或一天,以确保不在检测到电网损失后对电阻进行调节。
步骤66中,电网损失,例如通过电网施加给转换器24,25的负载发生频率,相位或电压等级上的突然变化而发生。控制器28被编程以判定当预定状态发生,例如由电网施加的负载频率,相位或电压等级突然变化时,是否发生了电网损失。该预定状态可以表明电网损失是紧急的并且不需要是电网负载的完全损失。
步骤68中,电网损失检测器29检测控制器中存储的预定状态并且控制器判定电网损失状态存在。步骤70中,一旦检测到电网损失,泄放负载电阻就实际上立即,如在0.1至1秒以内,被切换成为发电机的负载。泄放负载电阻被快速切换成为发电机的负载,从而使得没有由电网损失引起的巨大的力施加到风轮机上,包括给机架塔施加过度的弯曲力矩。泄放负载可在电网负载完全消失以前被实际上迅速地和尽可能地切换成为发电机的负载。
控制器同样可减小风轮机叶片的速度和/或切换至一能量储存装置,步骤72中。调节涡轮机转速通常需要几分钟的时间。能量储存装置可以是,例如说,在风轮机基座附近置于地上的飞轮,可储存风轮机发出的能量以便于其后再使用。泄放负载电阻可配置为使能量被消耗掉并不被存储起来。然而,相对速度较慢的机电开关,如继电器,可将飞轮连接至连接器22。在启动这些继电器的延迟时间过程中,泄放负载电阻32施加一个负载给发电机并由此避免施加过大的力,如,力矩和弯曲力矩,给风轮机。在步骤74中,风轮机的叶片同样可根据电网负载功率损失而减速或变桨距。
尽管本发明已连同目前被认为是最实际和最优的具体实施例而描述,但可以理解到本发明不应局限于已公开的具体实施例,相反,应覆盖在附加权利要求的精神和范围内所包括的不同修改和等效配置。

Claims (10)

1.一种风轮机系统(10),包括:
包括涡轮机叶片(18)和控制系统(28)的风轮机(16);
耦合至涡轮机叶片的发电机(20);
耦合至发电机并连接至公用电网(26)的发电机转换器(24);
至少一个泄放电阻(32),耦合至发电机和发电机转换器,并且当公用电网损失能量时,泄放电阻施加一电气负载给发电机转换器。
2.如权利要求1所述的系统,其中,所述泄放电阻(32)进一步包括一组多个电阻(34)和一晶闸管桥(44)以切换连接该电阻组至发电机和发电机转换器。
3.如权利要求1所述的系统,其中,所述泄放电阻(32)进一步包括并联连接的多组多个电阻(48),其中所述电阻组中的一组或多组切换(46)连接至发电机和发电机转换器。
4.如权利要求1所述的系统,其中,该泄放电阻(32)连接至发电机并与用于发电机和发电机转换器的连接器(22)并联。
5.如权利要求1所述的系统,其中,该泄放电阻(32)是多个泄放电阻(34,48)。
6.如权利要求1所述的系统,其中,该公用电网(26)包括主接触器,且其中控制系统(28,29)被用于通过检测欠压或偏离频率的情况来检测该公用电网的功率损失。
7.一种风轮机能量耗散系统(10),包括:
适于将风轮机发电机(20)与发电机转换器(24)耦合起来的连接器(22);
耦合至连接器的泄放负载电阻(32),以及
配置为当发生电网损失时命令连接器将泄放负载电阻耦合至发电机的电网损失检测器(29)。
8.如权利要求7所述的风轮机能量耗散系统,其中,泄放负载电阻(32)与连接器(22)并联并耦合至发电机(20)和发电机转换器(24)。
9.如权利要求7所述的风轮机能量耗散系统,其中,泄放负载电阻(32)为多个泄放负载电阻(34,48)。
10.如权利要求7所述的风轮机能量耗散系统,其中,电网损失检测器(29)为可编程逻辑电路且连接器(22,44)为晶闸管开关桥。
CN2007100842014A 2006-01-19 2007-01-19 风轮机泄放负载系统及方法 Active CN101009475B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/334575 2006-01-19
US11/334,575 US7276807B2 (en) 2006-01-19 2006-01-19 Wind turbine dump load system and method

Publications (2)

Publication Number Publication Date
CN101009475A CN101009475A (zh) 2007-08-01
CN101009475B true CN101009475B (zh) 2011-05-25

Family

ID=38197650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100842014A Active CN101009475B (zh) 2006-01-19 2007-01-19 风轮机泄放负载系统及方法

Country Status (5)

