CA2521045A1 - Control of power, loads and/or stability of a horizontal axis wind turbine by use of variable blade geometry control - Google Patents

Control of power, loads and/or stability of a horizontal axis wind turbine by use of variable blade geometry control Download PDF

Info

Publication number
CA2521045A1
CA2521045A1 CA002521045A CA2521045A CA2521045A1 CA 2521045 A1 CA2521045 A1 CA 2521045A1 CA 002521045 A CA002521045 A CA 002521045A CA 2521045 A CA2521045 A CA 2521045A CA 2521045 A1 CA2521045 A1 CA 2521045A1
Authority
CA
Canada
Prior art keywords
wind turbine
deformable
turbine blade
skin
blade according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002521045A
Other languages
French (fr)
Other versions
CA2521045C (en
Inventor
Dan Christian Bak
Thomas Buhl
Peter Fuglsang
Helge Aagaard Madsen
Flemming Rasmussen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danmarks Tekniskie Universitet
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2521045A1 publication Critical patent/CA2521045A1/en
Application granted granted Critical
Publication of CA2521045C publication Critical patent/CA2521045C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0232Adjusting aerodynamic properties of the blades with flaps or slats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/305Flaps, slats or spoilers
    • F05B2240/3052Flaps, slats or spoilers adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • F05B2240/311Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape flexible or elastic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/76Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism using auxiliary power sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/50Intrinsic material properties or characteristics
    • F05B2280/5006Shape memory
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

The present invention relates to a design concept by which the power, loads and/or stability of a wind turbine may be controlled by typically fast variation of the geometry of the blades using active geometry control (e.g.
smart materials or by embedded mechanical actuators), or using passive geometry control (e.g. changes arising from loading and/or deformation of the blade) or by a combination of the two methods. The invention relates in particular to a wind turbine blade, a wind turbine and a method of controlling a wind turbine.

Claims (30)

1. A wind turbine blade comprising one or more shape deformable airfoils sections wherein the outer surface of each of the shape deformable airfoils sections is substantial continuos in all of its shapes, and actuator means for providing the shape changes in the shape deformable airfoil sections.
2. A wind turbine blade according to claim 1, wherein the actuator means are(is) active means in the sense that they(it) provide(s) changes in shape by supplying them(it) with energy.
3. A wind turbine blade according to claim 1 or 2, wherein each shape deformable airfoil section comprising a substantially non-deformable part and one or more deformable parts.
4. A wind turbine blade according to claim 3, wherein, the outer surface of at least one of the deformable parts is defined by a skin made of a flexible material, e.g.
rubber.
5. A wind turbine blade according to claim 4, wherein at least one of the deformable parts is a shell construction in which the skin defined the shell.
6. A wind turbine blade according to claim 5, wherein the interior of the shell construction is occupied by a deformable supporting material, such as a foam made of plastic or rubber.
7. A wind turbine blade according to any of the claims 4-6, wherein the transition between the outer surface of substantially non-deformable part and the skin of the deformable parts is substantially smooth, such as substantial continuous.
8. A wind turbine blade according to any of the claims 4-8, wherein the non-deformable part comprising abutment surfaces on which the skin abuts, the abutment surfaces being shaped so that the transition between the outer surface of the substantial non-deformable part and the skin is substantially smooth, such as substantial continuous.
9. A wind turbine blade according to any of the claims 4-8, wherein the actuator means acts(act) on the inner side of the skin.
10. A wind turbine blade according to any of the claims 4-9, wherein the actuator means is(are) a longitudinal extendable device(s), preferably being a hydraulic device, having one end connected to the skin and the other end connected to the substantially non-deformable park or a structure connected to the substantially non-deformable part.
11. A wind turbine blade according claim 10, wherein the longitudinal extendable device at one end being attached to in the vicinity of either the upper or lower side of the airfoil.
12. A wind turbine blade according to claim 10 or 11, wherein the longitudinal extendable device(s) extends mainly in the cordwice direction and wherein the end being connected to said skin is connected to the skin at the lower side of the airfoil and the end being connected to the substantially non-deformable part or the structure is connected in the vicinity of the upper side of the airfoil or vice versa.
13. A wind turbine blade according to any of the claims 10-12, wherein the longitudinal extendable device(s) is(are) an extendable piston device.
14. A wind turbine blade according to any of the claims 4-8, wherein the skin is attached to the substantially non-deformable part and wherein the actuator means is situated within the skin.
15. A wind turbine blade according to claim 14, wherein the actuator means is(are) material composition(s) which elongation(s), shortening(s) and/or bending(s) is(are) controllable by applied electrical current(s), e.g. being a smart material.
16. A wind turbine blade according to claim 15, wherein the material composition is sandwiched or embedded in the skin, preferably in such a manner that no slip between the material composition and the material of the skin occurs during deformation of the skin.
17. A wind turbine blade according to claim 15 or 16, wherein the material composition is applied to the interior surface of the skin, preferably in such a manner that no slip between the material composition and the material of the skin occurs during deformation of the skin.
18. A wind turbine blade according to claim 3, wherein at least one of the shape deformable parts is made of flexible material(s), e.g. rubber, and wherein the actuator means is(are) an extendable beam(s) extending within the material(s).
19. A wind turbine blade according to claim 18, wherein the at least one deformable part is made solely of flexible material(s) and has one or more voids.
20. A wind turbine blade according to claim 18 or 19, wherein the extendable beams) is made from a material composition which elongation(s), shortening(s) and/or bending(s) is(are) controllable by applied electrical current(s), such as made from a smart material.
21. A wind turbine blade according to claim 1, wherein the actuator means are(is) passive in the sense that they provide(s) changes in shape as a result of movement of the blade, said movement being preferably torsion, bending and/or rotation of the blades.
22. A wind turbine blade according to any of the preceding claims, wherein the substantially non-deformable part is a central part of the blade and wherein the one or more deformable parts are the leading edge region and/or the trailing edge region.
23. A wind turbine blade according to any of the claims 1-22, wherein the substantially non-deformable part is a load carrying part.
24. A wind turbine having one or more wind turbine blades according to any of the claims
25. A method of controlling the operation condition(s) of a wind turbine comprising one or more blades each having one or more shape deformable airfoil sections, said operation condition(s) being preferably the load on the blade(s), the power produced by the wind turbine, air induced noise, the stability of the wind turbine and/or the like;
said method comprises controlling the shape of the shape deformable airfoil sections, wherein the changes in shape are performed so that no discontinuities are introduced in the surfaces of the airfoils sections.
26. A method according to claim 25, wherein each or some of the shape deformable airfoil sections comprise one or more of the features according to any of the claims 1-24.
27. A method according to claim 25 or 26, wherein the wind turbine comprises detecting means for detecting the one or more operation(s) conditions, wherein the detected operation condition(s) is(are) input to a computer system comprising functionality determining shape deformations to be imposed on some or all of the deformable airfoil sections based on said input.
28. A method according to claim 27, wherein the detecting means comprising means for measuring the blade flow pressure, the rotor position and/or strain gauges, accelerometers or the like provided on one or more components of the wind turbine, said components being typically and preferably the blade(s), the nacelle and/or the tower.
29. A method according to any of the claims 25-28, wherein a typical time scale for a deformation to be introduced in the deformable airfoil sections, is lower than the time for one rotor rotation, preferably lower than half the time for one rotor rotation, such as lower than one quarter for the time for one rotor rotation, such as lower than the time it takes for a blade to rotate 10°, such as 15°.
30. A method according to any of the claims 25-29, further comprising the step setting and/or altering the full span pitch of each blade.
CA2521045A 2003-03-31 2004-03-31 Control of power, loads and/or stability of a horizontal axis wind turbine by use of variable blade geometry control Expired - Fee Related CA2521045C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA200300491 2003-03-31
DKPA200300491 2003-03-31
PCT/DK2004/000225 WO2004088130A1 (en) 2003-03-31 2004-03-31 Control of power, loads and/or stability of a horizontal axis wind turbine by use of variable blade geometry control