Country Link
US (1) US7276807B2 (zh)
EP (2) EP2947745B1 (zh)
CN (1) CN101009475B (zh)
DK (2) DK2947745T3 (zh)
ES (2) ES2545771T3 (zh)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6858953B2 (en) * 2002-12-20 2005-02-22 Hawaiian Electric Company, Inc. Power control interface between a wind farm and a power transmission system
BRPI0621442A2 (pt) * 2006-03-16 2011-12-13 Vestas Wind Sys As método para reduzir fadiga por efeito de cargas nos componentes de uma turbina eólica submetida a esforço assimétrico de carga de seu rotor, sistema de controle para reduzir as fadiga por efeito de cargas nos componentes de uma turbina eólica submetidos a esforço assimétrico de carga no plano de seu rotor, turbina eólica, e área de captação de ventos
US7622815B2 (en) * 2006-12-29 2009-11-24 Ingeteam Energy, S.A. Low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid
ES2341820B1 (es) * 2007-01-31 2011-05-13 GAMESA INNOVATION & TECHNOLOGY, S.L. Un metodo para eliminar el impacto de los retrocesos en la multiplicadora de un aerogenerador.
WO2008119351A2 (en) * 2007-03-30 2008-10-09 Vestas Wind Systems A/S Wind turbine with pitch control arranged to reduce life shortening loads on components thereof
US7671570B2 (en) * 2008-04-04 2010-03-02 General Electric Company Systems and methods involving operating variable speed generators
US7977925B2 (en) 2008-04-04 2011-07-12 General Electric Company Systems and methods involving starting variable speed generators
US20100095617A1 (en) * 2008-10-16 2010-04-22 General Electric Wind Energy Gmbh Wind turbine tower foundation containing power and control equipment
US7786608B2 (en) * 2008-11-17 2010-08-31 General Electric Company Protection system for wind turbine
EP2196666B1 (en) 2008-12-08 2012-02-22 Siemens Aktiengesellschaft Control of the rotational speed of a wind turbine which is impeded to export electrical power to an electricity network
US8352091B2 (en) 2009-01-02 2013-01-08 International Business Machines Corporation Distributed grid-interactive photovoltaic-based power dispatching
EP2389507A4 (en) * 2009-01-23 2013-07-24 Seabased Ab WAVE POWER UNIT
WO2010134994A1 (en) * 2009-05-20 2010-11-25 Cummins Power Generation Ip, Inc. Apparatus, systems, and methods to address electrical load transients, electrical faults, and electric power grid disruptions
US8912672B2 (en) 2009-05-20 2014-12-16 Cummins Power Generator IP, Inc. Control of an engine-driven generator to address transients of an electrical power grid connected thereto
EP2270331B1 (en) * 2009-06-30 2020-03-04 Vestas Wind Systems A/S Wind turbine with control means to manage power during grid faults
EP2464860B1 (en) * 2009-08-14 2015-04-22 Vestas Wind Systems A/S A variable speed wind turbine, and a method for operating the variable speed wind turbine during a power imbalance event
US8227929B2 (en) * 2009-09-25 2012-07-24 General Electric Company Multi-use energy storage for renewable sources
US20120253536A1 (en) * 2009-12-22 2012-10-04 Magnum Energy, Incorporated Ac diversion mode controller
KR101027055B1 (ko) * 2009-12-30 2011-04-11 윤진목 풍력발전기
EP2360375B1 (en) * 2010-01-04 2015-06-17 Vestas Wind Systems A/S Method for operating a power dissipating unit in a wind turbine
ES2794015T3 (es) 2010-01-14 2020-11-17 Siemens Gamesa Renewable Energy Service Gmbh Componentes de pala del rotor de la turbina eólica y métodos para hacer los mismos
US10137542B2 (en) 2010-01-14 2018-11-27 Senvion Gmbh Wind turbine rotor blade components and machine for making same
WO2011095169A2 (en) * 2010-02-02 2011-08-11 Vestas Wind Systems A/S Test system for wind turbine dump load
CN101871433B (zh) * 2010-06-11 2012-07-11 哈尔滨工程大学 具有储能装置的变速恒频风力发电装置
US20110141641A1 (en) * 2010-06-30 2011-06-16 General Electric Company Circuit breaker with overvoltage protection
EP2589129B1 (en) * 2010-06-30 2019-09-18 Vestas Wind Systems A/S Wind turbine
US20110140425A1 (en) * 2010-08-25 2011-06-16 Martin Staedler Method and System For Controlling Wind Turbine Rotational Speed
CA2753666A1 (en) * 2010-09-29 2012-03-29 Erlphase Power Technologies Limited Method and apparatus for sub-harmonic protection
US9774198B2 (en) * 2010-11-08 2017-09-26 Brandon Culver Wind and solar powered heat trace with homeostatic control
WO2012076015A2 (en) * 2010-12-10 2012-06-14 Vestas Wind Systems A/S A method of operating a wind turbine as well as a system suitable therefore
US8631275B2 (en) * 2010-12-28 2014-01-14 Vestas Wind Systems A/S Controller arrangement of an electrical power transfer system of a wind turbine
US8624437B2 (en) * 2010-12-28 2014-01-07 Vestas Wind Systems A/S Power conversion system and method
EP2476900A1 (en) * 2011-01-18 2012-07-18 Siemens Aktiengesellschaft Wind turbine
WO2013013678A2 (en) * 2011-07-27 2013-01-31 Vestas Wind Systems A/S A power dissipating arrangement in a wind turbine
EP2555141A1 (en) * 2011-08-03 2013-02-06 Alcatel Lucent A method, a system, a server, a control element, a computer program and a computer program product for operating a power grid having decentralized control elements
US8491262B2 (en) 2011-10-27 2013-07-23 General Electric Company Method for shut down of a wind turbine having rotor blades with fail-safe air brakes
ITMI20112178A1 (it) * 2011-11-29 2013-05-30 Energy Resources S P A Sistema di limitazione della potenza immessa in rete da impianti a fonti rinnovabili
CN102751814A (zh) * 2011-12-26 2012-10-24 珠海市洁源电器有限公司 小型风力发电机混合制动系统和制动方法
WO2013110279A2 (en) * 2012-01-27 2013-08-01 Vestas Wind Systems A/S A method for damping drive train oscillations in a wind turbine generator
CN102709908B (zh) * 2012-06-05 2014-05-21 华北电力大学 大规模风电接入电网后的网损预测方法
US8598725B1 (en) * 2012-06-11 2013-12-03 United Technologies Corporation Utilizing flux controllable PM electric machines for wind turbine applications
IN2014DN10678A (zh) * 2012-07-19 2015-08-28 Vestas Wind Sys As
SE536639C2 (sv) * 2012-08-15 2014-04-22 Claes Urban Lundin Kontrollsystem för övervarvsreduktion i vattenkraftstationer
CN102797630A (zh) * 2012-08-15 2012-11-28 湘电风能有限公司 一种风力发电机组停机控制方法及装置
DE102012220269A1 (de) * 2012-11-07 2014-05-08 Siemens Aktiengesellschaft Windkraftanlage mit einer elektrischen Bremseinrichtung
CN104769837B (zh) * 2012-11-20 2017-10-10 维斯塔斯风力系统集团公司 用于减少在风力涡轮中的发电机短路的影响的方法和系统
WO2014082766A2 (de) * 2012-11-30 2014-06-05 Siemens Aktiengesellschaft Vorrichtung und verfahren zur verlängerung der fehlerklärungszeit
CN103078565B (zh) * 2012-12-25 2016-02-03 北京金风科创风电设备有限公司 发电机制动设备
CN104113245B (zh) * 2013-04-17 2017-09-15 台达电子工业股份有限公司 风力发电控制系统以及方法
US9267491B2 (en) 2013-07-02 2016-02-23 General Electric Company Wind turbine rotor blade having a spoiler
US20150115902A1 (en) * 2013-10-29 2015-04-30 General Electric Company Power generation system and method with fault ride through capability
ES2908952T3 (es) * 2013-10-31 2022-05-04 Gen Electric Sistema y método para controlar sistemas de generación de potencia eólica
JP6071912B2 (ja) * 2014-01-27 2017-02-01 株式会社東芝 過電圧保護装置および電流調整回路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511807A (en) * 1982-04-20 1985-04-16 Northern Engineering Industries Plc Electrical generator control system
GB2196448A (en) * 1986-10-17 1988-04-27 Patrick John Brazil Generator controller
US5536976A (en) * 1994-03-03 1996-07-16 Gas Research Institute Multiple service load solid state switching for controlled cogeneration system
US5907192A (en) * 1997-06-09 1999-05-25 General Electric Company Method and system for wind turbine braking
CN1625831A (zh) * 2002-01-29 2005-06-08 威斯塔斯风力系统公开有限公司 风力装置中仅用于信息功能的电路结构