Publications (2)

Publication Number Publication Date
CA2521045A1 true CA2521045A1 (en) 2004-10-14
CA2521045C CA2521045C (en) 2010-03-23

Family

ID=33104007

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2521045A Expired - Fee Related CA2521045C (en) 2003-03-31 2004-03-31 Control of power, loads and/or stability of a horizontal axis wind turbine by use of variable blade geometry control

Country Status (9)

Country Link
US (1) US7632068B2 (en)
EP (1) EP1613860B1 (en)
CN (1) CN100455793C (en)
AU (1) AU2004225883B2 (en)
CA (1) CA2521045C (en)
DK (1) DK1613860T3 (en)
ES (1) ES2561389T3 (en)
NO (1) NO20055081L (en)
WO (1) WO2004088130A1 (en)

Families Citing this family (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0414874D0 (en) * 2004-07-02 2004-08-04 Rolls Royce Plc Adaptable fluid flow device
DE102005014884B3 (en) * 2005-04-01 2006-09-14 Nordex Energy Gmbh Rotor blade, for a wind turbine, is of a plastics material with fiber reinforcements of a different thermal expansion to alter the aerodynamic profile shape on a temperature change
EP1952015B1 (en) * 2005-10-17 2013-05-15 Vestas Wind Systems A/S Wind turbine blade with variable aerodynamic profile
US7303373B2 (en) 2005-10-31 2007-12-04 General Electric Company Wind turbine systems, monitoring systems and processes for monitoring stress in a wind turbine blade
DK176352B1 (en) * 2005-12-20 2007-09-10 Lm Glasfiber As Profile series for blade for wind turbines
DE102005061751B4 (en) * 2005-12-21 2013-09-19 Eurocopter Deutschland Gmbh Rotor blade for a rotary wing aircraft
BRPI0600613B1 (en) 2006-03-14 2015-08-11 Tecsis Tecnologia E Sist S Avançados S A Multi-element blade with aerodynamic profiles
JP5043455B2 (en) * 2006-03-28 2012-10-10 キヤノン株式会社 Image forming apparatus, control method thereof, system, program, and storage medium
ES2261100B1 (en) * 2006-03-29 2007-08-01 Gamesa Corporacion Tecnologica, S.A. ANTI-NOISE AEROGENERATOR.
PL2021243T3 (en) 2006-04-27 2019-04-30 Flexsys Inc Compliant structure design for varying surface contours
EP2044324A1 (en) 2006-07-07 2009-04-08 Danmarks Tekniske Universitet Variable trailing edge section geometry for wind turbine blade
EP2104785B1 (en) * 2007-01-16 2014-06-25 Bladena ApS Reinforced blade for wind turbine
DK2129908T3 (en) 2007-03-20 2011-03-21 Vestas Wind Sys As Wind turbine blades with vortex generators
US9039372B2 (en) 2007-04-30 2015-05-26 Vestas Wind Systems A/S Wind turbine blade
WO2008131800A1 (en) 2007-04-30 2008-11-06 Vestas Wind Systems A/S A wind turbine blade
ES2609426T3 (en) * 2007-05-25 2017-04-20 Siemens Aktiengesellschaft Drive system for a wind turbine blade fin
ES2324002B1 (en) * 2007-06-22 2010-05-13 GAMESA INNOVATION & TECHNOLOGY, S.L. AIRLINER SHOVEL WITH DEFLECTABLE ALERONS.
US7909575B2 (en) * 2007-06-25 2011-03-22 General Electric Company Power loss reduction in turbulent wind for a wind turbine using localized sensing and control
ES2326203B1 (en) * 2007-07-23 2010-07-09 GAMESA INNOVATION & TECHNOLOGY, S.L. AEROGENERATOR SHOVEL WITH ARCHABLE ALERONS.
ES2326352B1 (en) * 2007-09-14 2010-07-15 GAMESA INNOVATION & TECHNOLOGY, S.L. AEROGENERATOR SHOVEL WITH DEFLECTABLE ALERONS CONTROLLED BY CHANGES OF PRESSURE ON THE SURFACE.
CN101978160A (en) * 2007-11-06 2011-02-16 富莱克斯公司 Active control surfaces for wind turbine blades
KR20100103546A (en) * 2008-01-30 2010-09-27 클립퍼 윈드파워, 인코포레이티드 Retractable blade structure with a split trailing edge
US8418967B2 (en) 2008-02-21 2013-04-16 Cornerstone Research Group, Inc. Passive adaptive structures
EP2250084A4 (en) * 2008-02-21 2011-03-09 Cornerstone Res Group Inc Passive adaptive structures
US8540490B2 (en) 2008-06-20 2013-09-24 General Electric Company Noise reduction in a turbomachine, and a related method thereof