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357542A (en) 1979-07-12 1982-11-02 Westinghouse Electric Corp. Wind turbine generator system
US4355955A (en) 1981-04-06 1982-10-26 The Boeing Company Wind turbine rotor speed control system
US4490093A (en) 1981-07-13 1984-12-25 U.S. Windpower, Inc. Windpower system
US4435646A (en) 1982-02-24 1984-03-06 North Wind Power Company, Inc. Wind turbine rotor control system
US5786642A (en) * 1991-01-08 1998-07-28 Nextek Power Systems Inc. Modular power management system and method
US5929538A (en) * 1997-06-27 1999-07-27 Abacus Controls Inc. Multimode power processor
EP1284045A1 (en) * 2000-05-23 2003-02-19 Vestas Wind System A/S Variable speed wind turbine having a matrix converter
EP1296441B1 (de) * 2001-09-25 2006-08-16 ABB Schweiz AG Energieerzeugungseinrichtung
US7015595B2 (en) 2002-02-11 2006-03-21 Vestas Wind Systems A/S Variable speed wind turbine having a passive grid side rectifier with scalar power control and dependent pitch control
AU2002336921A1 (en) * 2002-11-01 2004-05-25 Vestas Wind Systems A/S Circuit arrangement for use in a variable speed wind turbine system comprising a double-fed induction generator and a back-to-back converter
US7289920B2 (en) 2003-06-26 2007-10-30 General Electric Company Method and apparatus for capture of grid characteristics corresponding to fluctuation events
WO2005015012A1 (en) * 2003-08-07 2005-02-17 Vestas Wind Systems A/S Method of controlling a wind turbine connected to an electric utility grid during malfunction in said electric utility grid, control system, wind turbine and family hereof
US6924565B2 (en) 2003-08-18 2005-08-02 General Electric Company Continuous reactive power support for wind turbine generators
DE102004007461A1 (de) * 2004-02-13 2005-09-01 Helgers Finanzberatung Gmbh Verfahren zum Betreiben einer Windkraftanlage, und dementsprechend ausgestaltete Windkraftanlage
ES2245608B1 (es) * 2004-06-30 2007-03-01 Gamesa Eolica S.A. Procedimiento y dispositivo para evitar la desconexion de un parque de generacion de energia electrica de la red.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511807A (en) * 1982-04-20 1985-04-16 Northern Engineering Industries Plc Electrical generator control system
GB2196448A (en) * 1986-10-17 1988-04-27 Patrick John Brazil Generator controller
US5536976A (en) * 1994-03-03 1996-07-16 Gas Research Institute Multiple service load solid state switching for controlled cogeneration system
US5907192A (en) * 1997-06-09 1999-05-25 General Electric Company Method and system for wind turbine braking
CN1625831A (zh) * 2002-01-29 2005-06-08 威斯塔斯风力系统公开有限公司 风力装置中仅用于信息功能的电路结构