EP2141357A1 (en) * 2008-07-03 2010-01-06 Dundalk Institute of Technology A wind turbine blade
US8721282B2 (en) * 2008-07-29 2014-05-13 The United States Of America, As Represented By The Secretary Of The Navy Active twist hollow beam system
GB2462308A (en) * 2008-08-01 2010-02-03 Vestas Wind Sys As Extension portion for wind turbine blade
GB2462307A (en) * 2008-08-01 2010-02-03 Vestas Wind Sys As Extension portion for wind turbine blade
EP2321528B1 (en) 2008-08-29 2012-12-19 Vestas Wind Systems A/S Control system in wind turbine blades
WO2010043645A2 (en) * 2008-10-14 2010-04-22 Vestas Wind Systems A/S Wind turbine blade with device for changing the aerodynamic surface or shape
WO2010043647A2 (en) * 2008-10-14 2010-04-22 Vestas Wind Systems A/S Wind turbine blade
WO2010059983A2 (en) 2008-11-21 2010-05-27 Preus Robert W Wind turbine
ES2367935B1 (en) * 2008-12-18 2012-09-18 Airbus Operations, S.L. AIRCRAFT STABILIZING SURFACE OUTPUT EDGE.
US8092187B2 (en) * 2008-12-30 2012-01-10 General Electric Company Flatback insert for turbine blades
GB2464163A (en) * 2009-02-25 2010-04-14 Vestas Wind Sys As Variable leading edge wind turbine blade
DK200900420A (en) * 2009-03-26 2010-09-27 Vestas Wind Sys As A wind turbine blade comprising a trailing edge flap and a piezoelectric actuator
GB2469854A (en) 2009-04-30 2010-11-03 Vestas Wind Sys As Wind turbine rotor blade
US8075278B2 (en) * 2009-05-21 2011-12-13 Zuteck Michael D Shell structure of wind turbine blade having regions of low shear modulus
US7775760B1 (en) 2009-07-02 2010-08-17 Finnell Alfred W Turbine wheel
US8668455B2 (en) * 2009-07-02 2014-03-11 Alfred Finnell Turbine wheel
US10443569B1 (en) 2009-07-02 2019-10-15 Alfred Finnell Wind or water based power generating system
US11021243B1 (en) 2009-07-02 2021-06-01 Alfred Finnell Tension airfoil assembly and implementation for power generation and aviation
GB2473448A (en) 2009-09-09 2011-03-16 Vestas Wind Sys As Wind Turbine Rotor Blade With Undulating Flap Hinge Panel
US8227929B2 (en) * 2009-09-25 2012-07-24 General Electric Company Multi-use energy storage for renewable sources
KR101092878B1 (en) 2009-10-26 2011-12-12 한국에너지기술연구원 The aerodynamic load reduction apparatus of blade for wind power generation
EP2322793A1 (en) 2009-11-12 2011-05-18 Dundalk Institute of Technology A trailing edge section for a turbine blade
EP2333322A3 (en) * 2009-11-30 2017-02-22 Vestas Wind Systems A/S Measuring loads on wind turbine blades
KR101068443B1 (en) * 2009-12-24 2011-09-28 황지선 Wind power rotors
US8303250B2 (en) * 2009-12-30 2012-11-06 General Electric Company Method and apparatus for increasing lift on wind turbine blade
EP2526287B1 (en) * 2010-01-21 2016-07-06 Vestas Wind Systems A/S A wind turbine rotor blade having a buckling trailing edge
US20110223021A1 (en) * 2010-03-10 2011-09-15 Vestas Wind Systems A/S Wind turbine rotor blade
DE102010011708B4 (en) * 2010-03-15 2012-03-01 Rudolf Huttary Turbomachine with passive blade adjustment
US7987067B2 (en) * 2010-03-26 2011-07-26 General Electric Company Method and apparatus for optimizing wind turbine operation
GB2479413A (en) * 2010-04-09 2011-10-12 Vestas Wind Sys As Wind Turbine Independent Blade Control Outside The Rated Output
GB2479415A (en) * 2010-04-09 2011-10-12 Vestas Wind Sys As Wind Turbine Independent Blade Control Outside The Rated Output
US20110255974A1 (en) * 2010-04-15 2011-10-20 General Electric Company Configurable winglet for wind turbine blades
DE102010019535B4 (en) 2010-05-06 2012-08-16 Siemens Aktiengesellschaft Method and arrangement for pressure regulation in a sliding bearing of a wind power generator
US8043066B2 (en) * 2010-06-08 2011-10-25 General Electric Company Trailing edge bonding cap for wind turbine rotor blades
DK2405129T3 (en) * 2010-07-06 2017-03-13 Lm Wp Patent Holding As Wind turbine blade with variable rear edge
EP2423104A1 (en) 2010-08-27 2012-02-29 Cornerstone Research Group, Inc. Passive adaptive structures
EP2612023B1 (en) * 2010-09-01 2015-10-14 Vestas Wind Systems A/S Rotor blade for wind turbine with movable control surface
US8308433B2 (en) 2010-09-30 2012-11-13 General Electric Company System and method for controlling wind turbine blades
DE102010047918A1 (en) * 2010-10-08 2014-04-30 Smart Blade Gmbh Flexible trailing edge for rotor blade of wind turbine, has flexible structure, where movement of flexible structure is realized by cooperation of pneumatic muscle and mechanical energy storage, such as spring or pneumatic accumulator
GB2486397A (en) * 2010-11-02 2012-06-20 Vestas Wind Sys As Wind turbine system and method using voltage generating material
US8035242B2 (en) 2010-11-09 2011-10-11 General Electric Company Wind turbine farm and method of controlling at least one wind turbine
US8523515B2 (en) 2010-11-15 2013-09-03 General Electric Company Noise reducer for rotor blade in wind turbine
CA2818201C (en) * 2010-11-30 2014-11-18 Lihua Liu Noise reducer for rotor blade in wind turbine
US8267657B2 (en) * 2010-12-16 2012-09-18 General Electric Company Noise reducer for rotor blade in wind turbine
WO2012103891A2 (en) * 2011-02-02 2012-08-09 Vestas Wind Systems A/S A wind turbine blade having a flap
EP2503142A1 (en) * 2011-03-21 2012-09-26 Siemens Aktiengesellschaft Flap for a wind turbine blade
DE102012102746B4 (en) * 2011-03-30 2020-10-01 Deutsches Zentrum für Luft- und Raumfahrt e.V. Rotor blade with adaptive slat for a wind turbine
CN103620216B (en) * 2011-04-28 2016-07-06 维斯塔斯风力系统有限公司 The wind turbine noise control method improved
US8414261B2 (en) 2011-05-31 2013-04-09 General Electric Company Noise reducer for rotor blade in wind turbine
US8834127B2 (en) 2011-09-09 2014-09-16 General Electric Company Extension for rotor blade in wind turbine
US8506248B2 (en) 2011-10-06 2013-08-13 General Electric Company Wind turbine rotor blade with passively modified trailing edge component
US8602732B2 (en) * 2011-10-06 2013-12-10 General Electric Company Wind turbine rotor blade with passively modified trailing edge component
EP2587050B1 (en) * 2011-10-27 2019-06-19 Siemens Gamesa Renewable Energy A/S Rotor blade
US8491262B2 (en) 2011-10-27 2013-07-23 General Electric Company Method for shut down of a wind turbine having rotor blades with fail-safe air brakes
CN102418666A (en) * 2011-11-24 2012-04-18 三一电气有限责任公司 Wind generating set and blade thereof
GB201121590D0 (en) * 2011-12-15 2012-01-25 Lm Wind Power As A wind turbine blade control method
US8430638B2 (en) 2011-12-19 2013-04-30 General Electric Company Noise reducer for rotor blade in wind turbine
US8500406B2 (en) 2011-12-22 2013-08-06 General Electric Company Wind turbine rotor blades with shape memory polymer composites and methods for deploying the same
US20130167552A1 (en) * 2012-01-04 2013-07-04 General Electric Company Exhaust strut and turbomachine incorprating same
US9033661B2 (en) * 2012-02-15 2015-05-19 General Electric Company Rotor blade assembly for wind turbine
EP2628946B1 (en) 2012-02-20 2017-09-27 GE Renewable Technologies Aerodynamic blade and method of controlling the lift of such a blade
ES2609240T3 (en) 2012-04-04 2017-04-19 Siemens Aktiengesellschaft Flexible fin arrangement for a wind turbine rotor blade
CN102619693B (en) * 2012-04-05 2014-04-16 昂海松 Wind driven generator with bionic wing structure blades
ES2388514B1 (en) * 2012-05-18 2013-07-09 Manuel Torres Martínez Wind turbine blade, variable geometry with passive control