Also Published As

Publication number Publication date
US7276807B2 (en) 2007-10-02
EP2947745B1 (en) 2017-09-27
DK1819023T3 (en) 2015-08-17
EP1819023A2 (en) 2007-08-15
US20070164567A1 (en) 2007-07-19
EP2947745A1 (en) 2015-11-25
EP1819023A3 (en) 2013-04-17
DK2947745T3 (da) 2017-11-20
ES2646098T3 (es) 2017-12-12
CN101009475A (zh) 2007-08-01
ES2545771T3 (es) 2015-09-15
EP1819023B1 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
CN101009475B (zh) 风轮机泄放负载系统及方法
CN101672252B (zh) 风力涡轮机及其控制方法
CN105846463B (zh) 一种多源协调的黑启动方法及系统
CN102751719A (zh) 多飞轮储能单元并联的飞轮阵列储能系统
CN103368187A (zh) 基于改进风力发电机组下的无功协调控制方法
CN102522774B (zh) 一种风力发电机组的双电机切换控制方法
CN102916446A (zh) 一种异步风力发电机组电控系统
Tang et al. Shunt capacitor failures due to windfarm induction generator self-excitation phenomenon
CN202633966U (zh) 风力发电机低电压穿越控制系统
CN103016265B (zh) 一种采用电网驱动紧急顺桨的交流变桨系统
CN203365567U (zh) 一种模拟风电现场运行工况的风力发电变流器测试平台
CN201953562U (zh) 一种风力发电机变桨距控制系统
CN102222973B (zh) 用于大型风力发电机组变桨控制器的直流电源装置
CN202127280U (zh) 用于大型风力发电机组变桨控制器的直流电源装置
CN107465208B (zh) 改进式双馈风力发电机系统及其控制方法
CN203630230U (zh) 柔性直流系统与风电场并接方式下的仿真测试系统
CN104767223A (zh) 一种旋转式发电机组与原动机软连接并网系统及其使用方法
Friedel Modeling and simulation of a hybrid wind-diesel microgrid
CN111711389B (zh) 风力发电机及其功率转换电路的控制方法和装置
CN110870156B (zh) 针对风电场停机之后的快速连接的操作风电场的系统和方法
CN111917348B (zh) 智能发电设备
CN207475208U (zh) 一种变速恒频发电机组的扩容系统
CN204481494U (zh) 一种旋转式发电机组与原动机软连接并网系统
CN103078565B (zh) 发电机制动设备
CN103337878A (zh) 一种直驱电励磁型风电机组低电压穿越的控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240108

Address after: Barcelona, Spain

Patentee after: Ge renewable energy Spain Ltd.

Address before: New York, United States

Patentee before: General Electric Co.