GB201217210D0 (en) 2012-09-26 2012-11-07 Blade Dynamics Ltd A metod of forming a structural connection between a spar cap fairing for a wind turbine blade
GB201217212D0 (en) 2012-09-26 2012-11-07 Blade Dynamics Ltd Windturbine blade
US9435320B2 (en) 2012-11-19 2016-09-06 Elwha Llc Mitigating wind turbine blade noise generation in view of a minimum power generation requirement
US9759196B2 (en) 2012-11-19 2017-09-12 Elwha Llc Mitigating wind turbine blade noise generation in response to an atmospheric variation
US20140142888A1 (en) * 2012-11-19 2014-05-22 Elwha Llc Mitigating wind turbine blade noise generation
DK2757254T3 (en) * 2013-01-21 2016-09-05 Alstom Wind Slu Wind turbine blade
US9759068B2 (en) * 2013-02-28 2017-09-12 General Electric Company System and method for controlling a wind turbine based on identified surface conditions of the rotor blades
DE102013006166A1 (en) 2013-04-03 2014-10-09 Tembra Gmbh & Co. Kg Shape variable, fluidically actuated trailing edge on rotor blades
CN104234941A (en) * 2013-06-24 2014-12-24 王智勇 Foldable blade of wind driven generator
US9267491B2 (en) 2013-07-02 2016-02-23 General Electric Company Wind turbine rotor blade having a spoiler
CN103321825B (en) * 2013-07-11 2015-06-17 山东大学 Tidal current energy capturing water turbine with changeable blade gestures
CN103387048B (en) * 2013-07-27 2016-01-06 哈尔滨工业大学 The variant flexible trailing edge structure of pneumatic actuation/distortion/carrying integration
US9689374B2 (en) 2013-10-09 2017-06-27 Siemens Aktiengesellschaft Method and apparatus for reduction of fatigue and gust loads on wind turbine blades
EP2865887B1 (en) 2013-10-24 2016-06-01 Alstom Renovables España, S.L. Wind turbine blade
EP2865890B1 (en) 2013-10-24 2016-06-15 Alstom Renovables España, S.L. Wind turbine blade
US9494134B2 (en) 2013-11-20 2016-11-15 General Electric Company Noise reducing extension plate for rotor blade in wind turbine
EP2899395B1 (en) * 2014-01-23 2017-04-12 Alstom Renovables España, S.L. Wind turbine blades
US9670901B2 (en) 2014-03-21 2017-06-06 Siemens Aktiengesellschaft Trailing edge modifications for wind turbine airfoil
EP2937558B1 (en) * 2014-04-23 2019-03-13 Siemens Aktiengesellschaft Flow deflection device of a wind turbine and method
US9422915B2 (en) 2014-05-08 2016-08-23 Siemens Aktiengesellschaft Customizing a wind turbine for site-specific conditions
EP3002452B1 (en) * 2014-10-05 2019-07-24 Pontis Group Holding B.V. A wind turbine blade
NL2014140B1 (en) * 2014-10-05 2016-10-04 Pontis Group Holding B V A wind turbine blade.
DK3029317T3 (en) * 2014-12-05 2019-05-06 Siemens Ag Method and device for reducing exhaust and gust loads on wind turbine blades
US10180125B2 (en) 2015-04-20 2019-01-15 General Electric Company Airflow configuration for a wind turbine rotor blade
US10751988B1 (en) * 2015-12-07 2020-08-25 Made In Space, Inc. Additive manufactured waveguides
EP3181895A1 (en) * 2015-12-17 2017-06-21 LM WP Patent Holding A/S Splitter plate arrangement for a serrated wind turbine blade
CN109070994A (en) * 2016-04-04 2018-12-21 航空伙伴股份有限公司 Actuator for adaptive airfoil
US10400744B2 (en) 2016-04-28 2019-09-03 General Electric Company Wind turbine blade with noise reducing micro boundary layer energizers
US10442525B2 (en) * 2016-05-07 2019-10-15 Optivector Ltd Rotor or propeller blade with dynamically variable geometry and other properties
WO2018035091A1 (en) 2016-08-15 2018-02-22 University Of Florida Research Foundation, Inc. Methods and compositions relating to tunable nanoporous coatings
US10626846B2 (en) 2016-11-17 2020-04-21 General Electric Company System for wind turbine blade actuation
GB201620543D0 (en) 2016-12-02 2017-01-18 Act Blade Ltd Wind turbine blade
US10465652B2 (en) 2017-01-26 2019-11-05 General Electric Company Vortex generators for wind turbine rotor blades having noise-reducing features
NL2018538B1 (en) * 2017-03-17 2018-09-24 Fokker Aerostructures Bv Airfoil-shaped body with a variable outer shape
DE102017004665A1 (en) * 2017-05-15 2018-11-15 Horst Löwe Wind turbine with vertical axis of rotation and tour regulation
US11467094B2 (en) 2017-05-17 2022-10-11 University Of Florida Research Foundation, Inc. Methods and sensors for detection
DE102017129708B4 (en) 2017-12-13 2022-05-12 cp.max Rotortechnik GmbH & Co. KG Trailing edge flap for a rotor blade
US11480527B2 (en) 2017-12-20 2022-10-25 University Of Florida Research Foundation, Inc. Methods and sensors for detection
US11705527B2 (en) 2017-12-21 2023-07-18 University Of Florida Research Foundation, Inc. Substrates having a broadband antireflection layer and methods of forming a broadband antireflection layer
CN108397333A (en) * 2018-01-05 2018-08-14 浙江大学 A kind of deformable blade mechanism of energy by ocean current generating set
EP3517773B1 (en) * 2018-01-29 2020-08-12 Siemens Gamesa Renewable Energy A/S Trailing edge assembly
US20200400581A1 (en) * 2018-02-13 2020-12-24 University Of Florida Research Foundation Chromogenic materials, methods of making chromogenic materials, and methods of use
US11203409B2 (en) 2018-02-19 2021-12-21 Charles J. Fenske Geometric morphing wing with adaptive corrugated structure
US10767623B2 (en) 2018-04-13 2020-09-08 General Electric Company Serrated noise reducer for a wind turbine rotor blade
WO2019212560A1 (en) * 2018-05-04 2019-11-07 General Electric Company Flexible extension for wind turbine rotor blades
US11819277B2 (en) 2018-06-20 2023-11-21 University Of Florida Research Foundation, Inc. Intraocular pressure sensing material, devices, and uses thereof
US10746157B2 (en) 2018-08-31 2020-08-18 General Electric Company Noise reducer for a wind turbine rotor blade having a cambered serration
WO2020231828A1 (en) * 2019-05-10 2020-11-19 Blade Dynamics Limited Longitudinal edge extension
TR202011722A1 (en) * 2020-07-23 2022-02-21 Tusas Tuerk Havacilik Ve Uzay Sanayii Anonim Sirketi A tensioner.
EP4006333A1 (en) 2020-11-25 2022-06-01 Siemens Gamesa Renewable Energy A/S Turbine blade for a wind turbine
CZ202163A3 (en) * 2021-02-11 2022-08-24 České vysoké učení technické v Praze Method and device for controlling the deformation of a supporting structure
US11794887B1 (en) * 2022-04-06 2023-10-24 Lockheed Martin Corporation Removable trailing edge assembly and system for rotor blade trailing edge actuation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2333482A (en) * 1941-09-10 1943-11-02 Littman Zeno Airplane wing, aileron, and airplane rudder
US4619585A (en) * 1983-07-28 1986-10-28 Joe Storm Wind turbine apparatus
US5224826A (en) 1989-07-26 1993-07-06 Massachusetts Institute Of Technology Piezoelectric helicopter blade flap actuator
US5114104A (en) * 1990-10-01 1992-05-19 The United States Of America As Represented By The Secretary Of The Navy Articulated control surface
GB2308836A (en) * 1996-01-04 1997-07-09 Simon Fagg Reversible and finitely variable cambered lifting section
US6419187B1 (en) * 1997-09-30 2002-07-16 Deutsches Zentrum Fur Luft-Und Raumfahrt E.V. Profile
DE69916360T3 (en) * 1998-05-21 2008-06-05 Mcdonnell Douglas Corp. airfoil
ATE281600T1 (en) 1999-08-25 2004-11-15 Forskningsct Riso MODIFIED WIND TURBINE BLADE
DK174318B1 (en) 2000-06-19 2002-12-02 Lm Glasfiber As Wind turbine rotor blade includes flap comprising laminate(s) with layers of materials having differing thermal expansion coefficients
KR100614102B1 (en) * 2000-12-23 2006-08-22 알로이즈 우벤 Rotor blade for a wind power installation

Also Published As

Publication number Publication date
ES2561389T3 (en) 2016-02-25
NO20055081L (en) 2005-10-31
US7632068B2 (en) 2009-12-15
EP1613860A1 (en) 2006-01-11
EP1613860B1 (en) 2015-11-04
US20070036653A1 (en) 2007-02-15
CN100455793C (en) 2009-01-28
AU2004225883B2 (en) 2010-06-17
WO2004088130A1 (en) 2004-10-14
AU2004225883A1 (en) 2004-10-14
DK1613860T3 (en) 2016-02-01
CA2521045C (en) 2010-03-23
CN1780983A (en) 2006-05-31

Similar Documents

Publication Publication Date Title
CA2521045A1 (en) Control of power, loads and/or stability of a horizontal axis wind turbine by use of variable blade geometry control
CN101688515B (en) A wind turbine blade
EP1995455B1 (en) Actuation system for a wind turbine blade flap
US7922450B2 (en) Wind turbine blade comprising a trailing edge flap and a piezoelectric actuator
US10451037B2 (en) Wind turbine blade
EP2808541B1 (en) Wind turbine blade having a tensile-only stiffener for passive control of flap movement
EP2389510B1 (en) Control of a wind turbine rotor during a stop process using pitch and a surface altering device
EP2466121A2 (en) Wind turbine, aerodynamic assembly for use in a wind turbine, and method for assembling thereof
MX2010005030A (en) Active control surfaces for wind turbine blades.
EP3548741A2 (en) Torsional testing of a wind turbine blade
US10422318B2 (en) Wind turbine blade
GB2486876A (en) Wind turbine blade flap
WO2018059636A1 (en) Wind turbine and method for controlling buckling in a wind turbine blade
DK201270436A (en) Wind turbine blade having a flap

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20180403